
Citation: Zhao, J.; Zhao, T.; Liu, N

Fractional-Order Active Disturbance

Rejection Control with Fuzzy

Self-Tuning for Precision Stabilized

Platform. Entropy 2021, 24, 1681.

https://doi.org/10.3390/e24111681

Academic Editor: Yong Deng

Received: 9 October 2022

Accepted: 16 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Fractional-Order Active Disturbance Rejection Control with
Fuzzy Self-Tuning for Precision Stabilized Platform
Jianjian Zhao , Tao Zhao and Nian Liu *

College of Electrical Engineering, Sichuan University, Chengdu 610065, China
* Correspondence: liu-nian@scu.edu.cn; Tel.: +86-139-8193-5993

Abstract: In this paper, a novel fractional-order active disturbance rejection control with fuzzy self-
tuning method (FSFOADRC) is proposed for photoelectric tracking system (PTS). Firstly, aiming at the
internal uncertainty of PTS and external disturbance, a fraction-order extended state observer (FOESO)
is designed, and the FOESO can transform the plant into a simple form, which greatly simplifies
the mathematical model. Secondly, a fuzzy regulator is applied to the proportion–differentiation
controller (PD), increasing the flexibility and adaptivity of the controller. In addition, the stability
of the whole control system can be guaranteed. Eventually, numerical comparative simulations are
implemented to verify the feasibility and superiority of the proposed method. Compared with the
integral-order active disturbance rejection control (IOADRC), fractional-order active disturbance
rejection control (FOADRC) without the fuzzy regulator and proportion–integration–differentiation
(PID) controller, the proposed method performs better with faster response, smaller overshoot, and
stronger disturbance suppression capability.

Keywords: photoelectric tracking system; fractional-order active disturbance rejection control; fuzzy
regulator; disturbance rejection

1. Introduction

A photoelectric tracking system is an integrated system with a combination of nu-
merous technologies including optics, mechanics, hardware communication, servo control,
image processing, and so on, which is widely used in aerospace, ballistic measurement, as-
tronomical observation, laser communication, and quantum communication [1–4]. With the
expansion of the application field of PTS, it is gradually installed on the motion platform.
Therefore, higher requirements are proposed for the control algorithms acting on PTS,
incorporating more adaptability [5], more intelligence [6], and more maneuverability [7,8].
A PID controller is a classical controller which is broadly applied in most practical control
circumstances. However, due to its limitations such as manual adjustment of control pa-
rameters, poor anti-interference ability, and inability to solve uncertainty problems, it is
not suitable for PTS, which urgently demands high tracking accuracy, strong disturbance
suppression capability, and robustness. Hence, it is necessary to develop more intelligent
and advanced control strategies with more desired control performance.

After research in recent years, a large number of scholars have attempted to perform
progressive control algorithms in PTS. For instance, an improved feedforward control
strategy to compensate some time-delay errors was developed for the PTS in [9]. For the
problem of disturbances in the working process, an improved control algorithm with the
extended state observer based on disturbance frequency adaption was proposed [10]. In ad-
dition, a modified smith predictor control scheme was proposed in [11], which enhances
the tracking ability of a photoelectric tracking platform. A wide-bandwidth control strategy
was employed to improve the closed-loop bandwidth of PTS in [12]. However, these exist-
ing studies have the following common problems. Firstly, the controllers are based on an
ideal assumption field and the parameters of the controller are fixed, resulting in undesired
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adaptability, flexibility, and real-time performance. Secondly, these control methods are too
complex. Thus, some problems, such as large amount of calculation and excessive number
of parameters, lead to excessive and unnecessary cost and are difficult to realize in actual
engineering environments. Thirdly, the extant control methods rely too much on accurate
mathematical models. When the model parameters change to a certain extent, the control
effect becomes unsatisfactory, and the practicability and universality are also poor.

Active disturbance rejection control (ADRC) is an excellent and prevalent control
paradigm proposed by Han [13,14]. It is characterized by a strong ability to deal with un-
known uncertainties and suppress various external disturbances. The basic idea of ADRC
is to create a new state, i.e., “total disturbance”, and uses an extended state observer (ESO)
to observe and estimate the total disturbance, so that the feedback control becomes more
robust and less dependent on the accurate mathematical model [15]. Then, through compen-
sating the total disturbance, the original complicated and uncertain plant dynamics can be
simplified into a cascaded integral form, thus achieving the unification of the model. How-
ever, ADRC still has some disadvantages, such as too many parameters, complex tuning
process, difficult theoretical analysis, and so on. Therefore, Gao [16–18] a applied linear con-
troller and linear extended state observer (LESO) to replace the original nonlinear controller
and ESO in ADRC, which greatly simplifies ADRC to linear active disturbance rejection
control (LADRC). LADRC possesses the characteristics of simple structure, satisfactory anti-
interference ability, and relatively few parameter settings. Accordingly, these properties
make LADRC more practical and realistic and greatly promote the in-depth development
of ADRC theory. These studies [19–21] demonstrate that, through theoretical and experi-
mental proof in frequency domain and time domain, LADRC achieves high performance
and strong robustness while simplifying the structure. Although ADRC and LADRC have
achieved great success in their respective fields, their inherent integer-order characteristics
still limit their application in the occasions with various fractional-order features.

As an extension of integer-order calculus, fractional-order calculus (FOC) plays an
extremely significant role in mathematics. It has a history of more than 300 years since
it was proposed. Fractional-order control, a new research direction, combines FOC as an
essential tool with other control methods [22,23]. Due to the addition of multiple adjustable
parameters, the degree of freedom and flexibility of the controller are enhanced, making
the control performance more likely to be improved [24], so it has received extensive
attention in recent years. For example, scholars [25] proposed a fractional-order internal
model controller for fractional-order process model with time delay, which shows that a
fractional order controller can obtain more accurate and better results. Ref. [26] proposed
a fractional-order nonsingular terminal super-twisting sliding mode control method for
a micro-gyroscope with unknown uncertainty, which proves that this control scheme,
compared with the integral-order one, can implement better tracking property and estimate
the unknown model more accurately. In addition, a radial basis function neural network-
based fractional-order control method was proposed for the purpose of improving the
control performance for a high-speed train with uncertain model and actuator failures [27].
In addition, the fuzzy regulator, as a intelligent element, which integrates expert experience
and effectively uses semantic information to imitate the reasoning process of humans to
accurately express fuzzy concepts with mathematical expressions, has a wide application
in many fields [28–31]. Since the parameter settings of the controller seriously affect the
control performance of a PTS system, it is possible to boldly try to use the fuzzy regulator to
adjust the parameters in the fractional-order control methods adaptively, so as to maintain
the high-precision tracking ability and high anti-interference capability in real time.

Accordingly, inspired by the above problems and thoughts, in this paper, a novel
fractional-order active disturbance rejection control with fuzzy self-tuning strategy is
proposed for a PTS system requiring high-precision control properties. Similar to the
traditional IOADRC, FOADRC can simplify the system into a unified form by utilizing
the thought of total disturbance as well. Additionally, FOADRC does not rely on accurate
mathematical models, and has a strong ability to deal with system uncertainties. In addition,
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it takes advantage of FOC, which further improves the control performance of the PTS, such
as tracking performance and disturbance suppression capacity. Moreover, the flexibility and
adaptability of the proposed method can be greatly maintained by the addition of the fuzzy
regulator, and the stability analyses of both FOESO and the whole system are discussed.
Finally, numerous comparative simulations are carried out to show the superiority and
effectiveness of the proposed method.

The major contributions of this research can be summarized as follows:

(1) A novel fractional-order active disturbance rejection control with fuzzy self-tuning
is proposed and firstly applied in a photoelectric tracking system, and the bounded-
input and bounded-output stability can be proved.

(2) Using the semantic information of the fuzzy regulator and expert knowledge, the con-
troller parameters of FSFOADRC can be adjusted flexibly and in real time, avoid-
ing the disadvantage of manually adjusting the parameters, and greatly increasing
the adaptability.

(3) Simulation results show that the proposed control structure can restrain external
disturbances and deal with internal uncertainties of the system, and the control
performances including transient process and disturbance rejection capability are
superior to IOADRC and FOADRC without fuzzy regulator.

The rest of this paper is organized as follows: Section 2 gives a brief description
on one of the classical PTSs. Section 3 demonstrates the structure and design process of
FSFOADRC. The proof of stability is given in Section 4. Section 5 performs the numerical
simulation. Finally, Section 6 presents the conclusion.

2. Mathematical Model of Precision Stabilized Platform

The precision stabilized platform (PSP) is a typical PTS system and its schematic dia-
gram is shown in Figure 1. The main components of a precision stabilized platform contain
a controller, driver modules, a target detector, and a fine pointing mirror. The specific
working process is that the fine pointing mirror reflects the beam emitted from light source
to the detector, and then the controller produces the rotation angle required by the mirror.
After that, through D/A conversion, the output of the controller drives the motor connected
to the mirror. The ultimate control objective is to quickly rotate the mirror so that the beam
can always be kept at the center of the detector.

Motor

Base

Fine Pointing Mirror
Light Source

Detector

ControllerDriver

Figure 1. The schematic diagram of a precision stabilized platform.

In practical engineering, since the frequency characteristics from voltage input to the
angle output of the fine pointing mirror can be approximated into a typical resonance
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element, the model in low and medium frequency can be expressed as a second-order plant,
and its transfer function is described in (1) as follows.

Gnom(s) =
Y(s)
U(s)

=
b

s2 + a1s + a0
(1)

where U is the control signal, Y is the output, and b, a1, and a0 are nominal parameters.
Through analyzing and fitting the frequency response of the plant, the nominal values

of these parameters can be identified. However, the parameters of the model change
randomly due to some factors, including self attitude change, base vibration, harsh working
environment, and so on, which can be seen as the internal uncertainty of the system.

3. Structure of the Proposed Method

The overall control structure of FSFOADRC is displayed in Figure 2. Specifically,
FSFOADRC constructs an FOESO, which can both well solve the internal uncertainties of
the system and suppress external disturbances. In addition, a fuzzy regulator is applied to
adaptively adjust the parameters of the controller, so that the control performances of the
system, such as overshoot, settling time, rise time, and so on, are further improved.

PSP PD 

Controller

FOESO

𝟏

𝒃𝟎

Self-fuzzy 

tuning
𝒅

𝒅𝒕

Reference 

Signal (𝜽𝒓𝒆𝒇) 

+ --+

External 

Disturbance (𝝎 )

+
+

∆𝒌𝒑 ∆𝒌𝒅

𝒛𝟑

𝒖𝟎 𝒖 𝒚

Figure 2. The control structure of FSFOADRC.

3.1. Common Definitions of Fractional-Order Derivation

Generally, the common definitions of fractional-order derivation are Riemann–Liouville
definition (R–L), Grünwald–Letnikov definition (G–L), and Caputo definition. The respec-
tive mathematical expressions are as follows.

(1) R–L definition:

RL
0 Dα

t f (t) =
1

Γ(n− α)

(
d
dt

)n ∫ t

0

f (τ)dτ

(t− τ)α−n+1 (2)

(2) G–L definition:

GL
0 Dα

t f (t) = lim
k→0

k−α
[b]

∑
j=0

(−1)j
(

p
j

)
f (t− jk) (3)

In (2) and (3), α is the order and n− 1 < α < n. When α > 0, 0Dα
t f (t) means the

α—order differential of integrand f (t). When α < 0, 0Dα
t f (t) represents the −α—

order integral of integrand f (t), and Γ(∗) is the gamma function. k is the step size of
calculation. [b] is the rounding function of b.

(3) Caputo definition:

C
0 Dα

t f (t) =
1

Γ(m− α)

∫ t

0

f (m)(τ)dτ

(t− τ)α−m+1 (4)
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where m− 1 ≤ α ≤ m, m ∈ N, Γ(m− α) =
∫ +∞

0 e−ttm−α−1dt is the expression of the
gamma function.

In this paper, R–L fractional-order definition form is adopted.

3.2. Design Procedures of FSFOADRC

According to Section 2, the transfer function of the PSP is expressed in (1). Then,
transforming (1) into the differential equation

ÿ = −a1ẏ− a0y + bu + ω (5)

where ω is the external disturbance; then, introducing the fractional-order derivative item

y(2α) = −ÿ− a1ẏ− a0y + ω + y(2α) + bu = feq + b0u (6)

where b0 ≈ b and feq = −ÿ− a1ẏ− a0y + ω + y(2α) is the total disturbances containing the
unknown internal dynamics −ÿ− a1ẏ− a0y, external disturbance ω, and fractional-order
derivative item y(2α), 0 < α < 1.

3.2.1. FOESO Design

FOESO introduces the fractional-order derivative operator on the basis of ESO. In ad-
dition to observing external disturbances, it can also observe the internal uncertainties of
the system, including fractional-order characteristics.

Let c1 = y, c2 = y(α), c3 = feq, v = f (α)eq , and the state-space representation of (6) is

c1
[α]

c2
[α]

c3
[α]

 =

0 1 0
0 0 1
0 0 0

c1
c2
c3

+

 0
b0
0

u +

0
0
1

v

y =
[
1 0 0

]c1
c2
c3


(7)

Thus, utilizing the design procedures of the state observer in linear system theory [32],
an FOESO can be devised as

z1
[α]

z2
[α]

z3
[α]

 =

0 1 0
0 0 1
0 0 0

z1
z2
z3

+

 0
b0
0

u + L(y− ŷ)

ŷ =
[
1 0 0

]z1
z2
z3


(8)

where zi (i = 1, 2, 3) is the state variable of FOESO. α(0 < α < 1) is the fractional order of
FOESO. L = [l1, l2, l3]

T is the observer gain vector, whose value can be designed as l1 = 3ωo,
l2 = 3ω2

o , l3 = ω3
o according to the reference [17], and ωo is the bandwidth of FOESO.

3.2.2. Fuzzy Self-Tuning PD Controller Design

Since the total disturbances feq can be estimated and compensated via FOESO, and as
shown in Figure 2, the control law can be set as

u =
u0 − z3

b0
(9)

Substituting the above equation into (6), a simple fractional-order integral series form
can be obtained, that is

y(2α) ≈ u0 (10)
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While the FOESO can estimate the total perturbation exactly, through Laplace trans-
form, (10) can be written as

Peq(s) =
Y(s)
U0(s)

=
1

s2α
(11)

According to (10), the original plant is equivalent to a cascaded fractional-order inte-
grator. As the compromise between the stability and the dynamic performance, the phase
margin of the plant should preferably be determined as approximately 30° in practical
engineering, thus, α in FOESO is selected as 0.75, and a conventional PD controller can
keep the system under control and stable. The transfer function of a PD controller is

CPD = kp + kds (12)

where kp and kd are proportional and derivative gains, respectively.
However, the PD controller needs manual parameter setting, so the adaptability and

flexibility are not satisfactory. In addition, in practical engineering, if the parameters of
the model change to some extent, the control performance will be greatly reduced. Hence,
for the purpose of achieving desired transient performance and disturbance rejection ability,
a fuzzy regulator is designed to intelligently adjust the proportional and derivative gains
of the PD controller.

The working diagram of the fuzzy regulator is shown in Figure 3. It makes use of
expert knowledge, semantic information, etc., through the fuzzy system to adjust the
fixed parameters in the system appropriately and adaptively. It can imitate human fuzzy
reasoning and decision-making process in behavior. In general, the main components
include fuzzier, database, fuzzy inference engine, rule base, defuzzifier, and so on.

Input 
DefuzzierFuzzier

Interference 

Engine  

Output 

Database Rule Base

Imitating the reasoning process of human

Figure 3. The working diagram of the fuzzy regulator.

According to Figure 2, error and its derivative are the input linguistic variables of the
fuzzy regulator, and ∆kp and ∆kd are the output variables. We define their fuzzy sets as

e, ė, ∆kp, ∆kd = {NB, NS, ZE, PS, PB} (13)

Common membership functions are trimf, Gaussmf, gbellmf, zmf, and so on. In this
study, the Gaussian membership is chosen, which is shown in Figure 4, and the range
of membership function can be selected flexibly according to different control situations.
Moreover, the form of the fuzzy rules is given in (14).

RULE i : IF e is Hi
e and ė is H j

ė,

THEN ∆kp is ℵo
kp

and ∆kd is ℵv
kd

(14)
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where Hi
e, H j

ė, and ℵo
kp

, ℵv
kd

(i, j, v, o = 1, 2, · · · , 5) are the fuzzy sets of input variable and
output variable, respectively, and the table of fuzzy rules used in Section 5 is shown in
Table 1. The basis of determining these fuzzy rules is as follows. For kp, the selection of
kp depends on the response speed of the system. Increasing kp can improve the response
speed and reduce the steady-state error. However, excessive kp will cause large overshoot,
or even make the system unstable. Decreasing kp can reduce overshoot and improve
stability, but too small kp will slow down the response speed and prolong the settling time.
Therefore, in the initial stage of regulation, a relatively large kp should be appropriately
taken to improve the response speed, while in the middle stage of regulation, a smaller
kp should be taken to make the system have a smaller overshoot and ensure a certain
response speed. At the later stage of the adjustment process, kp should be adjusted to a
larger value to reduce the static error and improve the control accuracy. For kd, the selection
of kd has a great influence on the dynamic characteristics. If kd is too large, it will result in a
long settling time. If kd is too small, it will lead to an increase in overshoot. According to
actual process experience, in order to obtain fast response speed and avoid the possible
differential oversaturation in the initial stage, which makes the control effect exceed the
allowable range, kd is taken as medium. After that, in order to avoid oscillation near the
reference input and take the anti-interference performance of the system into consideration,
the value of kd is very important. When the ė is small, kd is relatively large, and when ė
is large, kd is relatively small. Thus, the fuzzy rules of ∆kp and ∆kd can be designed. For
instance, if e is NB and ė is NB, then ∆kp is PB and ∆kd is PS.

Singleton fuzzifier and product inference engine are applied and the output of the
fuzzy system is calculated by the method of center of gravity.

Table 1. The fuzzy rules.

e
ė

NB NS ZE PS PB

NB PB PS PB ZE PB ZE PS ZE ZE PS
NS PB NB PS NB PS NS ZE ZE NB PS
ZE PB NB PS NB ZE NS NS ZE NB PS
PS PS NB ZE NS NS NS NS ZE NB PS
PB ZE PS NS ZE NS ZE NB ZE NB PS

0 1 2 3

e

0

0.5

1

D
e

g
re

e

0 1 2 3

ec

0

0.5

1

D
e

g
re

e

NB NS ZE PS PB

Figure 4. The membership function.

4. Stability Analysis

In this section, the stability of FOESO and the stability of the whole system are
discussed, respectively.



Entropy 2021, 24, 1681 8 of 17

4.1. Stability of FOESO

Let state error be ei
(α) = ci

(α) − zi
(α), i = 1, 2, 3 and subtract (7) from (8). The state-

space equation of state error can be written ase1
(α)

e2
(α)

e3
(α)

 =

−l1 1 0
−l2 0 1
−l3 0 0

e1
e2
e3

+

0
0
1

v (15)

Hence, the characteristic polynomial of (15) is

D(s) = s3α + l1s2α + l2sα + l3 = (sα + ωo)
3 (16)

Let sα = ω, so (16) can be written as

D(s) = (ω + ωo)
3 (17)

All poles are set at −ωo and 0 < α < 1, and the bandwidth ωo is always positive, so
FOESO is bounded-input and bounded-output stable (BIBO).

4.2. Stability of the Whole System

Lemma 1. An ordinary input/output relation (with only integer derivatives) can be written in a
polynomial representation

P(σ)ξ = Q(σ)u

y = R(σ)ξ
(18)

where u ∈ R
−
m is the control, ξ ∈ R

−
n is the partial state, and the y ∈ R

−
p is the output; P, Q, and

R are polynomial matrices in the variable σ of dimensions
∼
n × ∼n,

∼
n × ∼m and

∼
p × ∼n, respectively. σ

can be seen as the symbol of the usual derivative sα, when all initial conditions are zero.

The proof of lemma above is given in [22].
If the triplet (P, Q, R) of polynomial matrices is minimal, system (18) is bounded-input

and bounded-output stable i f f det(P(σ)) 6= 0, ∀σ, |arg(σ)| < πα
2 .

Theorem 1. If choosing appropriate parameters α, kp, and kd to guarantee |arg(ωi)| > λ π
2 , where

ωi is the ith root of equation ω2pα + kp + kdωp = 0, λ = 1
p , and p is a positive integer, then when

t→ ∞ , the whole closed-loop system is bounded-input and bounded-output stable (BIBO).

Proof of Theorem 1. The characteristic equation of the whole system is

Gcl(s) = 1 + Cpd(s)Peq(s) = s2α + kp + kds = 0 (19)

Notate λ = 1
p , ω = sλ, (19) can be written as

ω2pα + kp + kdωp = 0 (20)

According to Lemma 1,
∼
m =

∼
n = 1, thus

|arg(ωi)| > λ
π

2
(21)

Accordingly, the whole control system is BIBO.

5. Numerical Simulation

In this section, a number of comparative simulations designed in MATLAB are carried
out to demonstrate the superior performance controlled by the proposed method. Three
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relevant and prevalent control methods, i.e., IOADRC, FOADRC, and PID controller, are
selected for comparison. The parameters of the nominal model of PSP are determined by
some specific methods and can be expressed in (22).

Gnom(s) =
Y(s)
U(s)

=
4336.7

s2 + 32.67s + 1668
(22)

where b = 4336.7, a1 = 32.67, and a0 = 1668.
However, due to the influence of interference and special working environment,

the parameters b, a1, and a0 often change in a random range during the working process,
that is, some uncertainties ∆b, ∆a1, and ∆a0 are generated, which can be considered as
internal uncertainty.

In general, in practical engineering situations, in order to ensure the stability of the
system, the phase margin of the system should be equal to or greater than 30◦, and owing to
the particularity of PSP, its crossing frequency cannot be set very large. Therefore, based on
the engineering experience, the simulations in this paper set the phase margin and crossing
frequency of the system to be 35◦ and 10 rad/s, respectively. According to these frequency-
domain indices, the parameters of the PD controller can be designed and determined. Thus,
the controllers of IOADRC and FOADRC are shown in (23) and (24), respectively, and the
nominal controller of the proposed method is the same as that of FOADRC.

GIOADRC(s) = 167.2 + 13.46s (23)

GFOADRC(s) = 254.8 + 15.79s (24)

The Bode plot of the systems controlled by IOADRC and FOADRC, which meets the
predetermined frequency indices, is shown in Figure 5. According to Figure 5, the low-
frequency band of FOADRC is higher than that of IOADRC, indicating that FOADRC has
better steady-state performance. In addition, the slope of the middle-frequency band of
FOADRC is slightly smaller than that of IOADRC, representing that the transient perfor-
mance of FOADRC is better than that of IOADRC. However, in the high-frequency band,
FOADRC is slightly higher, implying that the effect of suppressing high-frequency noise is
slightly worse, but the impact in actual engineering is acceptable.

Bode Diagram

Frequency  (rad/s)

10 10 100 101 102 103

P
h

a
s
e
 (

d
e
g

)

0

50

100

150

M
a
g

n
it

u
d

e
 (

d
B

)

IOADRC

FOADRC

Figure 5. The Bode plot.

5.1. Comparison with IOADRC

Firstly, IOADRC is chosen for comparison. A step signal whose value is 1000 is set as
the reference input signal, and the control responses of IOADRC and the proposed method
are shown in Figure 6. In addition, the transient performance indices controlled by these
two methods, including overshoot, settling time, and peak time, are listed in Table 2.
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Figure 6. The responses of IOADRC and the proposed method.

Table 2. Comparison of the transient performance between the proposed method and IOADRC.

Method Overshoot (%) Settling Time (∆ = ±5%, s) Peak Time (s)

FSFOADRC 12.4 0.252 0.1895
IOADRC 35.4 0.297 0.219

As shown in Figure 6 and Table 2, qualitatively, the response of the proposed method
is more desired than that of IOADRC. Specifically and quantitatively, the overshoots
of the proposed method and IOADRC are 12.4% and 35.4%, respectively. Compared
with the counterpart, the overshoot of the proposed method has dropped by about 23%,
which is a great declination. In addition, the response of IOADRC crosses the reference
signal four times during the period of 0.1 s to 0.6 s, but the response of the proposed
method descends immediately and tracks the reference signal smoothly after reaching
the top, without unnecessary vibration, indicating that the proposed method has a
smoother dynamic process and smaller oscillation range and number than IOADRC.
Moreover, the settling time and peak time of the proposed method are 0.252 s and 0.1895
s, respectively, which are faster than the 0.297 s and 0.219 s of IOADRC. The shorter
settling time and peak time represents that the proposed method is more sensitive to
variable signals and can track the reference input signal more rapidly. In addition, both
methods can eventually track the reference input signal with minimal steady-state error.
Accordingly, in terms of the transient performance, the proposed method, compared with
IOADRC, has smaller overshoot, faster response speed, and smaller oscillation times.

In addition to transient performance, disturbance rejection ability is also an exceed-
ingly crucial indicator for PSP. Since the step disturbance is a common, nonlinear, and
abrupt disturbance, and while it can be suppressed, other perturbations, such as slope
perturbation, acceleration perturbation, and so on, can also easily be restrained. Thus,
on the basis of the above simulations, a step disturbance whose value is 100 is added at
1.5 s as an external disturbance to validate the superior anti-disturbance capacity of the
proposed method. The responses controlled by IOADRC and the proposed method are
displayed in Figure 7.
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Figure 7. The responses of IOADRC and the proposed method under the step disturbance.

As shown in Figure 7, after the system is disturbed, the proposed method can quickly
recover to the steady state in about 1.7 s without crossing the reference input again. On the
contrary, IOADRC crosses the reference signal and slowly returns to the stable state at
about 1.85 s. In addition, the oscillation range of the proposed method is about 900 to 1013,
while that of IOADRC is 900 to 1037, indicating that the proposed method can quickly
respond to external adverse factors and suppress interference. Therefore, in the case of step
disturbance, the proposed method can respond faster and more smoothly on IOADRC,
which proves that FSFOADRC has stronger anti-interference ability than IOADRC.

To sum up, when applying the fractional-order calculus, the control effect containing
the transient performance and disturbance suppression capability is superior to that using
integral calculus.

5.2. Comparison with FOADRC

In this subsection, FOADRC is performed for comparison. In order to ensure the
fairness and effectiveness of the simulation, the initial parameters of the controller in the
proposed method are the same as those of FOADRC.

Similar to the above part, the transient performance is the first comparative indicator,
and the reference input signal is the same, that is, a step signal whose value is 1000.
The responses controlled by FOADRC and the proposed method are shown in Figure 8,
and the variation of ∆kp and ∆kd are shown in Figures 9 and 10, respectively. In addition,
the quantitative analysis is listed in Table 3.

Table 3. Comparison of the transient performance between the proposed method and FOADRC.

Method Overshoot (%) Settling Time (∆ = ±5%, s) Peak Time (s)

FSFOADRC 12.4 0.252 0.1895
FOADRC 14 0.255 0.1965

According to Figure 8, it is noted that the transient performance of FOADRC and
the proposed method is close. However, when the fuzzy regulator is added to adjust
the parameters adaptively, the overshoot of the proposed method response is reduced by
1.6% under the condition that the settling time is basically unchanged. In addition, at the
beginning of the response, the proposed method is faster, which can be seen from the peak
time (the peak time of the proposed method is 0.1895 s, while the peak time of FOADRC
is 0.1965 s, a decrease of approximately 0.07 s). Accordingly, the addition of the fuzzy
regulator can improve the transient performance to some degree.
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Figure 8. The responses of FOADRC and the proposed method.
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Figure 10. The variation of ∆kd.
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Moreover, the disturbance rejection ability also should be compared. The simula-
tion condition is the same as well, i.e., a step disturbance as the external whose value is
100 perturbation is added at 1.5 s, and the responses are shown in Figure 11.
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Figure 11. The responses of FOADRC and the proposed method under the step disturbance.

As shown in Figure 11, it is apparent that the proposed method can return to the
reference input signal while the system suffers from the impact of external disturbance,
since the response of the proposed method is in front of that of FOADRC. Additionally,
compared with FOADRC, the maximum oscillation value of the proposed method is
decreased by about 5%. The certain improvement of both the transient performance and
disturbance rejection capacity indicates that the fuzzy regulator exactly exerts a positive
influence on the whole system.

5.3. Comparison with PID Controller

In addition to comparing with IOADRC and FOADRC, the PID controller, as one of
the most widely used and classic controllers in practical engineering, is implemented as
another comparison method to reflect the advantages of the proposed method in this paper,
and the simulation conditions are the same as well. For the fairness and effectiveness of
the simulation, the frequency indices of the system controlled by the PID controller should
be the same, that is, the phase margin and the crossing frequency are approximately 35◦

and 10 rad/s, respectively. The Bode plot is shown in Figure 12. In addition, according to
the frequency-domain performance properties, the PID controller can be calculated and
expressed as

GPID(s) = 80.45 +
4.87

s
+ 0.51s (25)

The comparison of transient response is shown in Figure 13, and the corresponding
transient control performances are listed in Table 4.
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Figure 12. The Bode plot of the system controlled by the PID controller.
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Figure 13. The transient responses of the proposed method and PID controller.

Table 4. Comparison of the transient performance between the proposed method and PID.

Method Overshoot (%) Settling Time (∆ = ±5%, s) Peak Time (s)

FSFOADRC 12.4 0.252 0.1895
PID 17.7 0.427 0.282

From Figure 13 and Table 4, it is obvious that the overshoot of the proposed method,
i.e., 12.4%, is much smaller than that of the PID controller, i.e., 17.7%. In addition, the rapid-
ity of the system response controlled by the proposed method is also better than that of
the PID controller, in which the settling time and peak time of PID controller are 0.427 s
and 0.282 s, respectively. It also demonstrates that compared with the fixed controller
parameters, adding fuzzy self-tuning can make the controller more flexible and adaptive
and changes the parameters rapidly according to the tracking input to achieve the aim of
obtaining excellent transient performance.

Moreover, the simulation of comparing disturbance suppression ability between the
proposed method and PID controller is performed. The result is displayed in Figure 14.
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Figure 14. The responses of PID and the proposed method under the step disturbance.

It can be seen from Figure 14 that the response controlled by the proposed method
can reach the steady state at approximately 1.7 s, while that of the PID requires 0.2 s more
to reach it under the condition of disturbance,and the vibration range of the response
controlled by the proposed method when restraining disturbance, i.e., approximately
from 900 to 1015, is apparently smaller than that of the PID controller, i.e., approximately
from 900 to 1019. This result indicates that the anti-disturbance capability of the PID
controller is indeed inferior to that of the proposed method which applies fuzzy self-tuning
and FOADRC.

Finally, the integral time absolute error index (ITAE), which can comprehensively
reflect the overall control effect of the system, of each method is listed in Table 5. Obviously,
the proposed method has the smallest ITAE value.

Table 5. ITAE comparison of several methods.

IOADRC FOADRC PID FSFOADRC

JITAE 4788.15 3943.56 4224.49 3870.32

Overall, through a large number of previous simulations and data, it is verified
that the proposed method can achieve a more rapid and smooth transient process and
possesses stronger anti-disturbance property compared with IOADRC, FOADRC, and the
PID controller.

6. Conclusions

Aiming at the PSP with internal uncertainty and external disturbance, an FOADRC
control method based on fuzzy self-tuning is proposed in this paper. First of all, the FOESO
can not only observe the internal state and total disturbance of the system, but also simplifies
the original complex plant, which makes the whole system simpler and the controller
easier to design. Secondly, using semantic information and prior knowledge, the fuzzy
regulator simulates the human reasoning process and further improves the adaptivity
and flexibility. Finally, numerous comparative simulations are carried out to validate the
feasibility and effectiveness of the proposed method, namely, the transient performances
including overshoot, settling time, and so on, and the anti-interference capacity of the
proposed method is superior to IOADRC, FOADRC, and the classic PID controller.
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