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Abstract: In recent years, Dempster–Shafer (D–S) theory has been widely used in multi-criteria
decision-making (MCDM) problems due to its excellent performance in dealing with discrete ambigu-
ous decision alternative (DA) evaluations. In the general framework of D–S-theory-based MCDM
problems, the preference of the DAs for each criterion is regarded as a mass function over the set of
DAs based on subjective evaluations. Moreover, the multi-criteria preference aggregation is based
on Dempster’s combination rule. Unfortunately, this an idea faces two difficulties in real-world
applications: (i) D–S theory can only deal with discrete uncertain evaluations, but is powerless in the
face of continuous uncertain evaluations. (ii) The generation of the mass function for each criterion
relies on the empirical judgments of experts, making it time-consuming and laborious in terms of
the MCDM problem for large-scale DAs. To the best of our knowledge, these two difficulties cannot
be addressed with existing D–S-theory-based MCDM methods. To this end, this paper proposes a
clustering MCDM method combining D–S theory with the analytic hierarchy process (AHP) and
the Silhouette coefficient. By employing the probability distribution and the D–S theory to represent
discrete and continuous ambiguous evaluations, respectively, determining the focal element set
for the mass function of each criterion through the clustering method, assigning the mass values
of each criterion through the AHP method, and aggregating preferences according to Dempster’s
combination rule, we show that our method can indeed address these two difficulties in MCDM
problems. Finally, an example is given and comparative analyses with related methods are conducted
to illustrate our method’s rationality, effectiveness, and efficiency.

Keywords: multi-criteria decision making; decision making under uncertainty; uncertain information
clustering; D–S theory

1. Introduction

MCDM offers a systematic methodology for assisting decision makers in weighing
various DAs and determining the optimal DA while considering multiple criteria, which has
led to MCDM attracting widespread attention in both theory and practice [1,2]. However, in
the practical application of MCDM, uncertainties, such as missing, ambiguous, or inaccurate
information, are inevitable due to the subjective evaluations of experts, missing data, the
randomness of data, and so on [3–6]. In order to determine the optimal DA, the MCDM
problem in such an uncertain situation usually consists of two major tasks: (1) modeling
and processing uncertain information for all evaluations of each decision alternative and
(2) synthetically aggregating the performance of each alternative with respect to each
criterion [7].

To model and deal with uncertain information, many mathematical tools and theories,
such as fuzzy set theory [8], intuitionistic fuzzy set theory [9], rough set theory [10], D–S
theory [11–15], evidential reasoning [16], D-number [7], and Z-number [6], have been
extended into the uncertain MCDM problem. Among these approaches, as a generalization
of probability theory, D–S theory has been found to excel in dealing with uncertain informa-
tion, such as ambiguous, imprecise, and missing information, due to its main advantages of
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not requiring additional auxiliary parameters and prior information and having the ability
to express uncertainty and ignorance directly [17,18].

Another major task of the uncertain MCDM problem is to synthesize the performance
of DAs with respect to each criterion in order to select the optimal DA [7]. A particular
number of MCDM techniques have been proposed to be able to accomplish this task, such
as the Analytic Hierarchy Process (AHP) [19,20], Technique for Ordering Preference by
Similarity to Ideal Solution (TOPSIS) [21], VIsekriterijumska optimizacija i KOmpromisno
Resenje (VIKOR) [18], Elimination and Choice Translating Reality (ELECTRE) [22], Best
Worst Method (BWM) [23], Measurement of Alternatives and Ranking according to Com-
promise Solution (MARCOS), and Additive Ratio Assessment (ARAS) [7,13]. Among these
techniques, AHP is one of the most representative and widely used [20]. AHP follows
the way of thinking of decomposition, comparison, judgment, and synthesis for decision
making and establishes a hierarchical structure model, with the top layer as the target layer,
the middle layer as the criterion layer, and the bottom layer as the decision alternative
layer, which can clearly show the relationships between each layer, each criterion, and
each decision alternative [24]. In addition, similarly to the hierarchical structure of the
AHP, the D–S theory can also accomplish this task by treating each criterion as a mass
function generated by the evaluation of DAs, and the synthesized aggregated evaluation is
operationalized by Dempster’s combination rule [25,26]. As the core of D–S theory, Demp-
ster’s combination rule has excellent properties, such as the commutative and associative
laws, which enable it to fuse multi-source information efficiently [25,27]. Therefore, D–S
theory is widely used in uncertainty modeling and processing [18,28], decision making [29],
information fusion [30], etc.

In recent decades, MCDM based on D–S theory has attracted considerable attention
and has been extensively studied for its powerful and flexible ability to handle uncertain
information and synthesize information from multiple sources [5,13–15,18,25,31]. However,
there exist two main drawbacks for such D–S theory-based MCDM methods in real-world
applications: (i) D–S theory performs well in modeling and handling imprecise, missing,
and ambiguous uncertainty evaluations. However, it can only handle discrete uncertainty
evaluations and does not handle continuous uncertainty evaluations well [5,13,25]. (ii) Ex-
isting methods for generating mass functions for each criterion rely on subjective judgments
made with experts’ empirical knowledge, which requires experts to determine the focal
element set for the mass function, the mass value of each focal element, or both [5,31]. How-
ever, when the number of DAs is huge, the subjective evaluation process is time-consuming
and laborious. These two drawbacks set a threshold for the real-world application of
D–S-theory-based MCDM methods, and to the best of our knowledge, none of the existing
D–S-theory-based MCDM methods can address both drawbacks.

In order to address these drawbacks, this article proposes a clustering MCDM method
based on D–S theory, the AHP method, and the Silhouette coefficient. Specifically, we first
employ the mass function and probability distribution to represent discrete and continuous
ambiguous evaluations on DAs for each criterion. Then, a clustering method based on the
Silhouette coefficient is proposed to automatically determine the set of focal elements to
generate the mass function of each criterion. Then, to determine the assignment of mass
values to each focal element, we propose a new ratio formula for uncertain evaluation
values capable of handling both discrete and continuous evaluation values. Since the AHP
technique can easily determine the preference of DAs by constructing a judgment matrix
and calculating the eigenvectors of the largest eigenvalues, we introduce the eigenvector
method of the AHP method to assign the mass value of each focal element. However, the
traditional AHP method requires a pairwise comparison of all DAs, which is complicated,
while the clustering approach proposed in this paper and the excellent property of the
proposed ratio formula can effectively avoid a large number of pairwise comparisons.

Finally, after the mass function of each criterion is discounted according to the im-
portance weight of the criteria, Dempster’s combination rule is applied to merge the mass
functions to generate the final evaluation of each DA. Moreover, we confirm the advantages
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of our method through an example illustration and a comparative analysis with the existing
D–S-theory-based MCDM methods.

The contributions of this paper are summarized as follows:

• We identify various continuous uncertain evaluations of DAs in MCDM and represent
them by the continuous probability distributions.

• A clustering method based on the Silhouette coefficient is proposed to handle large-
scale discrete and continuous uncertain evaluations on DAs in MCDM. Furthermore,
when the total number of DAs is relatively large, clustering significantly improves the
efficiency of MCDM.

• A new ratio formula for uncertain evaluation values that can handle discrete and continu-
ous uncertain evaluations is proposed. Moreover, we demonstrate that the formula can
effectively avoid the large number of pairwise comparisons in the AHP method.

• A clustering MCDM method based on D–S theory and the AHP method is proposed
to evaluate all DAs with respect to all related criteria in MCDM.

The rest of this paper is structured as follows: The studied literature is outlined in
Section 2; Section 3 reviews the basic concepts of D–S theory and other preliminaries
used in this paper; a novel MCDM method is proposed in Section 4; Section 5 details the
experimental evaluations; Section 6 concludes this paper.

2. Literature Review

Solving the uncertain MCDM problem consists of two crucial tasks: the first is mod-
eling and processing all of the uncertain information, and the second is integrating the
performance of DAs under each criterion to determine the optimal DA [7].

In order to achieve the first task, some theories and methods for dealing with uncertain
information have been incorporated into MCDM problems. For example, the fuzzy set the-
ory provides a systematic framework and solves uncertainty and fuzzy problems with the
aid of the membership function [8]. Then, the intuitionistic fuzzy set was proposed, which
extended fuzzy sets to represent the rejection degree by the non-membership degree [9].
Then, an interval-valued intuitionistic fuzzy set was proposed, where both the membership
and non-membership degree are represented by intervals [32]. To represent the reliability
of the information, the Z-number was then proposed [6]. Similarly, the existing extended
fuzzy set theories, such as spherical fuzzy sets and neutrosophic sets, additionally consid-
ered the mental state of the decision maker, especially the hesitation state. However, it
is too complicated for the decision maker to define their satisfaction, dissatisfaction, and
hesitation level when expressing thoughts [33,34]. Furthermore, rough set theory was
proposed to solve the inconsistency problem of granular information [10], and soft set
theory provided a general mechanism for modeling uncertainty from a parametric point of
view [35]. The D-number was proposed to express imprecision and uncertainty [7]. The
evidential reasoning rule presented a general approach to solving uncertain information,
including ignorance and randomness [16]. As an extension of probability theory, the D–S
theory was proposed by Dempster and developed by Shafer. The mass function in the
D–S theory can express imprecision, ambiguity, and ignorance by assigning support to
subsets [11,12]. The D–S theory performs very well in modeling and handling uncertain
information without additional auxiliary information, such as the membership function in
fuzzy set theory, the non-membership function in intuitionistic fuzzy set theory, and the
reliability in the Z-number [13–15,18,28].

The second crucial task of the uncertain MCDM problem is to combine the perfor-
mance of all DAs for each criterion and obtain the optimal DA. A considerable number of
traditional MCDM technologies can do this, such as AHP [19,20], TOPSIS [21], VIKOR [18],
BWM [23], ELECTRE [22], MARCOS, and ARAS [7,13]. In addition to these traditional
MCDM techniques, the D–S theory can also be used to select the optimal DA by treating
each criterion as a mass function whose frame of discernment is the set of all DAs and then
combining the mass functions of all the criteria by Dempster’s combination rule [25,26].
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Furthermore, Dempster’s combination rule satisfies the commutative and associative laws,
making it very efficient in fusing information from multiple sources [11,12].

D–S theory performs well in modeling and handling multiple types of uncertain
information, and its core, Dempster’s combination rule, can efficiently fuse information
from multiple criteria [13–15,18,28]. Therefore, incorporating D–S theory into the uncertain
MCDM problem is desirable and has attracted much attention from researchers in recent
years. For example, the EFMCDM model proposed by Xiao et al. combines confidence
entropy and Dempster’s combination rule [25]; Zhou et al. put forward the method of
using the evidential reasoning rule to replace Dempster’s combination rule in MCDM to
make decisions [36]; Beynon et al. proposed a DS/AHP method that combines D–S theory
with the AHP method, with which decision makers can make preferential judgments on
the group of DAs instead of comparing individual DAs or making pairwise comparison of
DAs [37]; Hua et al. proposed the DS-AHP method to deal with incomplete information [27];
Ma et al. identified various types of ambiguous uncertain information and extended
the DS/AHP method to deal with such uncertain information [5]; Chattopadhyay et al.
proposed the use of the D-number, an extended version of D–S theory, to deal with uncertain
information and select suppliers in the steel industry with the help of the MARCOS
method [7]; Fei et al. fused D–S theory with the ELECTRE and VIKOR methods to select
optimal suppliers in supply chain management [15,18]; Hatefi et al. fused D–S theory and
ARAS methods for sustainable construction material selection [13]; Wang et al. used the
D–S theory to represent and handle uncertain information and used TOPSIS to select the
optimal offshore wind turbine [14].

However, these existing methods based on the D–S theory rely on the empirical
knowledge of experts when generating the mass function of each criterion, which is time-
consuming, labor-intensive, and subjective. Moreover, these methods can only deal with
discrete evaluations and not continuous evaluation values, which are very common in the
practical applications of MCDM. Therefore, to tackle the above problems, a novel MCDM
method is proposed in this paper.

3. Preliminaries

First, we review the basic definitions in D–S theory [11].

Definition 1. Let Θ = {θ1, . . . , θn} be a set of exhaustive and mutually exclusive elements called
a frame of discernment (or, simply, a frame). A function m : 2Θ→ [0, 1] is a mass function over Θ if

m(∅) = 0, ∑
A⊆Θ

m(A) = 1.

A function Pl : 2Θ → [0, 1] is a plausibility function if

Pl(A) = ∑
B∩A 6=φ

m(B).

Here, the mass value of m(A) represents the degree to which the corresponding evidence supports A.
Moreover, any subset A ⊆ Θ satisfying m(A) > 0 is called a focal element of m. In particular, the
mass function of m(Θ) = 1 represents the decision maker’s total ignorance over the frame Θ.

One advantage of D–S theory is that it provides a method for accumulating and
combining evidence from multiple distinct sources by using Dempster’s combination
rule [12].

Definition 2. (Dempster’s combination rule) Let m1 and m2 be two mass functions over a frame
of discernment Θ. Then, the combined mass function from m1 and m2 according to Dempster’s
combination rule, denoted as m1,2, is defined as:
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m1,2(x) =


0 if x = ∅,

∑
A
⋂

B=x
m1(A)m2(B)

1− ∑
A
⋂

B=∅
m1(A)m2(B) if x 6= ∅.

(1)

Since the probability of identifying each element in the frame is uncertain for the
mass function, some methods are employed to transform uncertain probability into certain
probability, which is called probability transformation [38].

Definition 3. (Pignistic probability function) Let m be a mass function over Θ. Its associated
pignistic probability function BetPm : Θ→ [0, 1] is defined as:

BetPm(θ) = ∑
A⊆Θ,θ∈A

1
|A|

m(A)

1−m(∅)
, m(∅) < 1. (2)

where |A| is the cardinality of A.

Due to the existence of the criterion weight, it is necessary to discount the criterion’s
mass function according to the weight before combining the mass functions of all criteria.
Shafer’s discounting method is defined as follows [12].

Definition 4. (Shafer’s discounting) Let m be a mass function over a frame Θ, and let ω be the
evidence weight of mass function m; then, the mass function m̂ discounted by the evidence weight is
given by:

m̂(A) =


0 if A = ∅,

ω ·m(A) if A ⊂ Θ and A 6= ∅,

ω ·m(A) + (1−ω) if A = Θ.

(3)

Based on the concept of D–S theory, Ma et al. [4] proposed four types of discrete
ambiguous evaluation for DAs with respect to a given criterion and converted them into
the form of mass function as follows.

Definition 5. (Discrete ambiguous evaluation) Let mA,c be the mass function representing the
decision maker’s judgment about the DA, A, regarding criterion c, and let H = {xi | xi ∈
R, i = 1, . . . , n, x1 < . . . < xn} be a mutually exclusive and collectively exhaustive set of numeral
assessments that present a scale set of n-scale unit preference on DAs; then, the four forms of
evaluation and their corresponding mass functions are defined as follows:

• Determined evaluation.
This can be expressed as a special mass function defined on the frame H: mA,c({x}) = 1,
where x(x ∈ H) is the numeral assessment grade evaluated by an expert.

• Unknown evaluation.
Since the decision maker is utterly ignorant in this situation, it can be expressed as a special
mass function defined on the frame Θ: mA,c(Θ) = 1, Θ = H.

• Interval-valued evaluation.
This means that the decision maker only knows that the numeral assessment grade could be
anywhere between xi and xj, where xi and xj are the numeral assessment grades evaluated by
the expert, but it is not sure which one. It can be expressed as a special mass function defined
on the frame Θ: mA,c({xi, · · · , xj}) = 1, Θ = H.

• Ambiguous evaluation.
This can be expressed as a special mass function defined on the frame Θ: mA,c, where
∑D⊆Θ mA,c(D) = 1, Θ = H, and ∃T ⊆ H, |T| ≥ 1, mA,c(T) > 0.

The Silhouette coefficient is an index for judging the clustering effect [39] among a set
of elements. The closer the distance between samples of the same class and the farther the
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distance between samples of different classes, the better the clustering effect and the larger
the Silhouette coefficient.

Definition 6. (Silhouette coefficient) Let X = {x1, . . . , xn} be a set of elements, let {Cl1, . . . , Clk},
and let (k < n) be a set of clusters, where Cli is the cluster consisting of xi; then, the Silhouette
coefficient of the k clusters is given by:

SC(k) =
1
n

n

∑
i=1

b(xi)− a(xi)

max{a(xi), b(xi)}
, (4)

where a(xi) is the average distance between xi and other data in the cluster Cli, and b(xi) is the
minimum value of the average distance between xi and another cluster Clt(1 ≤ t ≤ k, t 6= i),
given by:

a(xi) =
∑j∈Cli ,j 6=i η(xi, xj)

|Cli|
, (5)

b(xi) = min
1≤t≤k,t 6=i

∑j∈Clt η(xi, xj)

|Clt|
, (6)

in which η(xi, xj) is the distance between xi and xj.

4. A Novel MCDM Method

Based on the D–S theory, clustering method, and eigenvector method in the AHP, this
section proposes a novel MCDM method for dealing with uncertain information.

Problem definition: Let Λ = {A1, A2, . . . , An} be the nonempty finite DA set consisting
of n DAs, let C = {c1, c2, . . . , cm} be the nonempty finite decision criteria set, let xl,i (1 ≤
l ≤ n, 1 ≤ i ≤ m) be the value (certain or uncertain) of the DA Al (Al ∈ Λ) regarding
the criterion ci (ci ∈ C), and let ωi be the importance weights of the decision criterion
ci (i = 1, 2, . . . , m). For this uncertain MCDM problem, the optimal DA should be selected
from Λ.

For example, an automotive enterprise needs to select an optimal DA from ten sup-
pliers of automotive parts, and these ten suppliers are denoted as a, b, c, d, e, f , g, h, i,
and j, respectively. In this MCDM problem, automotive enterprises evaluate suppliers
using four decision criteria: price, delivery time, quality, and service level. The evaluations
for DAs over all criteria are shown in Table 1, where some values are unknown (denoted
as “null”) due to the absence of data values, and P(·) refers to the probability. For the
criteria of service level and quality, the grades of DAs could be evaluated by the following
linguistic terms: Very Poor (VP), Poor (P), Average (A), Good (G), and Very Good (VG). We
can find that some evaluations of DAs are discrete uncertain values and some evaluations
of DAs are continuous uncertain values. Moreover, such MCDM problems are common in
real-world applications, and existing methods cannot solve them.

In order to solve the MCDM problem shown in Table 1 and select the optimal DA, the
proposed method is shown in Figure 1. As shown in the figure, the proposed method has
three main steps, including identifying the uncertain information in the MCDM, generat-
ing the mass function of each criterion, and combining the mass functions of all criteria
according to their weights. The specific steps are shown below.

4.1. Step 1: Identifying Uncertain Information in MCDM

In Section 2, we recall several forms of discrete evaluation values for DAs identified
by Ma et al. [4]. Then, inspired by this idea, we identify the various forms of continuous
evaluation values of DAs as follows.

For a continuous evaluation value xl,i of a DA Al(Al ∈ Λ) regarding a criterion
ci(ci ∈ C), if Z(Z ⊆ R) is the region in which the evaluation value is defined, xl,i could
take one of the following three forms:
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• Missing evaluation value, such as the delivery time of supplier i in Table 1.
• Interval value: [a, b], where a, b ∈ Z and a < b, such as the price of supplier a in Table 1.

• Continuous probability distribution:
∫ b

a fA,c(x)dx = 1, where a, b ∈ Z, a < b and
fA,c(·) is the probability density function, such as the delivery time of supplier a in
Table 1.

Table 1. Decision matrix for the selection of an automotive part supplier.

Price
(Denoted as p,

in Dollars/Unit)

Delivery Time
(Denoted as t,

in Hours)

Service Level
(Denoted as sl,

in Grades)

Quality
(Denoted as q,

in Grades)

a 220–230

P(24 ≤ t ≤ 72) =
∫ 72

24 f (t)dt = 1,

where f (t) ≈

 1
4
√

2π
e−

(x−48)2

32 , 24 ≤ t ≤ 72

0, otherwise

VG
70% chance is VP or P,
30% chance is P or A.

b 220–240 24–48 VG P

c 240
P(t = 12) = 0.2, P(t = 24) = 0.3,
P(t = 36) = 0.3, P(t = 48) = 0.2. VG A

d 240–245
P(48 ≤ t ≤ 72) =

∫ 72
48 f (t)dt = 1,

where f (t) ≈
{

1
24 , 48 ≤ t ≤ 72
0, otherwise

VG A

e 220–250

P(12 ≤ t ≤ 144) =
∫ 144

12 f (t)dt = 1,

where f (t) ≈
{

1
24 · exp−

1
24 (t−12), 12 ≤ x ≤ 144

0, otherwise

P G

f 220–240 130–140 VP-A null

g 300–350 100–200 A G

h 390–400 12–72
10% chance is G,

90% chance is VG. G

i 400–420 null P or A 20% chance is G or VG,
80% chance is VG.

j 500–600 200–220 G VG

In order to facilitate the processing of evaluation values, we convert all evaluation
values into continuous probability distributions, as shown below.

• Since we are entirely ignorant of missing evaluations, we assume that it takes a random
value in the interval and obeys a uniform distribution. Furthermore, the lower bound of
the interval is assumed to be the minimum possible value (the worst case) of all other
DAs, while the upper bound of the interval is assumed to be the maximum possible
value (the best case) of all other DAs. Moreover, such assumptions satisfy our intuition
that in many real-world applications, the worst case of missing values is no worse than
the known worst case, and the best case is no better than the known best case.

• For the case of interval evaluation, since its probability distribution is unknown,
generally, interval-valued evaluation is uniformly treated along its range [40]. Then,
we can express it as a uniform probability distribution,

∫ b
a fA,c(x)dx = 1, where a, b ∈

Z, a < b, which is a continuous probability distribution with a constant probability
density function 1

b−a .

Therefore, all forms of discrete evaluation values of DAs can be expressed in the form
of mass functions, while all forms of continuous evaluation values of DAs can be expressed
in the form of probability distributions.
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Figure 1. Flowchart of the proposed method.

4.2. Step 2: Generating the Mass Function of Each Criterion

In this paper, the generation of the mass function of each criterion consists of two
steps: Firstly, DAs are divided into different clusters according to their values using the
clustering method, where the set of DAs divided into the same cluster constitutes a focal
element of the mass function; secondly, the preference of each cluster, which is the mass
value of each focal element, is calculated to generate the mass function of the criterion.

4.2.1. Step 2-1: Determining the Set of Focal Elements Based on Clustering

In this paper, we update the UK-medoids, one of the classic methods for clustering
uncertain data [41], in order to cluster the n DAs, and we use the Silhouette coefficient in
Definition 6 to determine the optimal number of clusters and the set of clusters for the DAs.

Firstly, the distance between values in the clustering algorithm needs to be calculated.
We define the distance between uncertainty values in the form of a probability distribution
and mass function as follows.

Definition 7. (Distance of uncertain values) Let xi be the value, let Zi be the region in which
value xi is defined, let fi(·) be the probability of xi if xi is in the form of a continuous probability
distribution, let BetPmi (·) be the pignistic probability of mi, and let Θ be the frame of mi if xi is in
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the form of a mass function mi; then, the distance between two values xi and xj, denoted as η
(

xi, xj
)
,

is defined by the following:

• If xi and xj are both continuous probability distributions:

η
(
xi, xj

)
=
∫

x∈Zi

∫
y∈Zj

|x− y| · fi(x) · f j(y)dxdy;

• If xi and xj are both mass functions:

η
(
xi, xj

)
= ∑

θi∈Θ
∑

θj∈Θ
|θi − θj| · BetPmi (θi) · BetPmj(θj);

• If xi is a mass function and xj is a continuous probability distribution:

η
(
xi, xj

)
= ∑

θi∈Θ
·BetPmi (θi) ·

∫
y∈Zj

|θi − y| · f j(y)dy.

Then, our proposed clustering algorithm is shown in Algorithm 1.

Algorithm 1: Clustering of values of DAs.

Input: The set of values of n DAs: X = {x1, x2, . . . , xn}, the minimum number of
clusters: kmin, the maximum number of clusters: kmax.

Output: The optimal number of clusters k̂, the set of clusters Ĉl.
1 Calculate the distance between all values η(xi, xj)(i, j ∈ {1, n});
2 if ∀ i, j ∈ {1, n}, η(xi, xj) is the same then
3 k̂ = 1, Ĉl = {X}
4 else
5 for each cluster number k ∈ [kmin, kmax] do
6 Select k initial medoids S = {m1, m2, . . . , mk} as far away from each other

as possible;
7 Initialization of k clusters: Clt = ∅(t = 1, . . . , k) ;
8 repeat
9 Find the cluster Clλi into which xi(i = 1, . . . , n) should be classified,

where λi = arg mins∈S δ(xi, s). Update Clλi = Clλi ∪ {xi} ;
10 Recompute the medoid of each cluster Clt(t = 1, . . . , k), update

mt = arg minxi∈Clt ∑xj∈Clt ,j 6=i η(xi, xj) ;
11 until The set of medoids S does not change;
12 Calculate the Sihouette coefficient SCk of {Cl1, Cl2, . . . , Clk} ;
13 if SCk > maxSCk then
14 maxSCk = SCk;
15 k̂= k, Ĉl = {Cl1, Cl2, . . . , Clk}

16 return k̂, Ĉl

Overview. Given the set of values of each DA and the predetermined minimum and
maximum numbers of clusters, kmin and kmax(2 ≤ kmin ≤ kmax ≤ n), Algorithm 1 can
determine the optimal number of clusters and obtain the set of clusters. The parameters
kmin and kmax are two predetermined parameters that indicate the lower and upper limits
of the number of clusters taken, respectively, so that the optimal number of clusters is
between the values of these two parameters. Moreover, kmin and kmax can be the same, and
when they are the same, it is equivalent to the decision maker fixing the number of clusters
to a single value. The main procedures are as follows: (1) First, calculate the distance
between all values of the DAs, including the distance between the value and itself. Note
that if the value of the DA is uncertain, the distance between the value of DA and itself is
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greater than 0. (2) If all of the distances calculated above are the same, then all values of
DAs regarding this criterion are considered the same and should be divided into the same
cluster (shown in lines 2–3 of Algorithm 1), in which case the mass function generated
by this criterion represents ignorance in D–S theory. Otherwise, all values of DAs will be
clustered based on the distance between values. The number of clusters is in the range of
[kmin, kmax], so the number of clusters whose Silhouette coefficient reaches the maximum is
the optimal number of clusters, and the set of clusters obtained at this time is the optimal
set of clusters (shown in lines 5–15 of Algorithm 1). In addition, if the set of clusters derived
from Algorithm 1 contains empty clusters, then the empty clusters are not added to the set
of optimal clusters, so the set of optimal clusters contains only clusters with elements.

Compared with the UK-medoids algorithm, Algorithm 1 has the following advantages:
(1) The formula for calculating the distance of uncertain values is extended to apply to the
uncertain values in the form of the mass function, as shown in Definition 7. (2) The number
of clusters can be automatically determined according to the Silhouette coefficient without
determining the number of clusters in advance. Note that if all distances are the same, the
number of clusters is 1. That is, all values are divided into the same cluster. In this case, all
DAs with respect to this criterion behave the same, so it is only through this criterion that
DAs cannot be distinguished. Therefore, all DAs should be grouped into the same cluster,
in which case the mass function generated by this criterion represents ignorance in D–S
theory. Therefore, when all values are the same, it is unnecessary to divide them into two or
more clusters. (3) The selection method of the initial clustering medoid is improved. Unlike
in the random selection of cluster centers, the improved selection method can maximize the
distance between the initial medoids so that the different final clusters are as far from each
other as possible. The specific steps are as follows: First, randomly select a value as the
first initial medoid, select the value with the largest distance from the first initial medoid
as the second initial medoid, and then select the value with the largest minimum distance
from the first two values as the third initial medoid, and so on, until k initial medoids
are selected.

Then, by applying Algorithm 1, we will obtain the optimal number of clusters, denoted
as k̂, and the set of clusters

{
Cl1,i, Cl2,i, . . . , Clk̂,i

}
regarding the criterion ci. The set of

optimal clusters determines the set of focal elements of the mass function of the criterion,
where all DAs contained in each cluster constitute a focal element.

4.2.2. Step 2-2: Assigning Mass Values to Each Focal Element

After obtaining the set of clusters corresponding to the criterion, we need to determine
each cluster’s preference degree to generate the criterion’s mass function. It should be noted
that if the number of clusters regarding the criterion ci(ci ∈ C) obtained by Algorithm 1
is 1, that is, all DAs regarding criterion ci have the same performance, this means that the
pros and cons of each DA cannot be distinguished regarding criterion ci. The information
provided by this criterion is completely ignorant, so the mass function of criterion ci is
mci (Θ) = 1. The following content of this subsection presents the case where the number
of clusters is greater than or equal to 2.

In this paper, we determine the preference degree of each cluster by calculating the
ratio relationship of the values among different clusters. Therefore, before calculating the
preference degree of each cluster, the ratio between all the values contained in the different
clusters needs to be calculated. Similarly to the distance of uncertain values, the formula
for calculating the ratio between uncertain values is as follows.

Definition 8. (Ratio of uncertain values) Let xi be the value, let Zi be the region in which value xi
is defined, let fi(·) be the probability of xi if xi is in the form of probability distribution, let BetPmi (·)
be the pignistic probability of mi, and let Θ be the frame of mi if xi is in the form of a mass function.
Then, the ratio of value xi to xj, denoted as r

(
xi, xj

)
, is defined by the following:
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• If xi and xj are both continuous probability distributions:

r
(
xi, xj

)
=
∫

x∈Zi

∫
y∈Zj

(x/y) · fi(x) f j(y)dxdy;

• If xi and xj are both mass functions:

r
(
xi, xj

)
= ∑

θi∈Θ
∑

θj∈Θ
(θi/θj) · BetPmi (θi) · BetPmj(θj);

• If xi is a mass function and xj is a continuous probability distribution:

r
(
xi, xj

)
= ∑

θi∈Θ
BetPmi (θi) ·

∫
y∈Zj

(θi/y) · f j(y)dy.

The proposed formula for the ratio of uncertain values has the following excellent property.

Theorem 1. Let r
(

xi, xj
)

be the ratio of xi to xj, let r(xi, xk) be the ratio of xi to xk, let r
(

xj, xj
)

be the ratio of xj to itself, and let Zi be the region in which value xi is defined; then, the ratio of xj to
xk, denoted as r

(
xj, xk

)
, can be expressed in terms of r

(
xi, xj

)
, r(xi, xk), and r

(
xj, xj

)
as follows.

r
(
xj, xk

)
=

r
(
xj, xj

)
· r(xi, xk)

r
(
xi, xj

)
Proof. Considering the case of the continuous probability distribution, according to Fu-
bini’s theorem [42], when the integral area of a double integral is a rectangular area and the
binary function can be separated into the product of two univariate functions, the double
integral can be converted to a repeated integral. Thus, we have

r
(
xi, xj

)
=
∫

x∈Zi
x · fi(x)dx ·

∫
y∈Zj

(1/y) · f j(y)dy;

r(xi, xk) =
∫

x∈Zi
x · fi(x)dx ·

∫
z∈Zk

(1/z) · fk(z)dz;
r
(
xj, xk

)
=
∫

y∈Zj
y · f j(y)dy ·

∫
z∈Zk

(1/z) · fk(z)dz.

Then, we have

r
(

xi, xj
)
· r
(

xj, xk
)

=
∫

x∈Zi
x · fi(x)dx ·

∫
y∈Zj

(1/y) · f j(y)dy ·
∫

x∈Zi
x · fi(x)dx ·

∫
z∈Zk

(1/z) · fk(z)dz

= r
(

xj, xj
)
· r(xi, xk)

In the case of discrete forms, the integral needs to be transformed into a cumulative
form, and the procedure of the proof is similar. Thus, Theorem 1 holds.

Therefore, by Theorem 1, we only need to calculate the ratio of each uncertain value
to itself and the ratio of one uncertain value to all other uncertain values; then, the ratio
between all uncertain values can be calculated, which will significantly reduce the number
of comparisons and calculations and improve the efficiency.

Next, we can obtain the ratio relationship between different clusters, as shown below.

Definition 9. (Ratio of clusters) Let r(xi, xj) be the ratio of uncertain value xi to xj; then, the ratio
of cluster Clh,i to Clt,i regarding the criterion ci(ci ∈ C), denoted as Ri(h, t), is defined by:

Ri(h, t) = ( ∏
xi∈Clh,i ,xj∈Clt,i

r(xi, xj))
1

|Clh,i |·|Clt,i |

where |Clh,i|, |Clt,i| are the numbers of evaluations contained in clusters Clh,i and Clt,i.



Entropy 2022, 24, 1621 12 of 22

It is important to note that the ratio between uncertain values of the same cluster does
not need to be calculated. Moreover, due to Theorem 1, only the ratio of one uncertain
value to other values needs to be calculated; then, the ratios of all uncertain values can
be obtained. Therefore, we need to pick the cluster that contains the largest number of
uncertain values, randomly pick one of the uncertain values, and then calculate the ratio
between it and all the values of other clusters. The ratio of all uncertain values can be
obtained; thus, the ratio between the clusters can also be obtained. Therefore, the efficiency
of calculating the ratio between all clusters is significantly improved by Theorem 1.

After the ratio relationships of all clusters are obtained, we use the AHP method to
determine the preference degree of each cluster regarding the criterion. First, we construct
the judgment matrix for pairwise comparisons among clusters regarding the criterion ci.
Let Ri(h, t) be the ratio of cluster Clh,i to Clt,i and let k be the number of clusters; then, the
judgment matrix is constructed as follows.

• If ci is a benefit criterion: 
Ri(1, 1) Ri(1, 2) . . . Ri(1, k)
Ri(2, 1) Ri(2, 2) . . . Ri(2, k)

... . . . . . .
...

Ri(k, 1) Ri(k, 2) . . . Ri(k, k)


• If ci is a cost criterion: 

1/Ri(1, 1) 1/Ri(1, 2) . . . 1/Ri(1, k)
1/Ri(2, 1) 1/Ri(2, 2) . . . 1/Ri(2, k)

... . . . . . .
...

1/Ri(k, 1) 1/Ri(k, 2) . . . 1/Ri(k, k)


When the criterion is a benefit criterion, the elements of the judgment matrix are the ratio
of each cluster. When the criterion is a cost criterion, the elements are the reciprocal of the
ratio of each cluster. For the positive reciprocal matrix, the maximum eigenvalue must be a
positive eigenvalue according to the Perron–Frobenius theorem [43], and its corresponding
eigenvector is a positive vector. The eigenvector is then normalized, and the normalized
eigenvector of the maximum eigenvalue can be used as the weight vector. Therefore, the
normalized eigenvector corresponding to the largest eigenvalue of the judgment matrix
is selected as the weight vector, in which each element value is the preference degree of
each cluster Cl, denoted as µ(Cl). Then, we can obtain the mass function of criterion ci
as follows.

Definition 10. (The mass function of the criteria) Let {Cl1,i, Cl2,i, . . . , Clk,i} be the set of k clusters
regarding the criterion ci(ci ∈ C), let µ(Clt,i) be the preference degree of the cluster Clt,i, and let
Ut,i be the union set of DAs corresponding to all values contained in Clt,i, where 1 ≤ t ≤ k̂ and
Ut,i ⊆ Λ; then, the mass function of criterion ci defined on the frame Λ, denoted by mci , is given by

mci (Ut,i) =
µ(Clt,i)

∑k̂
j=1 µ(Clj,i)

and
k̂

∑
t=1

mci (Ut,i) = 1.

4.3. Step 3: Combining the Mass Functions of All Criteria According to Their Weights

After obtaining the mass functions of all criteria in Step 2, by Definition 4, we can
obtain the mass function of each criterion ci(ci ∈ C) discounted by the importance weight
ωi, which is denoted as m̂i. Then, through Dempster’s combination rule in Definition 2,
we combine all of the discounted mass functions of each criterion to obtain the final mass
function defined on the frame Λ, denoted as m f inal . After obtaining the final mass function,
according to Definition 1, we calculate the plausibility function of each DA within the
frame of the final mass function. Then, the optimal DAs are the DAs with the maximum
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plausibility function. In this step, if two or more DAs have the same maximum plausibility
function (that is, they are divided into the same cluster with regard to each criterion), we
can redefine the frame of the mass function of each criterion as the set of DAs to be further
compared and repeat Steps 2–3 until we obtain the unique optimal DA.

5. Experiments

In this section, we will first illustrate the novel MCDM method proposed in this paper
using the decision-making problem of selecting the optimal supplier of car parts described
in Section 3, as shown in Table 1. Moreover, the decision tree following the three-level
AHP framework is shown in Figure 2. Then, a comparative analysis of our method and the
existing related MCDM methods is performed.

Select the optimal 

car parts supplier

Delivery

Time
Price

Service 

Level
Quality

{a }{b }{c } {j }...

... ... ... ...

Target

Criteria

DAs
{a }{b }{c } {j }... {a }{b }{c } {j }... {a }{b }{c } {j }...

Figure 2. Decision tree for the selection of a car part supplier.

5.1. Illustration of the Proposed Method
5.1.1. Step 1: Identifying Uncertain Information in MCDM

For qualitative criteria, in this paper, the set H of numeral assessment grades we
use is {1, 2, 3, . . . , 9}, which represents a nine-scale unit preference set for DAs, and the
corresponding numeral assessment grades of the linguistic terms Very Poor (VP), Poor (P),
Average (A), Good (G), and Very Good (VG) are 1, 3, 5, 7, and 9, respectively, as shown in
Table 2. We convert the continuous uncertain evaluations and discrete uncertain evaluations
in Table 1 into the form of probability distributions or mass functions, as shown in Table 3.

5.1.2. Step 2: Generating the Mass Function of Each Criterion

In Step 2, we first generate the set of focal elements of the mass function for each
criterion by clustering; then, we assign mass values to each focal element.

Step 2-1: Determining the Set of Focal Elements Based on Clustering

By setting the minimum and the maximum numbers of clusters as 2 and 10, respec-
tively, and applying Algorithm 1, we can obtain the optimal set of clusters of DAs for each
criterion, which determines the set of focal elements of the mass function of the criterion,
where all DAs contained in each cluster form a focal element. The optimal set of clusters of
DAs is shown in Table 4.

Table 2. Linguistic terms and corresponding numerical assessment grades.

Linguistic Term Abbreviation Corresponding Numerical Assessment Grade

Very Poor VP 1
Poor P 3

Average A 5
Good G 7

Very Good VG 9
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Table 3. Converted decision matrix for the selection of an automotive part supplier.

Price
(Denoted as p,

in Dollars/Unit)

Delivery Time
(Denoted as t,

in Hours)

Service Level
(Denoted as sl,

in Grades)

Quality
(Denoted as q,

in Grades)

a
fa,p(x) ={

1
230−220 , 220 ≤ x ≤ 230
0, otherwise

fa,t(x) = 1
4
√

2π
e−

(x−48)2

32 , 24 ≤ x ≤ 72

0, otherwise

ma,sl({9}) = 1.
ma,q({1, 3}) = 0.7,
ma,q({3, 5}) = 0.3.

b

fb,p(x) ={
1

240−220 , 220 ≤ x ≤ 240
0, otherwise

fb,t(x) ={
1

48−24 , 24 ≤ x ≤ 48
0, otherwise

mb,sl({9}) = 1. mb,q({3}) = 1.

c mc,p(240) = 1.
mc,t({12}) = 0.2, mc,t({24}) = 0.3,
mc,t({36}) = 0.3, mc,t({48}) = 0.2. mc,sl({9}) = 1. mc,q({5}) = 1.

d

fd,p(x) ={
1

245−240 , 240 ≤ x ≤ 245
0, otherwise

fd,t(x) ={
1

24 , 48 ≤ x ≤ 72
0, otherwise

md,sl({9}) = 1. me,q({5}) = 1.

e
fe,p(x) ={

1
250−220 , 220 ≤ x ≤ 250
0, otherwise

fe,t(x) ={
1
24 · exp−

1
24 (t−12), 12 ≤ x ≤ 144

0, otherwise
me,sl({3}) = 1. me,q({7}) = 1.

f

f f ,p(x) ={
1

240−220 , 220 ≤ x ≤ 240
0, otherwise

f f ,t(x) ={
1

140−130 , 130 ≤ x ≤ 140
0, otherwise

m f ,sl({1, 2, 3, 4, 5}) = 1. m f ,q(H) = 1.

g
fg,p(x) ={

1
350−300 , 300 ≤ x ≤ 350
0, otherwise

fg,t(x) ={
1

200−100 , 100 ≤ x ≤ 200
0, otherwise

mg,sl({5}) = 1. mg,q({7}) = 1.

h

fh,p(x) ={
1

400−390 , 390 ≤ x ≤ 400
0, otherwise

fh,t(x) ={
1

52−12 , 12 ≤ x ≤ 52
0, otherwise

mh,sl({7}) = 0.1,
mh,sl({9}) = 0.9. mh,q({7}) = 1.

i

fi,p(x) ={
1

420−400 , 400 ≤ x ≤ 420
0, otherwise

fi,t(x) ={
1

220−12 , 12 ≤ x ≤ 220
0, otherwise

mi,sl({3, 5}) = 1.
mi,q({7, 9}) = 0.2,
mi,q({9}) = 0.8.

j

f j,p(x) ={
1

600−500 , 500 ≤ x ≤ 600
0, otherwise

f j,t(x) ={
1

220−200 , 200 ≤ x ≤ 220
0, otherwise

mj,sl({7}) = 1. mj,q({9}) = 1.

Table 4. Optimal set of clusters of DAs for each criterion from Algorithm 1.

Decision Criteria Optimal Set of Clusters

price {a, b, c, d, e, f }, {g}, {h, i}, {j}
delivery time {a, b, c, d, e, h}, { f , g, i}, {j}
service level {a, b, c, d, h}, {e, f , i}, {g}, {j}

quality {a, b}, {c, d, f }, {e, g, h}, {i, j}

After determining the set of focal elements based on clustering, a new decision tree
for the selection of a car part supplier is shown in Figure 3.

Select the optimal 

car parts supplier

Delivery

Time
Price

Service 

Level
Quality

{a,b,c,d,e,f } {g }{h,i } {j }

Target

Criteria

DAs {a,b,c,d,e,h } {f,g,i } {j } {a,b,c,d,h }{e,f,i }{g }{j } {a,b }{c,d,f }{e,g,h }{i,j }

Figure 3. Decision tree of car part suppliers after clustering.
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Step 2-2: Assigning Mass Values to Each Focal Element

After obtaining the optimal set of clusters of the criterion, we choose the largest cluster
among the set of clusters of the criterion; then, we choose a random value in that cluster
and calculate the ratio between it and all values of other clusters according to Definition 8.
The ratio between all values can be obtained according to Theorem 1. Then, according to
Definition 9, the ratio between all clusters can be obtained. We construct the judgment
matrix and calculate the preference degree of each cluster with the eigenvector method.
Then, according to Definition 10, the mass function of this criterion is obtained, as shown
in Table 5.

Table 5. The mass function of each criterion.

Decision Criteria Corresponding Mass Function

price

mp({a, b, c, d, e, f }) = 0.38,
mp({g}) = 0.27,

mp({h, i}) = 0.22,
mp({j}) = 0.13.

delivery time
mt({a, b, c, d, e, h}) = 0.69,

mt({ f , g, i}) = 0.19,
mt({j}) = 0.12.

service level

msl({a, b, c, d, h}) = 0.37,
msl({e, f , i}) = 0.13,

msl({g}) = 0.21,
msl({j}) = 0.29.

quality

mq({a, b}) = 0.12,
mq({c, d, f }) = 0.20,
mq({e, g, h}) = 0.30,

mq({i, j}) = 0.38.

5.1.3. Step 3: Combining the Mass Functions of All Criteria According to Their Weights

In this article, we weight the criteria of price, delivery time, service level, and quality
as ω(mp) = 0.4, ω(mt) = 0.1, ω(msl) = 0.2, and ω(mq) = 0.3, respectively. Then, we
obtain the discounted mass function of each criterion with Definition 4, as shown in Table 6.

Table 6. Mass function of each criterion discounted by the importance weight.

Decision Criteria Discounted Mass Function

price

m̂p({a, b, c, d, e, f }) = 0.15,
m̂p({g}) = 0.11,

m̂p({h, i}) = 0.09,
m̂p({j}) = 0.05,

m̂p(Θ) = 0.6.

delivery time

m̂t({a, b, c, d, e, h}) = 0.07,
m̂t({ f , g, i}) = 0.02,

m̂t({j}) = 0.01,
m̂t(Θ) = 0.9.

service level

m̂sl({a, b, c, d, h}) = 0.07,
m̂sl({e, f , i}) = 0.03,

m̂sl({g}) = 0.04,
m̂sl({j}) = 0.06,
m̂sl(Θ) = 0.80.



Entropy 2022, 24, 1621 16 of 22

Table 6. Cont.

Decision Criteria Discounted Mass Function

quality

m̂q({a, b}) = 0.03,
m̂q({c, d, f }) = 0.06,
m̂q({e, g, h}) = 0.09,

m̂q({i, j}) = 0.12,
m̂q(Θ) = 0.70.

By using Dempster’s combination rule, we can obtain the final mass function, denoted
as m f inal , as shown in Table 7.

Table 7. Focal elements and corresponding mass values of m f inal .

{e}: 0.015 { f }: 0.004 {g}: 0.098
{h}: 0.021 {i}: 0.015 {j}: 0.076

{a, b}: 0.028 {c, d}: 0.0066 {e, f }: 0.003
{e, h}: 0.0034 {h, i}: 0.05 { f , i}: 0.0003
{i, j}: 0.057 {c, d, f }: 0.037 {e, g, h}: 0.045

{e, f , i}: 0.012 { f , g, i}: 0.0075 {a, b, c, d}: 0.0088
{a, b, c, d, e}: 0.0067 {a, b, c, d, h}: 0.035 {a, b, c, d, e, f }: 0.089
{a, b, c, d, e, h}: 0.027 Θ: 0.35

Then, according to Definition 1, we can obtain the plausibility function of each DA
as follows:

Pl(a) = Pl(b) = 0.546, Pl(c) = Pl(d) = 0.562,

Pl(e) = 0.553, Pl( f ) = 0.505, Pl(g) = 0.504,

Pl(h) = 0.535, Pl(i) = 0.496, Pl(j) = 0.485.

Therefore, based on the values of the plausibility functions of all of the DAs, we can
derive the priority order of all of the DAs as c, d � a, b � e � h � f � g � i � j. It can be
seen that the DAs c and d are the two optimal alternatives among them. Furthermore, if we
want to determine the unique optimal DA, we need to further compare DAs c and d. We
redefine the frame of the mass function of each criterion as Θ′ = {c, d} and repeat Steps
2–3; then, we can obtain the final combined mass function as follows:

mΘ′
f inal({c}) = 0.24, mΘ′

f inal({d}) = 0.21,

mΘ′
f inal(Θ

′) = 0.55.

Then, we can obtain the plausibility functions of DAs c and d as: Pl(c) = 0.79, Pl(d) = 0.76.
Therefore, c � d, and the optimal DA is c.

5.2. Comparison with Related Work and Discussion

We first compare our proposed MCDM method with existing MCDM methods based
on D–S theory, including DS/AHP [37], DS-AHP [27], Ma et al.’s method [5], Hatefi et al.’s
method [13], Wang et al.’s method [14], Fei et al.’s method [15], and DS-VIKOR [18]; the
experimental results are shown in Table 8. Among them, since DS/AHP, DS-AHP, Hatefi
et al.’s method, Wang et al.’s method, Fei et al.’s method, and DS-VIKOR do not specify
how to deal with uncertainty evaluation in the form of interval values, we use the method
proposed by Ma et al. [4] to generate the corresponding evaluation in the form of the
mass function. In addition, since none of these existing methods can handle continuous
uncertain evaluations, we replace them with deterministic mathematical expectations.
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Table 8. Comparison of experimental results of existing MCDM methods based on D–S theory.

Method MCDM Technology Applied Priority Order Optimal Choice

DS/AHP [37] AHP c � e � d � b � h
� a � j � i � g � f c

DS-AHP [27] AHP c � j � a � e � h
� i � d � g � b � f c

Ma et al.’s method [5] AHP c � a � b � d � e
� h � f � g � j � i c

Hatefi et al.’s method [13] ARAS c � d � e � b � h
� a � j � g � i � f c

Wang et al.’s method [14] TOPSIS c � e � h � d � b
� a � j � i � g � f c

Fei et al.’s method [15] ELECTRE c � b, d � a � h
� e � f , g, i, j c

DS-VIKOR [18] VIKOR c � e � d � b � f
� a � h � g � i � j c

Our method AHP c � d � a, b � e � h
� f � g � i � j c

As can be seen from Table 8, the proposed method and other related methods consis-
tently select c as the optimal DA. Moreover, except for the DS-AHP and DS-VIKOR, all
other related methods consider the six DAs a, b, c, d, e, h to be relatively better than other
DAs, which is consistent with our method.

To further analyze the performance of the priority order generated by our method,
we calculated the ranking similarity between the priority order generated by our method
and the priority orders generated by other methods. Since the priority order is used to
determine the optimal DA, the WS coefficient [44] is used as a measure of ranking similarity
in this paper due to its main advantage that differences at the top of the ranking have
a more significant impact than differences at the bottom. In addition, to generate our
method’s specific priority order, we further compare the two DAs a and b. We redefine
the frame of the mass function for each criterion as Θ′′ = {a, b} and then repeat Steps 2–3.
Then, we obtain the combined final mass function and calculate the plausibility functions
of a and b, yielding Pl(a) = 0.701, Pl(b) = 0.712, so that b � a. Therefore, the specific
priority order generated by our method is c � d � b � a � e � h � f � g � i � j. Using
the priority order generated by our method as the reference ranking, we calculated the WS
coefficients of the priority order generated by the other methods with the priority order
of our method, as shown in Table 9. As can be seen from Table 9, the WS coefficients of
the priority order generated by our method and the priority order of the other methods,
except DS-AHP, are all greater than 0.808, above which the similarity between the orderings
of ten elements is defined as high [44]. Then, we further check the WS coefficients of the
priority order generated by the DS-AHP and other methods, and the results are all less
than 0.793, as shown in Table 10. Thus, the WS coefficient of the priority order generated by
our method and the priority order generated by the DS-AHP is lower than 0.808 due to the
difference between the DS-AHP methods and other methods, while the result generated by
our method is consistent with those generated by the majority of the methods. As a result,
the rationality of our method can be confirmed.
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Table 9. Comparison of the priority order of other existing methods with our method and the
corresponding WS coefficients.

Method c d b a e h f g i j WS Coefficient [44]

DS/AHP [37] 1 3 4 6 2 5 10 9 8 7 0.870

DS-AHP [27] 1 7 9 3 4 5 10 8 6 2 0.722

Ma et al.’s method [5] 1 4 3 2 5 6 7 8 10 9 0.919

Hatefi et al.’s method [13] 1 2 4 6 3 5 10 8 9 7 0.909

Wang et al.’s method [14] 1 4 5 6 2 3 10 9 8 7 0.815

Fei et al.’s method [15] 1 2 2 4 6 5 7 7 7 7 0.954

DS-VIKOR [18] 1 3 4 6 2 7 5 8 9 10 0.873

Table 10. The WS coefficients of the priority order generated by the DS-AHP method in comparison
with those generated by other methods.

DS/AHP [37] Ma et al.’s Method [5] Hatefi et al.’s Method [13] Wang et al.’s Method [14]

WS coefficient [44] 0.756 0.729 0.763 0.745

Fei et al.’s Method [15] DS-VIKOR [18] Our Method

WS coefficient [44] 0.793 0.647 0.716

Moreover, since the mass function of D–S theory has the ability to express ignorance
directly, all methods based on D–S theory can easily handle missing discrete evaluations.
Furthermore, we compared and analyzed our method with other existing methods in three
aspects: whether they can handle continuous evaluation, whether they can handle the
discrete evaluation of interval values, and whether they can handle ambiguous discrete
evaluation, as shown in Table 11. We can see that only our method performs well in all
three aspects, while the other existing MCDM methods based on D–S theory fail to do
so. More specifically, among them, Ma et al.’s method is able to deal well with various
types of discrete uncertain evaluations, while none of the other methods consider uncertain
evaluations in the form of interval values. However, other methods, except ours, cannot
handle continuous uncertainty evaluations. As a result, the effectiveness and practicality of
our approach are demonstrated.

Table 11. Analysis of the comparison of existing MCDM methods based on D–S theory.

Ability to Handle
Continuous Evaluation

Ability to Handle
Interval-Valued

Discrete Evaluation

Ability to Handle
Ambiguous

Discrete Evaluation

DS/AHP [37] No No No
DS-AHP [27] No No No
Ma et al.’s method [5] No Yes Yes
Hatefi et al.’s method [13] No No Yes
Wang et al.’s method [14] No No Yes
Fei et al.’s method [15] No No Yes
DS-VIKOR [18] No No Yes

Our method Yes Yes Yes

Next, we analytically compare the numbers of expert knowledge judgments required
in the classical AHP method, DS/AHP, DS-AHP, Ma et al.’s method, and our method for
an MCDM problem containing m DAs with respect to a criterion. This way, our approach’s
advantages compared with other AHP-based approaches can be demonstrated.

When using the classical AHP approach, for each criterion, we consider a total of
[m · (m− 1)]/2 pairwise comparisons, and each pairwise comparison requires the knowl-
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edge judgment of the expert. Furthermore, when using the DS/AHP, the expert’s knowl-
edge judgment is required to determine the set of focal elements of the mass function for
each criterion, where the focal elements containing more than one DA represent the expert’s
ambiguous judgment of the DAs contained within the focal elements. Assuming that the
expert determines from their own knowledge judgment that the set of focal elements con-
tains n1(1 ≤ n1 ≤ m) focal elements, it is required that all n1 focal elements are compared
with the set of DAs, i.e., the frame of discernment. Thus, the total number of knowledge
judgments required by the method of DS/AHP consists of two parts, and the first part
is the number of knowledge judgments to determine n1 focal elements among m DAs,
which relies on the expert having reasonable knowledge judgments for all m DAs. The
second part is n1 comparative judgments for comparing the focal elements with the frame
of discernment. In order to reduce the number of knowledge judgments, the n1 obtained
by experts based on empirical judgments is much smaller than m. Therefore, it can be seen
that DS/AHP has a significant reduction in the number of knowledge judgments compared
with the classical AHP method. However, it is demanding and laborious for an expert to de-
termine the appropriate set of n1 focal elements among m DAs with knowledge judgments
when the size of m is very large, and this method can be very subjective and arbitrary.

When using the DS-AHP method, experts are first required to make knowledge
judgments on the performance of m DAs. The set of focal elements of the criterion’s mass
function is determined by combining all DAs with the same evaluation value into a focal
element. Finally, experts are required to make evaluation judgments on each focal element
to generate the criterion’s mass function. Assuming that the number of focal elements
generated by the DS-AHP method is n2(1 ≤ n2 ≤ m), the number of expert knowledge
judgments required by the method consists of two parts: The first part is m knowledge
judgments for each DA, and the second part is n2 knowledge judgments for each focal
element. However, identical evaluation values are rare in the practical application of
uncertain MCDM, especially for continuous uncertain evaluations. Therefore, in large-scale
uncertain MCDM problems, the values of m and n2 are relatively close. The method of Ma
et al. is an extension of DS/AHP. It differs from DS/AHP in generating the mass function
for each criterion by requiring an additional knowledge judgment of whether or not the
evaluations of the DA groups over the given criterion are complete before assigning a mass
value to each focal element.

Our method automatically determines the set of focal elements for each criterion by
employing a clustering approach based on uncertain evaluations and then assigning mass
values to each focal element by computing the ratios between clusters. Therefore, the
number of expert knowledge judgments required by our method is the number of DAs,
i.e., m, which is significantly less than the number required for the classical AHP, DS/AHP,
DS-AHP, and Ma et al.’s method. In addition, our method is efficient in assigning mass
values to each focal element, since the ratios between DAs in the same cluster do not need
to be calculated, and according to Theorem 1, the ratios between all DAs to be compared
can be determined by calculating the ratio of a certain DA to all other DAs. Thus, the
efficiency of our method is demonstrated.

6. Conclusions

Handling large-scale discrete and continuous uncertainty evaluations of DAs in real-
world MCDM applications is an essential and open issue in the research field of MCDM.
In order to address this issue, this paper considers the hierarchical structure of the AHP
method as the backbone of our MCDM method. Then, the concepts of D–S theory and
probability distribution are incorporated to identify various discrete and continuous uncer-
tain evaluations. Afterwards, a clustering technique based on the Silhouette coefficient is
applied to translate large-scale uncertain evaluation into the mass value of each criterion.
Finally, Dempster’s combination rule is adopted for preference aggregation. Moreover,
comparative experiments and analyses with other related methods demonstrate that the
proposed method is feasible, effective, and efficient. Our method is considered to be the
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state of art for the following reasons: First, to the best our knowledge, our method is the
first for MCDM problems with large-scale continuous and discrete uncertain evaluations.
Hence, the idea of applying the clustering method to the MCDM method explores a new
path, and it is able to balance precision and efficiency in handling large-scale decision
alternatives. Finally, by choosing the AHP method, one of the most representative and
widely used MCDM methods, as the backbone of our method, we indeed extend the ap-
plication area of the AHP to the handling of real-world MCDM problems with large-scale
uncertain evaluations. Moreover, the comparative experiments and analyses with other
related methods demonstrate that the proposed method is feasible, effective, and efficient.

In future work, we will apply our method to practical applications to further validate
its feasibility. Furthermore, we will integrate methods for determining criteria weights,
such as weighting methods that combine the subjective and objective, with our method.
Additionally, we will further explore how to avoid the rank reversal paradox. In addition,
in this paper, the eigenvector method of the AHP was used to determine the rankings of
DAs with respect to each criterion, and since there are many MCDM techniques that can
do this, other MCDM techniques can be integrated into our approach to replace the AHP,
such as TOPSIS, BWM, etc. Moreover, our method requires pre-determination of the value
interval of the optimal number of clusters before clustering, which requires the decision
maker to make a basic judgment of the overall DAs to improve the efficiency. Therefore, we
can incorporate other clustering methods for uncertain data into our method in the future.
Furthermore, extending the D–S theory to handle continuous values would be an exciting
topic for future research.
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