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Abstract: This paper proposes an improved human-body-segmentation algorithm with attention-
based feature fusion and a refined corner-based feature-point design with sub-pixel stereo matching
for the anthropometric system. In the human-body-segmentation algorithm, four CBAMs are embed-
ded in the four middle convolution layers of the backbone network (ResNet101) of PSPNet to achieve
better feature fusion in space and channels, so as to improve accuracy. The common convolution in
the residual blocks of ResNet101 is substituted by group convolution to reduce model parameters and
computational cost, thereby optimizing efficiency. For the stereo-matching scheme, a corner-based
feature point is designed to obtain the feature-point coordinates at sub-pixel level, so that precision is
refined. A regional constraint is applied according to the characteristic of the checkerboard corner
points, thereby reducing complexity. Experimental results demonstrated that the anthropometric
system with the proposed CBAM-based human-body-segmentation algorithm and corner-based
stereo-matching scheme can significantly outperform the state-of-the-art system in accuracy. It can
also meet the national standards GB/T 2664-2017, GA 258-2009 and GB/T 2665-2017; and the textile
industry standards FZ/T 73029-2019, FZ/T 73017-2014, FZ/T 73059-2017 and FZ/T 73022-2019.

Keywords: feature fusion; stereo matching; CBAM; PSPNet; anthropometric

1. Introduction

Anthropometric data are the basic data of national production and development, which
play an important role in costume design, health assessment and industrial design to guarantee
a healthy and comfortable user experience [1–4]. Manual anthropometric measurement mainly
depends on the experience of the surveyor, whose accuracy fluctuates with different surveyors
and whose efficiency is restricted by the surveyor [5]. With the development of information
processing technology, 3D human-body scanners, such as the 3D laser scanner and structured
light scanner. have greatly improved the accuracy and efficiency of anthropometric measure-
ment [6,7]. However, such devices typically extract anthropometric data from hundreds of
thousands of scanning data, which requires a huge amount of data storage and computation
and hinders its widespread application [8,9]. With lower device complexity and less data,
the application of optical cameras in anthropometry has attracted more and more atten-
tion [10]. Anthropometric devices with optical cameras collect optical images of the human
body and perform anthropometry by processing the captured images.

The anthropometric methods in [11–13] are based on 2D image processing, in which
the intermediate measurement data are obtained by 2D image processing, and the an-
thropometric data are predicted by substituting the measured data into a mathematical
equation for the human body. In references [11], a shape-coding algorithm was adopted to
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extract feature points from the segmented-human-body contour curve; thus, the anthro-
pometry was completed according to the extracted feature points. In references [12,13],
the human body’s circumference was predicted by the constructed regression equation
according to the measured width and depth from the front and side images of a subject.
Nevertheless, due to the lack of 3D spatial information, the measurement accuracies of
these 2D-image-processing-based anthropometric methods are relatively low.

The anthropometric methods in [14–16] are based on 3D model reconstruction,
in which a 3D human-body model is reconstructed from the point-cloud data obtained by
multi-view image processing and the anthropometric data are measured from the recon-
structed 3D human-body model. In reference [14], front and rear human-body images were
captured by four pairs of stereo cameras, a 3D human-body surface was reconstructed with
high-density point clouds obtained by multi-scale matching among multi-view images
and the anthropometry was completed on the reconstructed 3D human-body surface. In ref-
erence [15], thirty pairs of stereo images were collected by sixty synchronously triggered
optical cameras, dense point clouds were extracted by hierarchical stereo matching and
a 3D human-body model was reconstructed by multi-view registration and surface mesh-
ing, and thus the human-body measurements were completed. In reference [16], ninety
human-body images were acquired, sparse human-body point clouds were generated by
structure from motion(SFM) and then dense human-body point clouds were recovered
by multi-view stereo (MVS), from which the 3D human-body model was reconstructed,
and thus the anthropometry was accomplished. Although the measurement accuracies of
these 3D-model-reconstruction-based anthropometric methods are high, the reconstruction
processes for 3D human-body models from multiple images are extremely complicated and
time consuming.

The anthropometric methods in [17,18] make a trade-off between the accuracy and
complexity of the aforementioned two types of anthropometric methods with optical
cameras. In reference [17], three pairs of synchronously triggered stereo cameras were
adopted to collect three pairs of stereo images from the front, side and back of a subject.
In reference [18], one pair of stereo cameras and a turntable were used to acquire four pairs
of stereo images of a subject from four different views with partially overlapping areas. Both
methods made use of the 3D spatial information obtained through stereo matching and
coordinate calculation of markers to improve the measurement accuracies, which are greater
than those of the 2D-image-processing-based methods in [11–13]. Moreover, both methods
take advantage of semantic segmentation and girth fitting instead of 3D reconstruction
to reduce the measurement complexities; they are less complicated than those of the 3D-
model-reconstruction-based methods in [14–16]. However, since each marker used for
stereo matching usually contains hundreds of pixels, the error of coordinate calculation
would be very large if the selected matching point pair were far from the center, which
will reduce the anthropometry accuracy. What is more, the accuracy and efficiency of the
human-body semantic segmentation can be further optimized.

In this paper, an improved human-body-segmentation algorithm with attention-based
feature fusion and a refined corner-based feature-point design with stereo matching at
the sub-pixel level are presented for anthropometry. For the human body’s semantic
segmentation, the attention mechanism was combined with the segmentation network
PSPNet for better space and channel feature fusion. Specifically, four convolutional block
attention modules (CBAMs) were embedded in the four middle convolution layers of
the backbone network (ResNet101) of PSPNet to improve the segmentation accuracy.
What is more, the common convolution in the residual blocks of ResNet101 was replaced
with group convolution to optimize the segmentation efficiency. For the stereo matching,
the checkerboard corner was designed to replace the color marker; thus, the Shi–Tomasi
corner detection-based stereo matching with regional constraint is proposed to replace the
SURF-based stereo matching with a cluster constraint. The matching precision is refined
to the sub-pixel level by the checkerboard corner design and the corresponding corner
detection algorithm, and the matching complexity is reduced by the regional constraint of
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the checkerboard corner. The proposed algorithm and design can significantly improve the
accuracy of the anthropometric system in [17,18].

The rest of the paper is organized as follows. In Section 2, we review some related
works on segmentation and attention mechanisms. In Section 3, we propose an improved
human-body-segmentation algorithm with attention-based feature fusion and a refined
corner-based feature-point design with sub-pixel stereo matching. In Section 4, we report
the experimental results. In Section 5, we draw conclusions.

2. Related Works

Semantic segmentation classifies each pixel in the image and extracts the region of
interest (ROI) from the background [19,20], which is very beneficial for efficient stereo
matching [21–23] in anthropometry if the human-body segmentation is accurate. The
fully convolutional network (FCN) [24] is the foundation of semantic segmentation. It
successfully extends the classification from the image level to the pixel level by replacing the
full connection (FC) layer with the convolution layer. However, a FCN does not effectively
consider the context information of the image, and some spatial information at the pixel
level is lost [25]. Therefore, many improved semantic segmentation methods have emerged
since then, which can be divided into three categories: FCN-based methods [25], encoder-
decoder-based methods [26] and feature-fusion-based methods [27]. For the FCN-based
methods, such as DeepLab [25], DeepLabv2 [28] and DeepLabv3 [29], the sensitivity field
of the filter is enhanced by atrous convolution, the multi-scale representation of the image
is achieved and the spatial accuracy of the segmentation result is improved. However, the
segmentation speed is slow and the segmentation for small scale objects is not good. For the
encoder–decoder-based methods, such as SegNet [26], Unet [30] and DeconvNet [31],
the pixel position information of the image is restored by deconvolution and up-pooling
or bilinear interpolation, so as to better reflect the object details and avoid the resolution
reduction of the feature map caused by the pooling operation. Nevertheless, they also fail
to take full advantage of the context information of the image. For the feature-fusion-based
methods, such as PSPNet [27], RefineNet [32] and ICNet [33], feature information fusion
of different scales and from different positions is achieved by a pyramid pooling module
(PPM), multi-scale convolution module and cascade module; thus, the segmentation result
is refined. Among them, PSPNet is the one with the smallest network capacity and fastest
processing speed, which considers both global semantic information and local detailed
information, fuses the feature information and improves the segmentation accuracy. Hence,
PSPNet is applied to segment human-body regions, which confines stereo matching to
smaller areas and improves the anthropometric efficiency.

However, in the feature-extraction stage of PSPNet, all features are given the same
weight, resulting in excessive allocation of computing resources to invalid feature extraction.
If more computing resources can be allocated to the features of attention, the segmentation
accuracy of PSPNet can be further improved. An attention mechanism helps to allocate
more available computing resources to the target region to be segmented, so as to achieve
better space and channel feature fusion. Some attention models have been used to guide
the deep-learning-based human-body segmentation [34]. An attention-guided progressive
partition network (APPNet) with a global attention module (GAM) was proposed in [35].
Features are given different weights in the spatial dimension according to the global
attention, which focuses the significance detection on the human-body segmentation
and improves the feature learning ability of the model. A trilateral awareness operation
(TAO) is provided in [36]. The spatial attention and channel attention are combined
with the dilation convolution, which enhances the CNN’s perceptive ability of multi-
scale feature information and achieves fine-grained human-body segmentation. A mutual
attention structure is presented in [37]. The feature map is recalibrated in the spatial
and channel dimensions, which increases the spatial perception and the cross-channel
context perception of the human-body-segmentation. Given these attention-based methods,
the PSPNet selected can be further improved by combining it with the attention module
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to achieve better spatial and channel feature fusion, and thus improve the human-body
segmentation precision.

The attention modules can be divided into three types: channel attention module [38],
space attention module [39] and mixed attention module [40]. The channel attention
module concentrates on optimizing cross-channel context information and reinforcing
semantic information, and the spatial attention module focuses on optimizing location
features and enhancing spatial perception. The mixed attention module considers both
and fuses important feature information in both channel and space. The typical mixed
attention module is CBAM [41]. For CBAM, features are extracted in both channel and
spatial dimensions, and the attention map is multiplied by the input feature map for
adaptive feature refinement. The representational ability of the network can be improved
from both channel and spatial dimensions, thereby further improving the performance of
semantic segmentation.

3. The Proposed Method

An improved human-body-segmentation algorithm with attention-based feature fu-
sion and a refined corner-based feature-point design with sub-pixel stereo matching for
the stereovision-based anthropometric system are proposed in this paper. The proposed
human-body-segmentation algorithm aims to improve the segmentation accuracy and
reduce the number of parameters of the model. The proposed feature-point design aims to
improve the stereo-matching accuracy and reduce the matching complexity.

The process of the stereovision-based anthropometry can be divided into three steps:
semantic segmentation of the girth region; stereo matching and coordinate calculation;
and girth fitting [17,18]. The flowchart is shown in Figure 1.

Semantic 

segmentation of 

the girth region

Stereo matching 

and coordinate 

calculation

Girth fitting
Left-view image Anthropometric 

data
Right-view image

Figure 1. Flowchart of the stereovision-based anthropometric system.

In the semantic segmentation process, the girth region is segmented to confine the
subsequent stereo matching to a smaller area, so as to increase the matching accuracy
and efficiency. The higher the segmentation precision, the better the matching effect.
Therefore, the semantic segmentation network PSPNet can be further improved to enhance
the performance. In this paper, the feature extraction of human-body contour and semantic
information is optimized by CBAM. Four CBAMs were added to the middle convolution
layers of ResNet101 to refine the features of human-body segmentation. Moreover, in the
residual blocks of ResNet101, the group convolution was chosen to replace the common
convolution, so as to reduce the computational overhead.

In the stereo matching and coordinate calculation process, the matching point pairs
are obtained by SURF matching based on color and spatial clustering of the markers.
The matching point pair closest to the marker center is selected from the obtained multiple
matching point pairs within the marker range as the stereo-matching result of that marker,
so as to perform coordinate calculation. However, in obtaining the matching point pairs,
there are usually hundreds of pixels with similar characteristic in the range of a same
marker, so the matching error may be large, and it is difficult to ensure that the selected
matching point pair is close enough to the marker center. As a result, the accuracy of
anthropometry is not high enough. In this paper, as shown in Figure 2, a checkerboard
corner design is proposed to replace the color marker design, in which the subject wears
tights with a black and white checkerboard pattern for measurement, with 2.5 cm spacing
between adjacent checkerboards. Shi–Tomasi corner detection is used to get the feature-
point set in the segmented human-body region, and regional constraining is performed
on the obtained feature-point set according to the location information of two preset color
markers and the characteristic of the checkerboard, so as to acquire the matching point pair
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of the same feature point in the left and right images. Hence, the refined stereo matching at
sub-pixel level is achieved.

 L1 

Figure 2. Binocular stereovision-based anthropometric system with checkerboard corner design.

In the girth fitting process, the feature points rotating along with the turntable are
reversely rotated to their initial positions, then polynomical with intermediate variable
curve fitting (PIVCF) is used to achieve anthropometry.

3.1. A Human-Body-Segmentation Algorithm Based on a CBAM Attention Mechanism

To increase the segmentation accuracy, it is necessary to focus on the human-body
region to be segmented and suppress useless information as much as possible. Due to
the fixed distance of the camera and the predetermined posture of the subject, the same
category of region to be segmented is located at almost the same position in the image.
Therefore, the semantic segmentation network should have strong spatial perception. What
is more, different categories of regions to be segmented are similar in size and prone to
mis-segmentation. Thus, the network should have strong semantic information perception
and cross-channel context information fusion ability [42]. The CBAM attention mechanism
can focus on the space and channel information at the same time; realize the feature fusion
of space and channel; enhance the perception of spatial and semantic information of the
network; and improve the segmentation performance. Hence, CBAM was selected in this
paper to further enhance the segmentation performance of PSPNet.

In CBAM [41], as shown in Figure 3, the channel attention module performs maximum
pooling and average pooling on the input feature map F to obtain two 1D vectors which
represent the channel information of F in the local and global features, respectively, and
aggregate the spatial information as well. Then, the two 1D vectors are input into a multi-
layer perception (MLP) for interaction, and the two perceived 1D vectors are added element
by element. Finally, a 1D channel attention map ACF is generated through the sigmoid
activation function and is multiplied with the input feature map F to obtain the channel
refined feature map FC.

FC = F⊗ ACF = F⊗ Sig(MLP(AvgPool(F))⊕MLP(MaxPool(F))) (1)

wherein⊗ denotes element-wise multiplication, Sig denotes the sigmoid activation function
and ⊕ denotes element-wise addition.

The spatial attention module performs maximum pooling and average pooling along
the channel axis on the channel-refined feature map FC to obtain two 2D vectors which
represent the spatial information of FC in terms of local and global features. Then, the two
2D vectors are cascaded and convolved. Finally, a 2D spatial attention map ASF is generated
through the sigmoid activation function and is multiplied with FC to obtain the space- and
channel-refined feature map FCS.

FCS = FC ⊗ ASF = FC ⊗ Sig
(

f 7×7([AvgPool(FC); MaxPool(FC)])
)

(2)
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wherein⊗ denotes element-wise multiplication, Sig denotes the sigmoid activation function,
f 7×7 denotes the convolution layer with a 7× 7 convolution kernel and [;] denotes cascade.

Channel attention module Spatial attention module

MLP

AvgPool

Conv
MaxPool

F

CF
A

C
F SF

A
CS
F

Figure 3. CBAM schematic diagram.

ResNet101 consists of three parts: the input part, the middle convolution part
(layer 1–4) and the output part. The middle convolution part is constructed from residual
blocks, among which there are 3 residual blocks in layer1, 4 residual blocks in layer2,
23 residual blocks in layer3, and 3 residual blocks in layer4. Figure 4 shows the specific
embedded positions of CBAMs in the middle convolution layers of the backbone network
(ResNet101) of PSPNet. A CBAM is embedded in the output of each of the four layers.
Figure 5 shows the visualization comparison of feature maps between the backbone net-
work of PSPNet and that of CBAM-PSPNet. The visualization of six feature maps in the
feature extraction stage is compared, corresponding to the outputs of Conv1, MaxPool,
Layer1, Layer2, Layer3 and Layer4 in Figure 4. According to the visual effect, there is a sig-
nificant improvement in the extraction of low-level edge information, i.e., human-contour
information for CBAM-PSPNet in the feature extraction stage of Conv1, MaxPool, Layer1
and Layer2. Moreover, there is a moderate improvement in the extraction of high-level
schematic information, i.e., richer schematic information for CBAM-PSPNet in the feature
extraction stage of Layer3 and Layer4. Therefore, the improved CBAM-PSPNet can achieve
adaptive feature refinement of the input feature map, along with better spatial perception
and cross-channel context information fusion.

Layer 4 

Layer 3 

Layer 2 

Layer1

Conv1

MaxPool

Output

Input Input 

Residual  block ×4

Residual  block ×3

Residual  block ×23

Residual  block ×3

CBAM

CBAM

CBAM

CBAM Layer 4 

Layer 3 

Layer 2 

Layer1

Conv1

MaxPool

Output

Input 

Residual  block ×4

Residual  block ×3

Residual  block ×23

Residual  block ×3

CBAM

CBAM

CBAM

CBAM

  Middle convolution

Figure 4. Backbone network structural diagram of CBAM-PSPNet.

Furthermore, to reduce the computational cost of the network, the common convolu-
tion in the residual blocks of the backbone network is replaced by the group convolution
according to its characteristic that the number of parameters in the model reduces with an in-
crease in the number of groups. Assume that the size of an input feature is Hin ×Win ×Din
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and the size of an output feature is Hout ×Wout × Dout . For common convolution, there
are Dout convolution kernels of size h× w× Din, and the parameter number P1 can be
calculated by Equation (3).

P1 = h× w× Din × Dout (3)

Conv1 MaxPool

(b) 

Layer1 Layer2 Layer3 Layer4

Conv1 MaxPool Layer1 Layer2 Layer3 Layer4Input image

(a)

Input image

Figure 5. Visualization comparison of feature maps in backbone networks between PSPNet and
CBAM-PSPNet. (a) PSPNet. (b) CBAM-PSPNet.

For group convolution, assuming g groups, there are Dout
g convolution kernels of

size h × w ×
(

Din
g

)
in each group, and the parameter number P2 can be calculated by

Equation (4) [43].

P2 = h× w×
(

Din
g

)
×

(
Dout

g

)
× g =

h× w× Din × Dout

g
=

P1

g
(4)

As shown in Equation (4), the parameter number of the group convolution is 1
g of the

common convolution, which reduces the number of parameters in the model and improves
the segmentation efficiency. Figure 6 is the structural chart of the residual block from the
common convolution to the group convolution. For a 256-d input feature map, the output
is obtained by processing the input through two branches, a linear branch and a shortcut
branch. Sixty-four common convolution kernels of size 3× 3× 64 in the second layer of
the residual block are replaced by four groups of convolution kernels; each group has 16
convolution kernels of size 3× 3× 16. Then, the four outputs of each group are concate-
nated. The parameter number of the second layer of the residual block is reduced from
P1 = 3× 3× 64× 64 to P2 = 3× 3×

(
64
4

)
×

(
64
4

)
× 4 = 3× 3× 16× 16× 4 = P1

4 .
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256-d in

256,1×1,64

16,3×3,16 16,3×3,16 16,3×3,16 16,3×3,16

+

64,1×1,256

+

64,1×1,256

256-d out

Concatenate

256,1×1,64

64,3×3,64

64,1×1,256

256-d in

256-d out

+

256,1×1,64

64,3×3,64

64,1×1,256

256-d in

256-d out

+

Group convolution

Figure 6. Structural chart of the residual block from the common convolution to the group convolution.

Figure 7 shows the schematic diagram of CBAM-PSPNet. Firstly, a feature extraction
module extracts the contour features, position features, etc., of the human-body parts from
the input image, and generates a feature map containing both channel and spatial attention,
which will improve the segmentation accuracy. The feature extraction module is improved
by embedding a CBAM module at the end of each layer (1–4) of the backbone network
and substituting group convolutions in the second layer of each of the residual blocks
in each layer. Then, the pyramid pooling module extracts the context information of the
generated feature map. The pyramid pooling kernels have four levels, that is, 1× 1, 2× 2,
3× 3 and 6× 6, in which the global and local features of different scales are extracted.
Next, the features extracted in the four levels and the input features are fused to form a
composite feature map which contains both global and local context information. Finally,
the human-body segmentation is achieved by the convolution of the input feature map
with the composite feature map.

Conv1 Layer1-4

Conv

Conv

Conv

Conv

C
o
n

v

U
p

sa
m

p
le

Pyramid pooling module

Feature extraction module

Residual block Residual block CBAM 

Feature fusion

Group convolution

Figure 7. Schematic diagram of CBAM-PSPNet.

Table 1 shows a comparison of the number of parameters and computational cost
between the improved ResNet101 and the original ResNet101. For the input feature map of
size 224× 224, the number of parameters in ResNet101 is 42.50 million, and the computa-
tional cost is 7.84 billion FLOPs. The number of parameters in the improved ResNet101
is 32.52 million, a reduction of 23.5%; and the computational cost is 5.94 billion FLOPs, a
reduction of 24.2%. The reductions in the number of parameters and computational cost
are mainly attributed to the group convolution substitution, and the experimental data are
consistent with the theoretical analysis mentioned above.
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Table 1. Number of parameters and computational cost for the improved ResNet101 and the ResNet101.

Backbone Number of Parameters
(Million) FLOPs (Billion)

ResNet101 42.50 7.84
Improved ResNet101 32.52 5.94

To verify the performance of CBAM-PSPNet, 15,795 human-body images were selected
as the training set and 4513 human-body images were selected as the test set. Table 2 shows
the performance comparison between CBAM-PSPNet and PSPNet. The pixel accuracy
(PA) of PSPNet was 98.36%, the mean pixel accuracy (MPA) was 88.25% and the mean
intersection over union (MIOU) was 82.30%. The PA of CBAM-PSPNet was 98.39%, an
increase of 0.03%; the MPA was 92.28%, an increase of 4.03%; and the MIOU was 83.11%, an
increase of 0.81%. The increases in accuracy can be mainly attributed to the embedding of
CBAMs, which helps to generate feature maps that simultaneously fuse channel attention
and spatial attention, so as to improve the segmentation accuracy.

Table 2. Performance comparison between CBAM-PSPNet and PSPNet.

Network PA (%) MPA (%) MIOU (%)

PSPNet 98.36 88.25 82.30
CBAM-PSPNet 98.39 92.28 83.11

3.2. Refined Corner-Based Stereo-Matching Scheme Working at the Sub-Pixel Level

The feature-point design directly affects the matching accuracy, and the matching accu-
racy directly determines the anthropometry accuracy. Figure 2 has shown the checkerboard
corner design proposed in this paper for optimizing anthropometry accuracy. Figure 8
shows the schematic diagram of the refined stereo-matching scheme that works at the
sub-pixel level based on the corner design in Figure 2. In the anthropometry of this pa-
per, firstly, the left-view and right-view girth regions of human body were segmented
by CBAM-PSPNet. Next, the Shi–Tomasi corner detection algorithm was used to extract
the feature-point information at the sub-pixel level in the girth region. Then, a regional
constraint was applied to the extracted feature-point set of corners according to the charac-
teristics of the color markers and the checkerboard. Finally, refined stereo matching on a
baseline in the region was realized according to the characteristics of corner coordinates,
and refined stereo matching on multi-lines in the region was achieved according to the
characteristics of the checkerboard, so as to further improve the accuracy of human-body
girth measurement.

Left-view 

girth region

Shi-Tomasi

corner detection

Left-view feature 

point information

Right-view feature 

point information

Regional 

 constraint

Refined stereo 

matching

Regional 

 constraint
Right-view 

girth region

Shi-Tomasi

corner detection

Figure 8. Schematic diagram of the refined stereo matching at sub-pixel level based on the corner design.

In the anthropometric system in reference [17,18], color markers are used for stereo
matching, and the matching point pair closest to the center of the marker is reserved for
spatial coordinate calculation. In the anthropometric system in this paper, corners are
used for stereo matching. Figure 9 shows the pixel number comparison between the color
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markers and the corners in the same shooting conditions and with the same magnification.
Figure 9a is the segmented image of human-body parts in reference [17,18], and Figure 9b
is a partial, enlarged view of the color markers. Figure 9c is the segmented image of the
same part in this paper, and Figure 9d shows the partial, enlarged view of the corners.
Since the feature-point matching is carried out within the range of the color marker or
the corner, the sizes of the color marker and the corner determine the search range for
feature-point matching. As shown in Figure 9b,d, a color marker contains hundreds of
pixels, whereas a corner only includes four pixels. Therefore, the corner design proposed
in this paper can greatly reduce the search range of feature-point matching and achieve fast
and accurate matching.

(a) (b)

(c) (d)

Figure 9. Comparison of pixel numbers. (a) Segmented image in [17,18]. (b) Partial enlarged view of (a),
(c) Segmented image in this paper. (d) Partial enlarged view of (c).

Figure 10 shows the result of SURF matching [44] on the corner-based segmented
images. Due to the high similarity between the detected feature points on the checkboard,
there must be a lot of mismatches in SURF matching. For example, in Figure 10, a total of
38 pairs of matching points exist, among which 29 pairs are mismatched and only 9 pairs are
matched. This mismatching rate is 76.3%, which is too high to eliminate the mismatching
points. Moreover, the SURF-detected feature points are mostly not the checkboard corners,
which is not beneficial for accurate girth measurement. Therefore, SURF matching is no
longer suitable for feature-point matching in this paper. It is necessary to find a more
effective matching method for the checkerboard corners. As shown in Figure 8, a refined
stereo-matching method that works at a sub-pixel level based on the characteristics of
corners is proposed in this paper.

Figure 10. SURF matching result for the segmented corner-based images.

For the left-view and right-view human-body regions segmented by the CBAM-
PSPNet human-body-segmentation algorithm, the checkerboard corners need to be detected
as accurately as possible. The commonly used corner feature detection methods include
Harris and Shi–Tomasi’s methods [45]. The Shi–Tomasi detector [46] has a similar gradient-
based mathematical foundation to the Harris detector [47], but with higher accuracy, faster
speed and fewer parameters. Therefore, the Shi–Tomasi corner detection algorithm was
chosen to accurately locate the corners according to the characteristic of gray value variation



Entropy 2022, 24, 1647 11 of 24

in the corner neighborhood. Figure 11 shows the detection result by the Shi–Tomasi corner
detection algorithm. The hollow blue dots in Figure 11 represent the positions of the
detected corners. Not only could all corners be detected, but the detection accuracy
reached the sub-pixel level, which can greatly improve the accuracy of the subsequent
stereo matching.

Figure 11. Shi–Tomasi detection result.

Next, according to the characteristics of checkerboard corners, the complexity of stereo
matching is reduced by regional constraint. A few color markers were preset at the girth
measurement region to assist the regional constraint. Figure 12 shows examples of the
preset color markers in the waist region. L1, L2, L3 and L4 are the left-view images of the
waist region captured from four different rotation angles of the turntable, respectively; and
R1, R2, R3 and R4 are the corresponding right-view images. In each segmented image, a red
marker and a cyan marker are shown. A total of four markers were preset to ensure that
each image would contain one red marker and one cyan marker. The horizontal distances
were 8, 7, 8 and 7 checkerboard intervals from L1(R1) to L4(R4), and the vertical distances
were −1, +1, −1 and +1 checkerboard intervals, so that the rectangular area determined by
the two markers would contain the same baseline for girth measurement.

a
L1 L2 L3 L4

b
R1 R2 R3 R4

b
R1 R2 R3 R4

Figure 12. Examples of the preset color markers in the waist region. (a) Left view. (b) Right view.

In the segmented image, there are four colors, namely, red, cyan, black and white. All
pixels in the segmented image constitute a dataset Z = {zi, i = 1, 2, · · · , N}, wherein zi
represents a pixel and N is the total number of pixels in the segmented image. Each pixel zi
can be expressed as zi(Hi, Si, Vi) in the HSV color space and zi(xi, yi) in the 2D coordinates
of the segmented image. Table 3 shows the HSV ranges corresponding to the four colors.
If Vi is greater than 46, Si is greater than 43 and Hi is greater than 0 but less than 10 or Hi is
greater than 156 and less than 180, the color of zi is red. If Vi is greater than 46, Si is greater
than 43 and Hi is greater than 78 but less than 99, the color of zi is cyan. If Vi is greater
than 221 and Si is less than 30, the color of zi is white. If Vi is less than 46, the color of zi is
black. Thus, the pixel set of the red marker in the segmented image is extracted from Z as
a smaller dataset MR = {zR ∈ Z | VR > 46&SR > 43&(0 < HR < 10‖156 < HR < 180)},
and the pixel set of the cyan marker in the segmented image is also extracted from Z as
another smaller dataset MC = {zC ∈ Z | VC > 46&SC > 43&(78 < HC < 99)}, wherein
the subscripts R and C stand for red and cyan, respectively. Taking the waist segmentation
images L1 and R1 as examples, a total of four pixel sets of the red and cyan markers for the
left and right views are obtained, denoted as Ml−R, Mr−R, Ml−C and Mr−C, wherein the
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subscript l and r represent the left view and right view, respectively, and the subscript R
and C denote red and cyan, respectively.

Ml−R =
{

zl−R−i
(
xl−R−i, yl−R−i

)
, i = 1, 2, . . . , Nl−R

}
Mr−R =

{
zr−R−i

(
xr−R−i, yr−R−i

)
, i = 1, 2, . . . , Nr−R

}
Ml−C =

{
zl−C−i

(
xl−C−i, yl−C−i

)
, i = 1, 2, . . . , Nl−C

}
Mr−C =

{
zr−C−i

(
xr−C−i, yr−C−i

)
, i = 1, 2, . . . , Nr−C

} (5)

wherein zl−R−i, zr−R−i, zl−C−i and zr−C−i represent the pixels in Ml−R, Mr−R, Ml−C and
Mr−C, respectively; Nl−R, Nr−R, Nl−C and Nr−C are the total numbers of pixels in Ml−R,
Mr−R, Ml−C and Mr−C, respectively. Specifically, xl−R−i and yl−R−i are the 2D coordinates
of the pixel zl−R−i in the pixel set Ml−R, xr−R−i, yr−R−i are the 2D coordinates of the pixel
zr−R−i in the pixel set Mr−R, xl−C−i, yl−C−i are the 2D coordinates of the pixel zl−C−i in
the pixel set Ml−C, xr−C−i and yr−C−i are the 2D coordinates of the pixel zr−C−i in the
pixel set Mr−C. Thus, the central points of the red and cyan markers in L1 and R1, that is,
zl−R

(
x̄l−R, ȳl−R

)
, zr−R

(
x̄r−R, ȳr−R

)
, zl−C

(
x̄l−C, ȳl−C

)
and zr−C

(
x̄r−C, ȳr−C

)
, are calculated

by averaging all the pixels in the respective pixel sets Ml−R, Mr−R, Ml−C and Mr−C,
as shown in Equations (6):

x̄l−R =
1

Nl−R

Nl−R

∑
i=1

xl−R−i, ȳl−R =
1

Nl−R

Nl−R

∑
i=1

yl−R−i

x̄r−R =
1

Nr−R

Nr−R

∑
i=1

xr−R−i, ȳr−R =
1

Nr−R

Nr−R

∑
i=1

yr−R−i

x̄l−C =
1

Nl−C

Nl−C

∑
i=1

xl−C−i, ȳl−C =
1

Nl−C

Nl−C

∑
i=1

yl−C−i

x̄r−C =
1

Nr−C

Nr−C

∑
i=1

xr−C−i, ȳr−C =
1

Nr−C

Nr−C

∑
i=1

yr−C−i

(6)

wherein x̄l−R and ȳl−R are the 2D coordinates of the central point zl−R for the pixel set
Ml−R, x̄r−R, ȳr−R are the 2D coordinates of the central point zr−R for the pixel set Mr−R,
x̄l−C, ȳl−C are the 2D coordinates of the central point zl−C for the pixel set Ml−C, x̄r−C and
ȳr−C are the 2D coordinates of the central point zr−C for the pixel set Mr−C.

Table 3. HSV ranges corresponding to the four colors.

Hmin Hmax Smin Smax Vmin Vmax

Red 0/156 10/180 45 255 46 255
Cyan 78 99 43 255 46 255
Black 0 180 0 255 0 46
White 0 180 0 30 221 225

By the Shi–Tomasi corner detection algorithm, the corner sets in the seg-
mented images L1 and R1 are extracted at the sub-pixel level, denoted as Sl =
{zl_corner_i(xl_corner_i, yl_corner_i), i = 1, 2, . . . , Nl_corner} and Sr = {zr_corner_i(xr_corner_i, yr_corner_i) ,
i = 1, 2, . . . , Nr_corner}, wherein zl_corner_i and zr_corner_i represent the extracted corners
from L1 and R1; Nl_corner and Nr_corner are the total numbers of corners in L1 and R1;
xl_corner_i and yl_corner_i are the 2D coordinates of the corner zl_corner_i in the corner set Sl,
xr_corner_i; and yr_corner_i are the 2D coordinates of the corner zr_corner_i in the corner set Sr.

A rectangular region can be determined according to the central point coordinates
of the red and cyan markers calculated above. Figure 13 shows an example of the cor-
ner matching by the regional constraining of markers. In L1, with the central points of
markers zl−R

(
x̄l−R, ȳl−R

)
and zl−C

(
x̄l−C, ȳl−C

)
as the regional constraint, a smaller corner
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set Sl−RC in the rectangular region defined by the red and cyan markers can be obtained,
as expressed in Equation (7). In R1, with the central points of markers zr−R

(
x̄r−R, ȳr−R

)
and zr−C

(
x̄r−C, ȳr−C

)
as the regional constraint, another smaller corner set Sr−RC in the

rectangular region defined by the red and cyan markers can be obtained in the same way,
as expressed in Equation (8).

Sl−RC = {zl_corner_RC ∈ Sl |
(
min

{
x̄l−R, x̄l−C

}
< xl_corner_RC < max

{
x̄l−R, x̄l−C

})
&(

min
{

ȳl−R, ȳl−C
}
< yl_corner_RC < max

{
ȳl−R, ȳl−C

})
} (7)

Sr−RC = {zr_corner_RC ∈ Sr |
(
min

{
x̄r−R, x̄r−C

}
< xr_corner_RC < max

{
x̄r−R, x̄r−C

})
&(

min
{

ȳr−R, ȳr−C
}
< yr_corner_RC < max

{
ȳr−R, ȳr−C

})
} (8)

wherein zl_corner_RC and zr_corner_RC represent the corners in the rectangular region of
L1 and R1, respectively; xl_corner_RC and yl_corner_RC are the 2D coordinates of zl_corner_RC;
x̄l−R and ȳl−R are the 2D coordinates of the central point for the red marker in L1; x̄l−C
and ȳl−C are the 2D coordinates of the central point for the cyan marker in L1; xr_corner_RC
and yr_corner_RC are the 2D coordinates of zr_corner_RC; x̄r−R and ȳr−R are the 2D coordi-
nates of the central point for the red marker in R1; x̄r−C and ȳr−C are the 2D coordinates
of the central point for the cyan marker in R1. The numbers of corners in Sl−RC and
Sr−RC can be denoted as Nl_corner_RC and Nr_corner_RC, wherein 1 < Nl_corner_RC < Nl_corner,
1 < Nr_corner_RC < Nr_corner and Nl_corner_RC = Nr_corner_RC.

The corner sets Sl−RC and Sr−RC in the left- and right-view images for the same
baseline are acquired through regional constraint, wherein Sl−RC ⊂ Sl and Sr−RC ⊂ Sr.
According to the characteristic of the checkerboard, the x coordinates of the corners on
the same line increase successively. Therefore, the corners in the corner sets Sl−RC and
Sr−RC are ordered by the x coordinate, as expressed in Equations (9) and (10); and the
pixels of the same corner in the left- and right-view images correspond in order. That is,
the ordered zl_corner_RC_i and zr_corner_RC_i with the same i correspond to the same corner
in 3D space, and they are a stereo-matching point pair. Thus, refined stereo matching at
the sub-pixel level can be achieved, and with less complexity. Algorithm 1 describes the
refined stereo-matching process described above.

zl_corner_RC_1, . . . , zl_corner_RC_i, . . . , zl_corner_RC_Nl_corner_RC

s.t. xl_corner_RC_1 < . . . < xl_corner_RC_i < . . . < xl_corner_RC_Nl_corner_RC

(9)

zr_corner_RC_1, . . . , zr_corner_RC_i, . . . , zr_corner_RC_Nr_corner_RC

s.t. xr_corner_RC_1 < . . . < xr_corner_RC_i < . . . < xr_corner_RC_Nr_corner_RC

(10)

   (a)    (b) 

l_RM

l_CM

r_RM

r_CM

Figure 13. Schematic diagram of corner stereo matching by the regional constraint of markers. (a) Left
view. (b) Right view.

To further increase the anthropometry accuracy, multiple measurements can be carried
out on the same girth so that the optimal value can be selected from multiple measurement
results. Hence, it is necessary to match multiple lines of corners precisely and simply.
The central points of the red and cyan markers are moved up or down along the y direction
in a step Nstep , wherein Nstep is the pixel difference corresponding to the checkerboard
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interval in the image. Nstep is inversely proportional to the shooting distance D(m), and the
relationship is shown in Equation (11):

Nstep = 7.02D2 − 45.18D + 93.43 (11)

In the experiment, D = 2.4 m and Nstep = 25 pixels. The y coordinates of
zl−R

(
x̄l−R, ȳl−R

)
, zr−R

(
x̄r−R, ȳr−R

)
, zl−C

(
x̄l−C, ȳl−C

)
and zr−C

(
x̄r−C, ȳr−C

)
in the left- and

right-view images increased or decrease upward or downward in the step Nstep to
get zl−R

′(x̄l−R, ȳl−R ±Nstep
)
, zr−R

′(x̄r−R, ȳr−R ±Nstep
)
, zl−C

′(x̄l−C, ȳl−C ±Nstep
)

and
zr−C

′(x̄r−C, ȳr−C ±Nstep
)
. Then, accurate matching of the other two lines of corners in the

same segmented region was achieved in the way described above.
By using the binocular calibration parameters, the 3D coordinates of each line of stereo-

matching corner pairs were calculated; then the corners were reversely rotated back to the
initial positions according to the rotation angle of the turntable. Next, the PIVCF curve
fitting method was used to achieve human-body girth fitting, and finally, the human-body
parameter measurement data of multiple lines in the same region were calculated. Ac-
cording to GB/T 16160-2017 [48] “Anthropometric Definitions and Methods for Garment”,
the maximum girth data among the three is output as the final girth measurements of
bust, hip and thigh, and the minimum girth data are output as the final girth measurement
of the waist. Moreover, by moving down the measure line of bust or thigh in 2Nstep ,
the girth data of the third line are output as the final girth measurements of under-bust or
mid-thigh, respectively.

Algorithm 1 The refined stereo-matching process.

Input: Segmented images L1 and R1;
Output: Stereo-matching point pairs;

1: Extract pixel sets of the red and cyan markers according to H, S, V components, Ml−R
and Ml−C for L1, Mr−R and Mr−C for R1;

2: Calculate the central points zl−R, zr−R, zl−C and zr−C for Ml−R, Mr−R, Ml−C and Mr−C,
respectively;

3: Extract corner sets Sl and Sr for L1 and R1 by Shi–Tomasi corner detection algorithm;
4: Get a smaller corner set Sl−RC constrained by zl−R and zl−C from Sl, and another

smaller corner set Sr−RC constrained by zr−R and zr−C from Sr;
5: Order the corners in Sl−RC and Sr−RC separately according to the x coordinates of the

corners;
6: return The stereo-matching point pairs (zl_corner_RC_1, zr_corner_RC_1),

. . . , (zl_corner_RC_i, zr_corner_RC_i), . . . , (zl_corner_RC_Nl_corner_RC , zr_corner_RC_Nr_corner_RC).

4. Experiments

In the practical girth measurement experiment, the size manually measured in ac-
cordance with GB/T 16160-2017 was chosen as the ground truth. The practical girth
measurement system consisted of two Hikvision MV-CA050-11UC industrial cameras;
a precise revolving platform; and a laptop with an Intel(R) Core (TM) i7-10750H CPU,
a 16G RAM and a NVIDIA GeForce RTX 2060 discrete graphics card. We used a NVIDIA
2080Ti GPU and an Intel E5 2678 V3 CPU for training and testing. Our model was im-
plemented on Pytorch with Python3 under Windows10. We utilized Zhengyou Zhang’s
calibration method [49] to calibrate the binocular stereovision camera by means of a calibra-
tion board with a cell size of 30 mm. To avoid random errors, each subject was measured
manually and by our system five times each, and the average value was calculated as the
final measurement data. The mean absolute difference (MAD) [50] was used to measure
the difference between the measurement data and the ground truth. Forty-eight young sub-
jects aged from 20 to 30 years old without obvious physical abnormalities were randomly
selected; 25 were males and 23 were females. Six girths were measured for each subject,
including bust, under-bust, waist, hip, thigh and mid-thigh. The girth measurements were
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divided into two groups: male and female. For simplicity, only 10 measurement results are
shown below, including those with the maximum absolute errors.

4.1. Girth Measurement Experiment for Males

Table 4 shows the girth measurement results of 10 subjects selected from the 25 males,
including six subjects with the maximum absolute error of bust, under-bust, waist, hip,
thigh, and mid-thigh measurements. The remaining four subjects were randomly selected.
Male subject 4 had the maximum absolute error of bust, i.e., 1.43 cm, which conforms to
China’s national standard GB/T 2664-2017, “Men’s suits and coats”, a±2.0 cm tolerance for
the bust [51]. Male subject 8 had the maximum absolute error of the under-bust, i.e., 1.59 cm,
which conforms to China’s textile industry standard FZ/T 73017-2014, “Knitted homewear”,
a ±2.0 cm tolerance for a width above 5 cm [52]. Male subject 3 had the maximum absolute
error of waist, i.e., 1.49 cm, which conforms to China’s textile industry standard FZ/T
73029-2019, “Knitted leggings”, a ±2.0 cm tolerance for the waist [53]. Male subject 2
had the maximum absolute error of hip, i.e., 1.50 cm, which conforms to China textile
industry standard FZ/T 73022-2019, “Knitted thermal underwear”, a ±2.0 cm tolerance
for the hip [54]. Male subject 1 had the maximum absolute error of the thigh, i.e., 1.47 cm,
and male subject 9 had the maximum absolute error of the mid-thigh, i.e., 1.15 cm, which
also conform to FZ/T 73017-2014—the ±2.0 cm tolerance for the width above 5 cm.

Table 4. The exemplary girth measurement results of 10 male subjects.

NO. Girth Proposed (cm) Manual (cm) Error (cm) Error rate (%)

bust 95.64 94.3 −1.34 −1.42

under-bust 89.94 90.3 0.36 0.40

waist 82.95 81.8 −1.15 −1.41

hip 101 100.14 −0.86 −0.86

thigh 62.97 61.5 −1.47 −2.39

1

mid-thigh 51.93 51.7 −0.23 −0.44

bust 95.37 94.66 −0.71 −0.75

under-bust 91.28 90.36 −0.92 −1.02

waist 86.29 86.08 −0.21 −0.24

hip 100.66 99.16 −1.5 −1.51

thigh 54.61 55.37 0.76 1.37

2

mid-thigh 48.21 48.62 0.41 0.84

bust 88.02 87.97 −0.05 −0.06

under-bust 87.76 86.8 −0.96 −1.11

waist 80.69 79.2 −1.49 −1.88

hip 93.43 93.5 0.07 0.07

thigh 55.91 56.76 0.85 1.50

3

mid-thigh 53.86 54.18 0.32 0.59

bust 86.49 85.06 −1.43 −1.68

under-bust 83.33 82.8 −0.53 −0.64

waist 77.45 76.1 −1.35 −1.77

hip 96.02 95.73 −0.29 −0.30

thigh 55.13 54.8 −0.33 −0.60

4

mid-thigh 49.23 49.5 0.27 0.55
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Table 4. Cont.

NO. Girth Proposed (cm) Manual (cm) Error (cm) Error rate (%)

bust 86.21 85.74 −0.47 −0.55

under-bust 84.36 83.82 −0.54 −0.64

waist 80.99 80.2 −0.79 −0.99

hip 91.72 91.02 −0.7 −0.77

thigh 50.88 49.74 −1.14 −2.29

5

mid-thigh 46.51 45.5 −1.01 −2.22

bust 90.53 90.34 −0.19 −0.21

under-bust 87.75 87.04 −0.71 −0.82

waist 83.46 82.5 −0.96 −1.16

hip 97.47 98.25 0.78 0.79

thigh 57.16 57.3 0.14 0.24

6

mid-thigh 49.3 49.38 0.08 0.16

bust 93.76 93.5 −0.26 −0.28

under-bust 90.32 90.70 0.38 0.42

waist 87.01 86.22 −0.79 −0.92

hip 103.1 102.43 −0.67 −0.65

thigh 59.97 59.25 −0.72 −1.22

7

mid-thigh 52.66 51.52 −1.14 −2.21

bust 83.56 84.14 0.58 0.69

under-bust 76.93 78.52 1.59 2.02

waist 75.38 75.98 0.6 0.79

hip 87.37 87.8 0.43 0.49

thigh 52.22 51.7 −0.52 −1.01

8

mid-thigh 44.52 45.30 0.78 1.72

bust 91.55 90.48 −1.07 −1.18

under-bust 88.96 88.16 −0.80 −0.91

waist 86.02 85.36 −0.66 −0.77

hip 104.55 103.84 −0.71 −0.68

thigh 57.83 57.05 −0.78 −1.37

9

mid-thigh 52.49 51.34 −1.15 −2.24

bust 97.28 98.32 1.04 1.06

under-bust 92.99 93.74 0.75 0.80

waist 88.96 89.94 0.98 1.09

hip 104.2 104.48 0.28 0.27

thigh 58.21 59.02 0.81 1.37

10

mid-thigh 51.37 52.46 1.09 2.08

Figure 14 shows the comparison of the six girth measurement results of these 10 male
subjects for our proposed method and the manual method. The red line with squares
represents the measurement results by the proposed method, and the cyan dotted line
with circles represents the manual measurement results. The two lines are very close
and almost overlapping. Table 5 shows the statistical analysis of the girth measurement
results of the 25 male subjects. The mean values (µ) and standard deviations (σ) of the
measurement results are almost the same for the proposed method and the manual method,
which indicates that the proposed method can replace the manual method.
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Table 5. Statistical analysis of the girth measurement results of 25 male subjects.

Male

µ (cm) σ (cm) MAD (cm)

Bust
proposed 90.84 4.42 0.71

manual 90.45 4.48

Under-bust
proposed 87.36 4.47 0.75

manual 87.22 4.26

Waist
proposed 82.92 4.12 0.90

manual 82.34 4.36

Hip
proposed 97.95 5.49 0.63

manual 97.64 5.28

Thigh
proposed 56.49 3.39 0.75

manual 56.25 3.35

Mid-thigh
proposed 50.00 2.83 0.65

manual 49.95 2.75
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Figure 14. Girth measurement results comparison for males. (a) Bust. (b) Under-bust. (c) Waist.
(d) Hip. (e) Thigh. (f) Mid-thigh.

4.2. Girth Measurement Experiment for Females

Table 6 shows the girth measurement results of 10 subjects selected from the 23 female
subjects, including four subjects with the maximum absolute error of the bust, under-bust,
waist, hip, thigh and mid-thigh. The remaining six subjects were randomly selected. Female
subject 15 had the maximum absolute error of bust, i.e., 1.42 cm, which conforms to China
national standard GB/T 2665-2017, “Women’s suits and coats”—a ±2.0 cm tolerance for
bust [55]. Female subject 14 had the maximum absolute error of the under-bust, i.e., 1.47 cm,
which conforms to FZ/T 73017-2014—a ±2.0 cm tolerance for a width above 5 cm [52].
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Female subject 16 had the maximum absolute error of waist, i.e., 1.34 cm, which conforms
to FZ/T 73029-2019—a ±2.0 cm tolerance for the waist [53]. Female subject 14 also had the
maximum absolute error of the hip, i.e., 1.30cm, which conformed to FZ/T 73022-2019—a
±2.0 cm tolerance for the hip [54]. Female subject 18 had the maximum absolute error
of the thigh, i.e., 1.34cm, and female subject 18 had the maximum absolute error of the
mid-thigh, i.e., 0.71 cm, which also conform to FZ/T 73017-2014—the ±2.0 cm tolerance for
the width above 5 cm.

Table 6. The exemplary girth measurement results of 10 female subjects.

NO. Girth Proposed (cm) Manual (cm) Error (cm) Error Rate (%)

bust 83.51 83.24 0.27 0.32

under-bust 76.94 76.22 0.72 0.94

waist 73.83 73.16 0.67 0.92

hip 83.1 84.32 −1.22 −1.45

thigh 49.94 50.63 −0.69 −1.36

11

mid-thigh 46.58 45.96 0.62 1.35

bust 81.77 82.2 −0.43 −0.52

under-bust 77.26 76.84 0.42 0.55

waist 71.52 72.02 −0.5 −0.69

hip 79.75 80.5 −0.75 −0.93

thigh 47.99 47.2 0.79 1.67

12

mid-thigh 45.83 45.36 0.47 1.04

bust 89.43 88.25 1.18 1.34

under-bust 83.22 83.42 −0.2 −0.24

waist 76.2 75.12 1.08 1.44

hip 85.96 86.34 −0.38 −0.44

thigh 48.98 49.06 −0.08 −0.16

13

mid-thigh 45.98 46.5 −0.52 −1.12

bust 91.77 91.84 −0.07 −0.08

under-bust 81.55 83.02 −1.47 −1.77

waist 80.27 80.5 −0.23 −0.29

hip 97.4 98.7 −1.3 −1.32

thigh 53.38 54.62 −1.24 −2.27

14

mid-thigh 52.33 52.08 0.25 0.48

bust 92.92 91.5 1.42 1.55

under-bust 80.86 81.25 −0.39 −0.48

waist 78.39 79.18 −0.79 −1.00

hip 92.21 93.38 −1.17 −1.25

thigh 55.9 55.18 0.72 1.30

15

mid-thigh 51.69 51.02 0.67 1.31
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Table 6. Cont.

NO. Girth Proposed (cm) Manual (cm) Error (cm) Error Rate (%)

bust 92.82 91.96 0.86 0.94

under_bust 87.24 86.68 0.56 0.65

waist 83.4 82.06 1.34 1.63

hip 96.78 96.92 −0.14 −0.14

thigh 58.3 59.64 −1.34 −2.25

16

mid-thigh 55.82 56.16 −0.34 −0.61

bust 83.86 83.42 0.44 0.53

under-bust 78.06 78.9 −0.84 −1.06

waist 74.01 74.98 −0.97 −1.29

hip 82.22 83.28 −1.06 −1.27

thigh 52.96 53.36 −0.4 −0.75

17

mid-thigh 48.51 49.2 −0.69 −1.40

bust 87.36 87.18 0.18 0.21

under-bust 77.85 77.12 0.73 0.95

waist 75.44 75.7 −0.26 −0.34

hip 97.8 97.9 −0.1 −0.10

thigh 59.81 59.32 0.49 0.83

18

mid-thigh 57.21 56.5 0.71 1.26

bust 83.56 84.16 −0.6 −0.71

under-bust 73.82 73.54 0.28 0.38

waist 71.89 71.5 0.39 0.55

hip 87.99 88.42 −0.43 −0.49

thigh 57.65 56.92 0.73 1.28

19

mid-thigh 52.73 52.16 0.57 1.09

bust 83.98 83.22 0.76 0.91

under-bust 78.61 77.87 0.74 0.95

waist 76.5 75.24 1.26 1.67

hip 88.43 87.6 0.83 0.95

thigh 46.53 46.04 0.49 1.06

20

mid-thigh 43.81 43.26 0.55 1.27

Figure 15 shows the comparison of the six girth measurement results of these 10 female
subjects for our proposed method and the manual method. The red line with squares
represents the measurement results by the proposed method, and the cyan dotted line
with circles represents the manual measurement results. The two lines are very close
and almost overlapping. Table 7 shows the statistical analysis of the girth measurement
results of the 23 female subjects. The mean values (µ) and standard deviations (σ) of the
measurement results are almost the same for the proposed method and the manual method,
which indicates that the proposed method can replace the manual method.
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Figure 15. Girth measurement results comparison for females. (a) Bust. (b) Under-bust. (c) Waist.
(d) Hip. (e) Thigh. (f) Mid-thigh.

Table 7. Statistical analysis of the girth measurement results of 23 female subjects.

Female

µ (cm) σ (cm) MAD (cm)

Bust
proposed 87.10 4.10 0.61

manual 86.70 3.76

Under-bust
proposed 79.35 3.59 0.66

manual 79.28 3.80

Waist
proposed 76.15 3.53 0.64

manual 75.95 3.37

Hip
proposed 89.16 6.29 0.74

manual 89.74 6.21

Thigh
proposed 53.14 4.44 0.66

manual 53.12 4.57

Mid-thigh
proposed 50.05 4.39 0.64

manual 49.82 4.51

In conclusion, the maximum measurement error of the bust was 1.43 cm for males
and 1.42 cm for females, which are within the ±2.0 cm tolerance for the bust for males and
females regulated by the national standards. The maximum measurement error of under-
bust was 1.59 cm for males and 1.47cm for females, which are within the ±2.0 cm tolerance
for the under-bust regulated by the textile industry standard. The maximum measurement
error of the waist was 1.49 cm for males and 1.34 cm for females, which are within the
±2.0 cm tolerance for the waist regulated by the textile industry standard. The maximum
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measurement error of hip was 1.5 cm for males and 1.30 cm for females, which are within
the ±2.0 cm tolerance for the hip regulated by the textile industry standard. The maximum
measurement error of the thigh was 1.47 cm for males and 1.34 cm for females, which
are within the ±2.0 cm tolerance for the thigh regulated by the textile industry standard.
The maximum measurement error of the mid-thigh was 1.15 cm for males and 0.71 cm
for females, which are within the ±2.0 cm tolerance for the thigh regulated by the textile
industry standard.

As shown in Table 8, the girth measurement errors of the bust, waist and hip when
using the proposed method and five other anthropometric methods are compared, namely,
Han et al.’s method [56], Lu et al.’s method [57], Kaashki et al.’s method [58], Yang et al.’s
method [17] and Song et al.’s method [18]. The bust MAD of our system was 0.66 cm,
which is less than the bust MAD values of [17,18,56–58], which were 0.99, 1.60, 1.97, 1.11
and 1.45 cm, respectively. The waist MAD of our improved system was 0.76cm, which
is less than the waist MAD values of [17,18,56–58], which were 0.85, 1.20, 2.03, 1.03 and
1.47 cm, respectively. The hip MAD of our improved system was 0.68 cm, which is less than
the hip MAD values of [18,56–58], which were 1.15, 1.12, 0.91 and 1.02 cm, respectively.
In summary, our system improves the anthropometric system by improving the human-
body-segmentation algorithm with attention-based feature fusion and by refining the
stereo-matching scheme to the sub-pixel level. Not only can our system measure the
girth simply and intelligently with low cost and portability, but it also can achieve better
measurement accuracy than other methods.

Table 8. Error comparison for girth measurement.

MAD (cm)

Bust Waist Hip

Han et al. [56] 1.97 2.03 1.12

Lu et al. [57] 1.11 1.03 0.91

Kaashki et al. [58] 1.45 1.47 1.02

Yang et al. [17] 0.99 0.85 NA

Song et al. [18] 1.60 1.20 1.15

Proposed system 0.66 0.76 0.68

5. Conclusions

In this study, to further increase the anthropometric accuracy, we improved the seman-
tic segmentation process in the anthropometric system by a human-body-segmentation
algorithm with attention-based feature fusion and improved the stereo matching and
coordinate calculation process through a refined corner-based feature-point design with
sub-pixel stereo matching. We proposed a CBAM-PSPNet which could increase the ac-
curacy and decrease the computational cost of the human-body-segmentation algorithm
PSPNet. We designed a refined stereo-matching scheme based on the corner feature point
which could enhance the accuracy and reduce the complexity of the stereo-matching
method. The girth measurement performance of our proposed system was verified by the
experiments measuring the bust, under-bust, waist, hip, thigh and mid-thigh on males and
females. The results show that our system is efficient and reliable. In our measurements,
the measured girths all had a maximum girth absolute error within the ±2.0 cm error limit
of the corresponding national standard or textile industry standard. The girth measurement
errors are also smaller than those of other methods. In particular, our proposed CBAM-
PSPNet and corner-based stereo-matching method effectively improve the accuracy and
efficiency of the anthropometric system.
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