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Abstract: Inferring models, predicting the future, and estimating the entropy rate of discrete-time,
discrete-event processes is well-worn ground. However, a much broader class of discrete-event
processes operates in continuous-time. Here, we provide new methods for inferring, predicting,
and estimating them. The methods rely on an extension of Bayesian structural inference that takes
advantage of neural network’s universal approximation power. Based on experiments with complex
synthetic data, the methods are competitive with the state-of-the-art for prediction and entropy-
rate estimation.
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1. Introduction

Much scientific data is dynamic: rather than a static image, we observe a system’s tem-
poral evolution. The additional richness of dynamic data offers improved understanding,
but we may not know how to leverage the richer temporal data to yield new insights into a
system’s behavior and structure.

For example, while there are extensive records of earthquake occurrence and magni-
tude, geophysics still cannot predict earthquakes well or estimate their intrinsic random-
ness [1]. Similarly, modern neurophysiology can identify which neurons spike when, but
neuroscience still lacks a specification of the “neural code” that carries actionable informa-
tion [2]. Furthermore, finally, we can observe many organisms in detail as they conduct
their lives, but still are challenged to model their behavior [3,4].

These natural processes operate not only in continuous-time, but over discrete events—
earthquake or not; neural spike or not; eating, sleeping, or roaming. Their observations
belong to a finite set and are not better-described as a collection of real numbers. These dis-
parate scientific problems and many others beg for methods to infer expressive continuous-
time, discrete-event models, to predict behavior, and to estimate key system properties.

The following develops a unified framework that leverages the inferential and predic-
tive advantages of the unifilarity of stochastic process models. This property means that a
model’s underlying states—the causal states [5] or predictive-states [6]—can be uniquely iden-
tified from past data. We adapt the universal approximation power of neural networks [7]
to this setting to model continuous-time, discrete-event processes. Said simply, the pro-
posed model-inference algorithm is the continuous-time extension of Bayesian structural
inference [8]. Altogether, this advances the state of the field of computational mechanics [5]
by developing new discrete-event, continuous-time predictive model inference methods.
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Using the Bayesian information criterion to balance model size against estimation er-
ror [9], we infer the most likely unifilar hidden semi-Markov model (uhsMm) [10] given
data. This model class is more powerful than (“nonhidden”) semi-Markov models (sMms)
in the sense that uhsMms can finitely represent continuous-time, discrete-event stochas-
tic processes that cannot be represented as finite sMms. Moreover, with sMms emitted
event symbols depend only on the prior symbol and their dwell times are drawn from an
exponential distribution. With uhsMms, in contrast, the probability of emitted symbols
depends on arbitrarily long pasts of prior symbols and event dwell times depend on general
(nonexponential) distributions.

Beyond model inference, we apply the closed-form expressions of Ref. [10] to the
inferred uhsMm to estimate a process’ entropy rate, removing statistical sampling ap-
proximations in this last step and markedly improving accuracy. Moreover, we use the
inferred uhsMm’s causal states to predict future events in a given time series via a k-nearest
neighbors algorithm. We compare the inference and prediction algorithms to reasonable
continuous-time, discrete-event adaptations of current state-of-the-art algorithms. The new
algorithms are competitive with state-of-the-art entropy rate estimation algorithms as long
as model inference is in-class, meaning that the true model producing the data is equivalent
to one of the models in our search.

Next, we review related work. Section 3 then introduces unifilar hidden semi-Markov
models, while Section 4 shows that they are minimal sufficient statistics for prediction.
Section 5 describes our new algorithms for model inference, entropy rate estimation, and
time series prediction. We then test them on complex synthetic data—data from processes
that are memoryful and exhibit long-range statistical dependencies. Finally, Section 6
discusses extensions and future applications.

2. Related Work

Many methods exist for analyzing discrete-time processes. The autoregressive AR-k
procedure, a classical technique, predicts a symbol as a linear combination of previous
symbols. A slight modification leads to the generalized linear model (GLM), in which the
symbol probability is proportional to some function of a linear combination of previous
symbols [11]. Previous approaches also use the Baum-Welch algorithm [12], Bayesian struc-
tural inference [8], or a nonparametric Bayesian approach [13] to infer a hidden Markov
model or probability distribution over hidden Markov models of an observed process.
Bayesian structural inference, which is most closely related to the method proposed here,
enumerates all model topologies and calculates the probability of each model under the
data, utilizing the unifilarity property (to be discussed) and conjugate priors to the greatest
extent. If the most likely state of the hidden Markov model is correctly inferred, one can
use the model’s structure (state and transition probabilities) to predict the future symbol.

More recently, recurrent neural networks and reservoir computers have been trained
to recreate the output of any dynamical system. This is implemented via simple linear or
logistic regression for reservoir computers [14] or via back-propagation through time for
recurrent neural networks [15].

Often continuous-time data can be profitably represented as discrete-time data with a
high sampling resolution. As such, one can essentially sample continuous-time, discrete-
event data at high frequency and use any of the previously mentioned methods for predict-
ing discrete-time data. Alternatively and more directly, one can represent continuous-time,
discrete-event data as a list of continuous-valued dwell times and discrete symbols.
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When it comes to continuous-time, discrete-event predictors, much effort has concen-
trated on continuous-time Markov processes with large state spaces [16–18]. In this, system
states are wholly visible, but there are relatively sparse observations. As a result, we can
impose structure on the kinetic rates (or intensity matrix) to simplify inference. Others
considered temporal point processes, equivalent to the processes considered here. From
them, the interevent interval distribution’s dependence on the history can be modeled para-
metrically [19] or using a recurrent neural network [20–24]. Though these are generative
models, in theory they can be converted into predictive models [10,25] in which the dwell
times are not generated, but instead kept track of for prediction. Furthermore, yet others
used sequential Monte Carlo to make predictions from sampling distributions determined
by these generative models [22,23].

We take a new approach: Infer continuous-time hidden Markov models with a partic-
ular (and advantageous) type of structure [10]. The models are designed to be a stochastic
process’ “optimal predictor” [5,26] in that the model’s hidden state can be inferred almost
surely from past data and in that the model’s hidden states are sufficient statistics—they
provide the analyst with all the information needed to best predict the future and, in fact,
to calculate all other desired process properties. This leads to the principal advantages of
our method, as there is no need to sum over or infer a large number of latent variables; and
even so, we comfortably learn models for and predict infinite-order Markov processes.

3. Background

We are given a sequence of symbols xi and durations τi of those events: a time series of
the form . . . , (xi, τi), (xi+1, τi+1), . . . , (x0, τ+

0 ). This list constitutes the data D. For example,
animal behavioral data are of this kind: a list of activities and durations. The last seen
symbol x0 has been seen for a duration τ+

0 . Had we observed the system for a longer
amount of time, τ+

0 may increase. The possible symbols belong to a finite set xi ∈ A, while
the interevent intervals τi ∈ (0, ∞). We assume stationarity—the statistics of {(xi, τi)}i∈I
are invariant to the start time, where I is an interval of contiguous times.

Having specified the time series of interest, we turn to briefly introduce their
representations—unifilar hidden semi-Markov models. DenotedM, we consider them as
generating such time series [10]. The minimal such model consistent with the observations
is the ε-machine. Underlying a unifilar hidden semi-Markov model is a finite-state
machine with states g, each equipped with a dwell-time distribution φg(τ), an emission
probability p(x|g), and a function ε+(g, x) that specifies the next hidden state when
given the current hidden state g and the current emission symbol x.

This model generates a time series as follows: a hidden state g is randomly chosen; a
dwell time τ is chosen according to the dwell-time distribution φg(τ); an emission symbol
x is chosen according to the conditional probability p(x|g); and we then emit the chosen
x for duration τ. A new hidden state is determined via ε+(g, x), and we further restrict
possible next emissions to be different than the previous emission—a property that makes
this model unifilar—and the procedure repeats. See Figure 1 for illustrations of a unifilar
hidden semi-Markov model that is an ε-machine with three hidden states {A, B, C} which
emits four events {0, 1, 2, 3} with probabilistically varying durations.
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Figure 1. Unifilar hidden semi-Markov model (uhsMm): At left, two presentations of an example.
(Left bottom) Generative three-state {A, B, C}model for a discrete-alphabet {0, 1, 2, 3}, continuous-
time stochastic process. Dwell times τ are drawn when transitioning between states, and the cor-
responding symbol is emitted for that amount of time, so that p|x, τ ∼ φ translates to symbol x is
produced for a dwell time τ drawn from distribution φ with probability p. (Left top) Correspond-
ing “conveyor belt” representation of the process generated by the model beneath. Conveyor belts
represent the time since last symbol based on the height traveled along the conveyor belt; each
conveyor belt has an event symbol. (Right) Example time series realization generated from the
uhsMm, where φA, φB, and φC are inverse Gaussian distributions with (µ, λ) pairs of (1, 2), (2, 3),
and (1, 3), respectively.

4. Optimality

In this section, we restate the results of Ref. [10] in the language of Refs. [5,26] so that
it is clear what kinds of models we would like to infer and why. Throughout this section,
we assume stationarity.

We introduce a theorem that elucidates the representational power of the unifilar
hidden semi-Markov models (ε-machines) discussed here that closely follows the proofs
in Refs. [5,26]. Indeed, the only essential difference is that we are explicitly working with
mixed random variables, whereas the initial references did not specify the type of random
variable. Let

←−
Y represent the random variable for semi-infinite pasts and←−y its realization,

and let
−→
Y represent the random variable for semi-infinite futures and −→y its realization. As

described in Section 3,←−y is a list of past dwell times and past emitted symbols, ending
with the present symbol and the time since last symbol. Furthermore, −→y is a list of future
dwell times and future emitted symbols, starting with the present symbol and time to
next symbol.

First, we define causal states as follows. Consider an equivalence relation on pasts: two
pasts are considered equivalent,←−y ∼ε

←−y ′, if the conditional probability distributions over
futures given the past are equivalent: P(

−→
Y |←−Y =←−y ) = P(

−→
Y |←−Y =←−y ′). This equivalence

relation partitions the set of pasts into causal states with associated random variable S and
realization σ, such that σ = ε(←−y ) is the causal state σ containing the past←−y .

Theorem 1. The causal states of a process generated by a hidden semi-Markov model are minimal
sufficient statistics of prediction.

Proof. As the process is generated by a hidden semi-Markov model, we can meaningfully
discuss the conditional probability distribution of futures given pasts. From the definition
of the equivalence relation, we have that P(

−→
Y |←−Y = ←−y ) = P(

−→
Y |S = ε(←−y )). Let

−→
Y T

denote futures of total duration T. It follows from P(
−→
Y |←−Y = ←−y ) = P(

−→
Y |S = ε(←−y ))
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that H[
−→
Y T |←−Y ] = H[

−→
Y T |S ] for all T, from which it follows that I[

−→
Y T ;
←−
Y ] = I[

−→
Y T ;S ].

(H[·], H[·|·], and I[·; ·] are, respectively, the entropy, conditional entropy, and mutual
information [27]). Hence, causal states S are sufficient statistics of prediction.

We then turn to the minimality of causal states. Since S is a sufficient statistic of
prediction, the Markov chain

−→
Y → S → ←−Y holds. Consider any other sufficient statisticR

of prediction. We are guaranteed the Markov chain
−→
Y → S → R. Consider P(S = σ|R =

r) and futures of length T. Note that:

P(
−→
Y T |R= r)=∑

σ

P(S=σ|R= r)P(
−→
Y T |S=σ) .

From the convexity of conditional entropy, we have that:

H[
−→
Y T |R= r]≥∑

σ

P(S=σ|R= r)H[
−→
Y T |S=σ] ,

with equality if P(S = σ|R = r) has support on one causal state σ. From the above
inequality, we find that:

∑
r

P(R= r)H[
−→
Y T |R= r]≥∑

r,σ
P(R= r,S=σ)H[

−→
Y T |S=σ] .

And so:

H[
−→
Y T |R] ≥ H[

−→
Y T |S ]

and:

I[
−→
Y T ;R] ≤ I[

−→
Y T ;S ] ,

for any length T. This implies I[
−→
Y ;R] ≤ I[

−→
Y ;S ]. IfR is a sufficient statistic, then equality

holds; hence, from earlier comments, P(S|R = r) has support on only one causal state,
and hence, H[S|R] = 0.

A subtlety here is that S is a mixed discrete-continuous random variable and so, for
the moment, we consider infinitesimal partitions of the aspect of S that tracks the time
since last event and, then, take the limit as the partition size tends to 0, as is often done in
calculations of entropy rate; see, e.g., Ref. [28]. From considering H[S ,R], we find:

H[S ] + H[R|S ] = H[R] + H[S|R]
H[S ] + H[R|S ] = H[R]

H[S ] ≤ H[R] ,

where we used the fact that H[R|S ] ≥ 0. We therefore established that ifR is a minimal
sufficient statistic of prediction, it must be equivalent to the causal states S .

In what follows, we relate causal states to the hidden states of minimal unifilar hidden
semi-Markov models, relying heavily on Ref. [26]. Indeed, the only difference between the
proofs is that here we have explicitly identified g, x, τ as the causal states.

Theorem 2. The hidden states of the minimal unifilar hidden semi-Markov model—i.e., typically
g, x, and τ—are causal states.

Proof. Since a detailed proof is given in Ref. [26], we state the issues somewhat informally.
A minimal unifilar hidden semi-Markov model has two key properties:

• Unifilarity: if the current hidden state and next emission are known, then the next
hidden state is determined; and
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• Minimality: minimal number of states (or generative complexity [29]) out of all unifilar
generators consistent with the observed process.

Let G be the random variable denoting the hidden state. Clearly
←−
Y → G → −→Y for

any hidden Markov model. The unifilarity of the model guarantees that we can almost
surely determine the hidden state of the model given the past (i.e., that the hidden state is a
function of the past) and, hence, G → ←−Y → −→Y . The Data Processing Inequality applied
twice implies that I[

−→
Y ;
←−
Y ] = I[

−→
Y ;G], and so the hidden state is a sufficient statistic of

prediction. As we are focusing on the minimal unifilar model, G is the minimal sufficient
statistic of prediction, and so there is an isomorphism between the machine constructed
from S and the minimal unifilar machine. Since the minimal unifilar machine typically has
hidden states g, x, τ (with exceptions seen when the dwell time distributions have special
structure [10]), these are causal states.

Theorem 2 provides the inspiration for the algorithms that follow.

5. Continuous Time-Bayesian Structural Inference (CT-BSI) and
Comparison Algorithms

We investigate and then provide algorithms for three tasks: model inference, cal-
culating the differential entropy rate, and predicting future symbols. Our main claim is
that restricting attention to a special type of discrete-event, continuous-time model—the
unifilar hidden semi-Markov models or ε-machine—renders all three tasks markedly easier
since the model’s hidden states are minimal sufficient statistics of prediction, based on
Theorem 2. The restriction is, in fact, not much of one, as the ε-machines can finitely
represent an unboundedly larger set of processes compared to those generated by Markov
and semi-Markov models.

5.1. Inferring Optimal Models of Unifilar Hidden Semi-Markov Processes

The unifilar hidden semi-Markov models described earlier can be parameterized. Let
M refer to a model—in this case, the underlying topology of the finite-state machine and
neural networks defining the density of dwell times. Let θ refer to the model’s parameters;
i.e., the emission probabilities and the parameters of the neural networks. Furthermore,
let D refer to the data; i.e., the list of emitted symbols and dwell times. Ideally, to choose
a model we maximize the posterior distribution by calculating arg maxM Pr(M|D) and
select parameters of that model via maximum likelihood: arg maxθ Pr(D|θ,M).

In the case of discrete-time unifilar hidden Markov models, Strelioff and Crutchfield [8]
described the Bayesian framework for inferring the best-fit model and parameters. More
than that, Ref. [8] calculated the posterior analytically, using the unifilarity property to
ease the mathematical and statistical burdens. Analytic calculations in continuous-time
may be possible, but we leave that for a future endeavor. We instead turn to a variety of
approximations, still aided by the unifilarity of the inferred models. Again, the unifilarity
property allows for tractable inference of models that are typically infinite-order Markov.

The main such approximation is our use of the Bayesian information criterion (BIC) [9],
which allows us to do approximate model selection despite not being to exactly calculate
the posterior. Maximum a posteriori model selection is performed via:

BIC =
kM
2

log|D| −max
θ

log Pr(D|θ,M) (1)

M∗ = arg min
M

BIC ,

where kM is the number of parameters θ. (Note that this is a factor of two off of the usual
formulation, with no changes to the inferred model or parameters.) As we are planning to
select between models, kM will depend on the model. More complex models have more
parameters, owing to a greater number of states. To choose a model, then, we must calculate
not only the parameters θ that maximize the log likelihood, but the log likelihood itself.
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We make one further approximation for tractability involving the uhsMm start state
s0, for which:

Pr(D|θ,M) = ∑
s0

π(s0|θ,M)Pr(D|s0, θ,M) .

Since the logarithm of a sum has no simple expression, and since with more data our estima-
tion of the probability distribution over start states should be highly peaked, we approximate:

max
θ

log Pr(D|θ,M) ≈ max
s0

max
θ

log Pr(D|s0, θ,M) .

If it is possible to infer the start state from the data—which is the case for all the models
considered here—then the likelihood should overwhelm the prior’s influence. Our strategy,
then, is to choose parameters θ that maximize maxs0 log Pr(D|s0, θ,M) and to choose the
modelM that minimizes the BIC in Equation (1). This constitutes inferring a model that
explains the observed data as well as possible.

What remains to be done, therefore, is approximating maxs0 maxθ log Pr(D|s0, θ,M).
The parameters θ of any given model include p(s′, x|s), the probability of emitting x when
in state s and transitioning to state s′, and φs(t), the interevent interval distribution of state
s. Using the unifilarity of the underlying model, the sequence of x’s when combined with
the start state s0 translate into a single possible sequence of hidden states si. We have:

Pr(D|s0, θ,M) = ∏
i

p(si, xi|si−1)φsi (τ
(si)). (2)

As such, one can show that:

log Pr(D|s0, θ,M) = ∑
s

∑
j

log φs(τ
(s)
j ) + ∑

s,x,s′
n(s′, x|s) log p(s′, x|s) , (3)

where n(s′, x|s) is the number of times we observe an emission x from a state s leading
to state s′ and where τ

(s)
j is any interevent interval produced when in state s. It is rela-

tively easy to analytically maximize with respect to p(s′, x|s), including the constraint that
∑s′ ,x p(s′, x|s) = 1 for any s. We find that:

p∗(s′, x|s) = n(s′, x|s)
n(s)

, (4)

where n(s) is the number of times the model visits state s.
Now, we turn to approximate the dwell-time distributions φs(t). In theory, a dwell-

time distribution can be any normalized nonnegative function. With sufficient nodes
artificial neural networks can represent any continuous function. We therefore represent
φs(t) by a relatively shallow (here, five-layer) artificial neural network in which nonnega-
tivity and normalization are enforced as follows:

• The second-to-last layer’s activation functions are ReLus (max(0, x) and so have
nonnegative output) and the weights to the last layer are constrained to be nonnega-
tive; and

• The output is the last layer’s output divided by a numerical integration of the last
layer’s output.

A wider (25 nodes instead of 15) and shallower (one less layer) network is measurably
worse, not shown here.

The log likelihood ∑j log φs(τ
(s)
j ) determines the cost function for the neural network,

so that the output of the neural network for an array of input dwell times is an equally-
sized array of estimated densities. Then, the neural network can be trained using typical
stochastic optimization methods. (Here, we use Adam [30].) The neural network output
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can successfully estimate the interevent interval density function, given sufficient samples,
within the interval for which there is data. See Figure 2. Note, though, that if samples are
too sparsely spaced, estimation of φ(τ) does not happen correctly. Outside this interval,
however, the estimated density function is not guaranteed to vanish as t→ ∞, and it can
even grow. Stated differently, the neural networks considered here are good interpolators,
but can be bad extrapolators. As such, the density function estimated by the network is
taken to be 0 outside the interval over which there is data.

0 1 2 3 4 5 6
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Figure 2. Estimated dwell-time density function for varying numbers of samples. (Left) Inferred
density function using the neural network described here compared to the true density function
(dotted, green) when given 500 samples (blue) and 5000 samples (orange). As the sample size
increases, the inferred density function better approximates ground truth. An interevent interval
distribution with two modes was arbitrarily chosen by setting φ(τ) to a mixture of two inverse
Gaussians. (Right) Mean-squared error between the estimated density and the true density as
we use more training data for three different estimation techniques. The green line denotes the
ANN algorithm introduced here, in which we learn densities from a neural network, running with
five different seeds and choosing the one with the lowest MSE; the blue line denotes the k-nearest
neighbors algorithm [9,31]; and the orange line gives Parzen-window estimates [9,32]. Our new
method is competitive with these two standard methods for density estimation and quantitatively
equivalent to the Parzen estimator at moderate to large samples.

To the best of our knowledge, this is a new approach to density estimation, referred to
as ANN here. A previous approach to density estimation using neural networks learned
the cumulative distribution function [33]. Another more popular approach expresses the
interevent interval as λ(t)e−

∫ t
λ(s)ds, where λ(t) is the intensity function. Analysts then

either parameterize the intensity function or use a recurrent neural network [20–23] to
model λ(t). Note that the log-likelihood for this latter approach also involves numerical
integration, but this time, of the intensity function. This integral accounts for the probability
of nonevents. Some assume a particular form for the interevent interval and fit parameters
of the functional form to data [19], while others treat estimation of the cumulative density
function or the dwell time distribution as a regression problem [34,35]. More traditional
approaches to density estimation include k-nearest neighbor estimation techniques and
Parzen-window estimates, both of which need careful tuning of hyperparameters (k or
h) [9]. They are referred to here as kNN and Parzen, respectively.

We compare ANN, kNN, and Parzen approaches to inferring an interevent interval
density function that we have chosen, arbitrarily, to be the mixture of inverse Gaussians
shown in Figure 2 (Left). The k in k-nearest neighbor estimation is chosen according to
Ref. [31]’s criterion and h is chosen to maximize the pseudo-likelihood [32]. Note that, as
Figure 2 (Right) shows, ANN is not a superior approach to density estimation in terms of
minimization of mean-squared error, but it is parametric, so that BIC model selection can
be used.

The approach taken here is certainly not the only promising approach one can invent.
Future work will investigate both the efficacy of parametrizing the intensity function
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rather than the interevent interval density function [20–23] and the benefits of learning
normalizing flows [36].

To test our new method for density estimation—that is, training a properly normalized
ANN—we generated a trajectory from the unifilar hidden semi-Markov model shown in
Figure 3 (Left) and used BIC to select the correct model. As BIC is a penalty for a larger
number of parameters minus a log likelihood, a smaller BIC suggests a higher posterior
probability. With very little data, the two-state model shown in Figure 3 is deemed to be
the most likely generator. However, as sample size increases, the correct four-state model
eventually takes precedence. See Figure 3 (Right). The six-state model was never deemed
more likely than a two-state or four-state model.

Note that although this methodology might be extended to nonunifilar hidden semi-
Markov models with addition of Monte Carlo sampling or inference of the most likely
trajectory of hidden states, unifilarity allowed for easily computable and unique identifica-
tion of dwell times with states in Equation (3). Though Ref. [20] led to a larger log likelihood
(∼−6000 versus ∼−900) for the same amount of data (N = 2000) for the four-state model,
the interpretability of the unifilar hidden semi-Markov model may be higher.

A B

1|0, t ⇠ �A

1|1, t ⇠ �B

A B

CD

1|0, t ⇠ �A

1|1, t ⇠ �B

1|0, t ⇠ �C

1|1, t ⇠ �D

102 103 104 105

Number of data points

−10000

0

10000

20000

A
dj

us
te

d
B

IC
2

4

6

Figure 3. Model order selection. (Left) Two-state model (top) and four-state uhsMm (bottom) for binary-
alphabet, continuous-time data. (Right) Adjusted BIC, or −BIC + (1.4 ∗N + 698 ∗ log N− 5.5), as a
function of sample size for the two-state, four-state, and six-state uhsMms at left. (The six-state uhsMm
is not shown.) Adjusted BIC is shown only to make it clearer where the four-state machine is deemed
more probable than the two-state machine. Smaller BIC (higher Adjusted BIC) implies a higher posterior
probability and so a better fit.

5.2. Improved Differential Entropy Rates

One benefit of unifilar hidden semi-Markov models is that they directly lead to explicit
formulae for information generation—the differential entropy rate [10]—for a wide class of
infinite causal-state processes like those generated by uhsMms. Generally, entropy rates
measure a process’ inherent randomness [37] and so they are a fundamental characteristic.
As such, much effort has been invested to develop improved entropy-rate estimators for
complex processes [38–41] since they aid in classifying processes [42]. We now ask how
well one can estimate the entropy rate from finite data for continuous-time, discrete-event
processes. In one sense, this is a subtle problem: estimating a property of an effectively
infinite-state process from finite data. Although, from another perspective, we should be
able to estimate a scalar property of an infinite-dimensional object from finite data with
high accuracy [40].

Compounding this, infinite-state processes or not, differential entropy rates are difficult
to calculate directly from data, since the usual method calculates the entropy of trajectories
of some length T, dividing by T to get a rate:

hµ = lim
T→∞

T−1H
[−−−→
(x, τ)0:T

]
.
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A better estimator, though, is the following [37]:

hµ = lim
T→∞

d
dT

H
[−−−→
(x, τ)0:T

]
,

which is the slope of the graph of H[
−−−→
(x, τ)0:T ] versus T.

As the entropy of a mixed random variable of unknown dimension, this entropy

appears difficult to estimate from finite data. To calculate H[
−−−→
(x, τ)0:T ], we use an insight

from Ref. [43] and condition on the number of events N:

H
[−−−→
(x, τ)0:T

]
= H[N] + H[

−−−→
(x, τ)0:T |N] .

We then break the entropy into its discrete and continuous components:

H[
−−−→
(x, τ)T |N = n] = H[x0:n|N = n] + H[τ0:n|x0:n, N = n]

and use the k-nearest-neighbor entropy estimator [44] to estimate H[τ0:n|x0:n, N = n],
arbitrarily choosing k = 3. (Other ks did not substantially affect results.) We estimate both
H[x0:n|N = n] and H[N] using plug-in entropy estimators, as the state space is relatively
well-sampled. We call this estimator model-free, in that we need not infer a state-based
model to calculate the estimate.

We introduce a model-based estimator, for which we infer a model and then use
the inferred model’s differential entropy rate as the differential entropy rate estimate. To
calculate the differential entropy rate from the inferred model, we use a plug-in estimator
based on the formula in Ref. [10]:

ĥµ = −∑
s

p̂(s)
∫ ∞

0
µ̂sφ̂s(t) log φ̂s(t)dt , (5)

where the sum is over the model’s internal states. For certain special processes with long
tails on the dwell time distribution, the estimated entropy rate might not exist, but this will
never be a practical problem if typical kernel density estimates are used. The parameter
µs is simply the mean interevent interval out of state s: µs =

∫ ∞
0 tφ̂s(t)dt. We find the

distribution p̂(s) over internal states s by solving the linear Equations [10]:

p(s) = ∑
s′

µs′

µs

ns′→s
ns′

p(s′) . (6)

We use the MAP estimate of the model as described previously and estimate the
interevent interval density functions φs(t) using a Parzen-window estimate, better known
as a kernel density estimate, given that those proved to have lower mean-squared error
than the neural network density estimation technique in the previous subsection. The
smoothing parameter h was chosen to maximize the pseudo-likelihoods [32]. In other
words, we have to use neural network density estimation to choose the model so that we
have a parametric method that works with BIC. However, with the model in hand, we use
Parzen-window estimates to estimate the density for purposes of estimating entropy rate.
A full mathematical analysis of the bias and variance is beyond the present scope.

Figure 4 compares the model-free method (k-nearest neighbor entropy estimator)
and the model-based method (estimation using the inferred model and Equation (5)) as
a function of the length of trajectories simulated for the model. In Figure 4, the blue
data points describe what happens when the most likely (two-state) model is used for the
model-based plug-in estimator of Equation (5), whereas the black data points describe
what happens when the correct four-state model is used for the plug-in estimator. That
is, for the two-state model the estimate given by Equation (5) is based on the wrong model
and, hence, leads to a systematic overestimate of the entropy rate (nonzero bias) with
unreasonable confidence (low variance). When the correct four-state model is used for the
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plug-in estimator in Figure 4, the model-based estimator has much lower bias and variance
than the model-free method.

To efficiently estimate the past-future mutual information or excess entropy [37,45,46],
an important companion informational measure, requires models of the time-reversed
process. A sequel will elucidate the needed retrodictive representations of unifilar hidden
semi-Markov models, which can be determined from the “forward” unifilar hidden semi-
Markov models. This and the above methods lead to a workable excess entropy estimator.
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Figure 4. Model-free versus model-based entropy rate estimators. Synthetic dataset generated
from Figure 3 (top) with φA(t) = φD(t) as inverse Gaussians with mean 1 and scale 5 and with
φB(t) = φC(t) as inverse Gaussians with mean 3 and scale 2. The ground truth entropy rate from
the formula in [10] is 1.85 nats. In orange, the model-free estimator (combination of plug-in entropy
estimator and kNN [44] entropy estimators) described in the text. In blue, the model-based estimator
assuming a two-state model, i.e., the top left of Figure 3. In black, the model-based estimator assuming
a four-state model, i.e., the bottom left of Figure 3. Lines denote the mean bias (left) or standard
deviation (right) in entropy rate estimates, and error bars show estimated standard deviation in such.
The model-free method has much higher bias and variance than both model-based methods.

5.3. Improved Prediction with Causal States

A wide array of techniques have been developed for discrete-time prediction, as
described in the introduction. Using dwell times and symbols as inputs to a recurrent
neural network, for example, we can develop continuous-time techniques that build on
these discrete-time techniques. However, we will demonstrate that we gain a surprising
amount by first identifying continuous-time causal states.

The first prediction method we call predictive ANN (PANN) (risking confusion with the
ANN method for density estimation described earlier) takes as input (x−n+1, τ−n+1), . . . ,
(x0, τ+

0 ) into a feedforward neural network that is relatively shallow (six layers) and
somewhat thin (25 nodes). (Other network architectures were tried with little improvement.)
The network weights are trained to predict the emitted value x at time T later based on
a mean-squared error loss function. For this to work, the neural network must predict
the hidden state g from the observed data. This can be accomplished if the dwell-time
distributions of the various states are dissimilar. Increases in n can increase the network’s
ability to correctly predict its hidden state and thus predict future symbols. This assumes
sufficient data to avoid overfitting; here, n is chosen via cross-validation.

The second method, called RNN, takes (x−n+1, τ−n+1), . . . , (x0, τ+
0 ) as input to a long

short-term memory (LSTM) neural network [47,48]. (Though any recurrent neural network
could have been chosen). n was chosen by cross-validation. The LSTM is tasked to produce
an estimate of x at time T subject to a mean-squared error loss function, similar to the
PANN method.

For both PANN and RNN, a learning rate was chosen an order of magnitude smaller
than the learning rate that led to instability. In fact, a large number of learning rates that
were orders of magnitude smaller than the critical learning rate were tried.



Entropy 2022, 24, 1675 12 of 15

The third method is our Continuous-Time Bayesian Structural Inference algorithm, labeled
CT-BSI. It preprocesses input data using an inferred unifilar hidden semi-Markov model
so that each time step is associated with a hidden state g, a time since last symbol change
τ+

0 , and a current emitted symbol x0. In discrete-time applications, there is an explicit
formula for the optimal predictor in terms of the ε-machine’s labeled transition matrix.
However, for continuous-time applications, there is no closed-form expression, and so we
use a k-nearest neighbor estimate of the data a time T into the future. More precisely, we
find the k closest data points in the training data to the data point at present in the hidden
state space with the condition that g and x are identical, and estimate xT as the average of
the future data points in the training set. In the limit of infinite data in which the correct
model is identified, for correctly-chosen k, this method outputs an optimal predictor. We
choose k via cross-validation.

All of these methods were developed as though we were attempting regression, but
could easily be used for classification tasks. PANN and RNN could have a softmax output
layer for choosing the next symbol, while CT-BSI could choose the next symbol seen by
majority vote of the future of k nearest neighbors in the hidden state space. Note that while
the output might be unordered, the hidden state space can be ordered due to τ being a
real number.

The synthetic dataset is generated from Figure 3 (Left, bottom) with φA(t) = φD(t) as
inverse Gaussians with mean 1 and scale 5 and with φB(t) = φC(t) as inverse Gaussians
with mean 3 and scale 2. We chose these means and scales so that it would be easier, in
principle, for the non-uhsMm methods (i.e., PANN and RNN) to implicitly infer the hidden
state (A, B, C, and D). Given the difference in dwell time distributions for each of the
hidden states, such implicit inference is necessary for accurate predictions.

Figure 5 demonstrates that CT-BSI outperforms the feedforward neural network
(PANN) and the recurrent neural network (RNN). The corresponding mean-squared errors
for the three methods are shown there for two different dataset sizes. Note that mean-
squared error might not be calculable for processes whose observables are non-binary.
Different network architectures, learning rates, and number of epochs were tried; the re-
sults shown are typical. We employed a k-nearest neighbor estimate on the causal states (i.e.,
the uhsMm’s internal state) to predict the future symbol. Overall, CT-BSI requires little hy-
perparameter tuning and outperforms substantially more compute-intensive feedforward
(PANN) and recurrent neural network (RNN) algorithms.

The key here is trainability: It is difficult to train RNNs to predict these sequences,
even though RNNs are intrinsically more expressive than PANNs. As such, they perform
measurably worse. PANNs work quite well, but as shown in Figure 5 (Left), with small
amounts of data, PANNs can sporadically learn wildly incorrect mappings to future data.
This occurs at intermediate timescales: See the the marked increase in the size of the
confidence interval at T = 2× 10−2 in Figure 5 (Left). However, this also occurs at long
timescales with larger data sets: See the large increase in mean MSE from the superior per-
formance of CT-BSI at T = 100 in Figure 5 (Right). CT-BSI, in contrast, learns low variance
predictions with lower MSE than both RNNs and PANNs. The mean-squared errors for
CT-BSI are comparable to an approximation of the optimal mean-squared error based on a
discrete-time approximation of the continuous-time unifilar hidden semi-Markov model.
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Figure 5. Prediction. Mean-squared prediction error for the data point a time T away based on
training with 500 (Left) and 5000 (Right) data points. 3000 epochs were used to train the ANN. 68%
confidence intervals are shown. The data generating uhsMm is that in Figure 3 (Left, bottom). The
CT-BSI method infers the internal state of the unifilar hidden semi-Markov model; the PANN method
uses the last n data points (xi, τi) as input into a feedforward neural network; and the RNN method
uses the past (xi, τi) as input to an LSTM.

6. Discussion

We introduced the Continuous-Time Bayesian Structural Inference (CT-BSI) algo-
rithm to infer the causal states [5] of continuous-time, discrete-event processes, showing
that it outperforms suitably generalized neural network architectures. This leveraged
prior groundwork on discrete-time, discrete-event processes [10] and Bayesian Structural
Inference for processes generated by finite-state HMMs [8]. This led to a natural new
entropy-rate estimator that uses a process’ causal states and a new predictor based on
causal states that is more accurate than competitors. Finally, and key to applications, com-
pared to the neural network competitors CT-BSI’s inferred causal states and ε-machine give
an explicit and interpretable mechanism for a process’ generator. Note that these tools can
apply even when there is no ordering on the observed symbols.

The major challenge with applying these tools is model mismatch—the true or a
closely-related model might not be inferred. This can lead to inaccurate estimations of the
entropy rate and also to inaccurate predictions. However, as discussed, if sufficient data is
available, a more complex model will be favored, which might be closer to ground truth.
Additionally, we conjecture that the processes generated by unifilar hidden semi-Markov
models are dense in the space of all possible stationary continuous-time, discrete-event
processes. If true, the restriction to unifilar models is not a severe limitation, as there
will always be nearby unifilar model with which to estimate and predict. A second
issue—which also plagues the discrete-time, discrete-event Bayesian structural inference
algorithm [8]—is searching over all possible topologies of unifilar hidden semi-Markov
models [49]. Circumventing both of these challenges suggests exploring nonparametric
Bayesian approaches [13].

The new inference, estimation, and prediction algorithms can be used to analyze
continuous-time, discrete-event processes—a broad class spanning from seismic time series
to animal behavior—leading to reliable estimates of the intrinsic randomness of such
complex infinite-memory processes. Future efforts will delve into improved estimators for
other time series information measures [50], using model selection criteria more accurate
than BIC to identify MAP models, and enumerating the topology of all possible uhsMm
models for nonbinary alphabets [49]. In addition, future work will compare the predictive
features of Ref. [20] to the predictive features inferred here.
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