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Abstract: We present a constructive paradigm to derive thermodynamically consistent models
coupling the bulk and surface dynamics hierarchically following the generalized Onsager principle.
In the model, the bulk and surface thermodynamical variables are allowed to be different and the
free energy of the model comprises the bulk, surface, and coupling energy, which can be weakly or
strongly non-local. We illustrate the paradigm using a phase field model for binary materials and
show that the model includes the existing thermodynamically consistent ones for the binary material
system in the literature as special cases. In addition, we present a set of such phase field models for a
few selected mobility operators and free energies to show how boundary dynamics impart changes
to bulk dynamics and vice verse. As an example, we show numerically how reactive transport on the
boundary impacts the dynamics in the bulk using a reactive transport model for binary reactive fluids
by adopting a structure-preserving algorithm to solve the model equations in a rectangular domain.

Keywords: thermodynamically consistent model; binary phase field model; dynamic boundary
conditions; energy dissipation

1. Introduction

Thermodynamically consistent models refer to the ones derived from thermodynam-
ical laws and principles. In particular, they obey the second law of thermodynamics.
The generalized Onsager principle (GOP) is a protocol in which the Onsager linear re-
sponse theory combined with the equilibrium maximum entropy principle is extended to
describe thermodynamically consistent models comprising both reversible and irreversible
processes [1–4]. The generalized Onsager principle warrants the second law of thermody-
namics in the form of the Clausius–Duhem inequality and has proven to be an effective
theoretical framework for developing thermodynamically consistent models at various time
and length scales [3,5–8]. In the past, the generalized Onsager principle and the equivalent
thermodynamical second law has been primarily used to derive dynamical equations in
the bulk while boundary conditions are largely trivialized by assuming adiabatic, static
boundary conditions, or periodic boundary conditions. In many problems where the scale
in the bulk matches the scale in the boundary in terms of dynamics, the dynamics at the
boundary can no longer be overlooked or trivialized. For material systems confined in a
compact domain with active boundary dynamics, materials properties in the bulk and those
on the boundary surface may differ significantly. As a result, different order parameters
may need to be introduced to best describe their respective dynamics. This is an issue that
has not been paid much attention in the literature. In this study, we revisit these issues
and present a general, hierarchical framework to derive thermodynamically consistent
models for material systems with coupled dynamics in the bulk and at the boundary using
the constructive, generalized Onsager principle [1]. We illustrate the gist of the approach
by deriving thermodynamically consistent phase field models and consistent boundary
conditions for binary materials in a smooth domain owing to the popularity of phase field
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models in the literature. However, the theoretical framework is by no means limited to the
phase field models.

Phase field modeling is one of the powerful and versatile modeling paradigms for
studying multi-phasic materials in domains with complex interfacial geometries and com-
plex interfacial phenomena between distinct phases (immiscible mixtures) or even miscible
mixtures [9–11]. It is especially useful and effective when handling dynamical phase
boundaries in multi-phasic materials involving topological changes compared to other
methods, such as front tracking methods, level-set methods, volume-of-fluid methods,
etc. [11–13]. By design, it is for diffuse interfaces with certain interface thicknesses in
which complex interfacial dynamics prevail. A quality phase field model should be able to
capture well-known sharp interface conditions (e.g., Gibbs–Thomson condition) in the case
of vanishing thickness of the interface in immiscible mixtures [14,15]. This requires one to
be mindful when deriving the free energy of the system in the phase field model so that
thermodynamical laws and principles are followed faithfully. Notice that the advantage of
the phase field model in dealing with diffuse interfaces may also limit its applicability to re-
solve sharp interfaces in light fluids [16]. The Allen–Cahn and Cahn–Hilliard equations are
two classical phase field models used to describe dynamics in the multi-phasic systems and
both of them share the same chemical potential if the free energy functionals are the same.
However, the Allen–Cahn equation does not preserve the conservation of the bulk volume
while the Cahn–Hilliard equation does [17–19]. In life science, materials science, and many
engineering fields, there is an abundance of multi-phasic material systems with diffuse
interfaces, which have kept multi-phase field models popular and practical [12,20–22].

There are quite a number of phase field models in the literature today. However,
not all are thermodynamically consistent. Even for the thermodynamically consistent
ones, the proper boundary conditions are not well studied until recently. In particular,
when one considers surface dynamics, an issue emerges right away that is what is the
relation between the phase field variable in the bulk and the one on the boundary? By
assuming these two are the same at the boundary, a series of studies have examined the
issue of thermodynamically consistency [23–27]. By not assuming that they coincide on the
boundary, Knopf et al. derived a set of boundary conditions for the Cahn–Hilliard model
(known as the Knopf–Lam model) in 2020 [28] and for non-local models (known as the
Knopf–Signori model) in 2021 [29]. The latter studies opened up a new venue for one to
examine the thermodynamically consistency in the bulk and surface dynamics holistically.
To make the paper more readable, we list some of the existing models in the literature first.
In Section 3, we will show that all these existing models are the limiting cases of the general
model we proposed.

• Jing–Wang model [24]:
We firstly define the free energy of the system as follows

E[φ] =
∫

Ω eb(φ, φt,∇φ,∇∇φ)dx +
∫

∂Ω[es(φ, φt,∇sφ,∇s∇sφ)]ds, (1)

where φ is the order parameter, ∇s is the surface gradient. The corresponding govern-
ing equation system is given by

φt = −(M(1)
b −∇ ·M

(2)
b · ∇)µb, x ∈ Ω,

φt = −(Ms +
β2

α )(µs + µc) +
β
α µb, s ∈ ∂Ω,

αn ·M(2)
b · ∇µb = −µb + β(µs + µc), ∇nφt = −Mgµg, s ∈ ∂Ω,

(2)

where M(1)
b , M(2)

b and Ms are mobilities, α and β are parameters, µb and µs are chemical
potentials, and µg is the conjugate variable, which are defined in Section 2.

• Knopf–Lam model [28]:
We define the free energy as follows

E =
∫

Ω
ε
2 |∇φ|2 + 1

ε F(φ)dx +
∫

∂Ω
σ
2 |∇sψ|2 + 1

σ G(ψ) + 1
2K (H(ψ)− φ)2ds, (3)
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where φ and ψ are two order parameters to describe the materials in the bulk and
on the boundary surface, respectively. ε, σ, and K are model parameters, H(ψ) is a
function of ψ. The governing equations in the bulk and on the boundary are given by

φt = ∇2µb, µb = −ε∇2φ + 1
ε F′(φ), x ∈ Ω,

ψt = ∇2
s µs, µs = −σ∇2

s ψ + 1
σ G′(ψ) + εH′(ψ)n · ∇φ, s ∈ ∂Ω,

n · ∇µb = 0, εn · ∇φ = 1
K (H(ψ)− φ), s ∈ ∂Ω.

(4)

• Liu–Wu model [27]:
By setting H(ψ) = ψ and K → 0, H(ψ) → φ in the Knopf–Lam model, the Liu–Wu
model is obtained which are given by

φt = ∇2µb, µb = −ε∇2φ + 1
ε F′(φ), x ∈ Ω,

φt = ∇2
s (µc + µs), µc + µs = εn · ∇φ− σ∇2

s φ + 1
σ G′(φ), n · ∇µb = 0, s ∈ ∂Ω.

(5)

• Knopf–Signori model [29]:
Once the bulk and surface free energies are non-local as in Section 3.3 below, the non-
local dynamics are given by

φt = M(2)
b ∇

2µb, x ∈ Ω,

ψt = −(−M(2)
s ∇2 + β2

α )µs +
β
α µb, s ∈ ∂Ω,

αM(2)
b n · ∇µb = −µb + βµs, s ∈ ∂Ω.

(6)

In this study, we focus on the demonstration of the paradigm through the derivation of
thermodynamically consistent phase field models with coupled surface and bulk dynamics
of potentially distinct phase field variables, which include the derivation of the transport
equation in the fixed bulk domain, as well as the consistent one on its boundary. We will
present the models with free surface domains and boundaries in a sequel. We stress that it
is important to study multi-phase material systems using a thermodynamically “correct”
model since it not only gives one a comprehensive description of the “correct” physics for
the material system but also gives one a well-posed mathematical system to analyze and
compute. Speaking of a thermodynamically “correct” model, we insist that the model must
be at least thermodynamically consistent and obeys known physical laws. This humble
criterion would perhaps disqualify a host of existing phase field models. In addition, we
notice that most of the studies on phase field models are concentrated on equations in the
bulk with static or periodic boundary conditions at fixed boundaries, where the boundary
contributions to thermodynamical consistency are trivialized.

Given the recent technological advances in materials science and engineering and
the abundance of natural phenomena where boundaries regulate the internal dynamics,
boundaries of a material-confining device can no longer be treated as passive. They can be
made with distinctive properties to interact or even control the material within the device,
especially, in thin films [30–32]. For instance, the newly discovered boundary effect to the
existence of blue phases in cholesteric liquid crystals in microscales across a quite large
temperature range is one of the prominent examples [33–35]. In life science, dynamics in
cell membranes play a significant role in determining cell behavior. These require one to
derive a model for the material system confined in a compact domain to take into account
the potential dynamical contribution from the boundary. There has been a surge in activities
in this direction on phase field models and reaction-diffusion models recently [36–42].

In this paper, the idea is exemplified through a derivation of a phase field model. There
in fact exists an underlying paradigm for deriving much wider classes of thermodynami-
cally consistent models in fixed domains with smooth boundaries, whose thermodynamical
variables in the bulk may differ from the ones at the boundary and the free energy depends
on gradients of the variables up to the second order or strongly non-local. In this approach,
we begin with the prescribed total free energy comprising the bulk free energy, surface free
energy and free energy that couples the bulk and surface order parameters or phase field
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variables and calculate the energy dissipation rate of the total free energy. The fact that
order parameters in the bulk and ones at the boundary can be different in the continuum
level description of the thermodynamical system is common. For example, the order pa-
rameter in the bulk in the phase field model is the volume or mass fraction, while the one
at the boundary is the area fraction. Their definitions are different so that they may not be
the same while evaluated at the boundary. Thus, it is quite common that the surface dy-
namics and the dynamics in the bulk are described by different thermodynamical variables,
dictated by the respective materials properties of the bulk and the surface. In this case,
in addition to the bulk and surface energy, an additional energy, defined as the coupling
energy, must be introduce to formulate the continuum theory.

In the derivation, we first apply the constructive, generalized Onsager principle to the
bulk energy dissipation rate to arrive at constitutive equation system that warrants the bulk
energy dissipation. We note that the mobility operator stipulated in the bulk constitutive
equation may affect the boundary energy transport. Secondly, after accounting for the
additional surface energy dissipation due to the non-local mobility operator in the bulk, we
apply the generalized Onsager principle subsequently to the surface energy contribution
to the total energy dissipation. This yields the constitutive equation for surface transport
at the boundary. Combining the results from both steps, we arrive at coupled bulk and
surface transport equation systems that yield a coupled, thermodynamically consistent
model. We remark that this paradigm applies to any thermodynamical system. To derive
hydrodynamical systems, however, additional conservation laws must be enforced in
addition to the constitutive equations, which we will defer to another paper.

The paper is organized as follows. In Section 2, we present the paradigm using a phase
field model for a binary system as an example and discuss its various limits. In Section 3,
we discuss some special cases, the strongly non-local free energy with dynamic boundary
conditions, and a reactive transport system. In Section 4, we demonstrate the effect of
dynamic boundary conditions on the solution in the bulk using energy-dissipation rate
preserving numerical simulations. We summarize the results in Section 5.

2. Thermodynamically Consistent Phase Field Models with Consistent Dynamic
Boundary Conditions

We illustrate the general framework for deriving transport equations in the bulk and
consistent dynamic equations on the boundary for a thermodynamical model that yields
a negative energy dissipation or a positive entropy production rate, using a scalar phase
field model for a binary material system with free energy consisting of up to second order
spatial derivatives of the phase field variable. Then, we elucidate the path for extending it
to the more general free energy functional including the non-local free energy for general
thermodynamical models. We will show how existing phase field models of this kind are
deducible from the general framework. We focus on the derivation in the isothermal case
here so that the free energy is the proper thermodynamical potential to work with.

2.1. Generalized Onsager Principle

The classical Onsager linear response theory on which the Onsager principle for
dissipative systems is based provides a viable way to calculate dissipative forces in re-
laxation dynamics in an irreversible non-equilibrium process [2,4,43,44]. In the general
setting, the linear response theory states that given a chemical potential in an isothermal
system, the generalized flux φt is proportional to the generalized force or chemical potential
µ [17–19] as follows

φt = −Mµ, (7)

where M is the mobility operator. For dissipative systems where dynamics are irreversible,
the additional Onsager reciprocal relation dictates that M is symmetric; for conservative
systems where dynamics are reversible, M is antisymmetric [1]. In general, M comprises the
symmetric part Ms and antisymmetric part Ma: M = Ms + Ma. We note that when M is a



Entropy 2022, 24, 1683 5 of 24

differential operator, such as in the Cahn–Hilliard equation system, the symmetric property
of M is also determined by the boundary conditions of the system as well. For a system
where inertia is non-negligible and there coexist irreversible and reversible dynamics in the
non-equilibrium process, we extend the force balance equation to a generalized Onsager
principle [1,24]

−M−1φt = ρφtt + µ = µ̃⇔ φt = −M(ρφtt + µ) = −Mµ̃, (8)

where µ̃ is the general chemical potential, ρφtt represents the inertia force, and ρ is a
measure of mass. We next use the generalized Onsager principle to derive the general
phase field model along with its consistent boundary conditions for a binary material
system. For convenience, we omit ˜(•) over variable (•) in the following.

2.2. Models with the Free Energy up to Second Spatial Derivatives

Let the bulk free energy in a fixed material domain Ω be given by

Eb[φ] =
∫

Ω
eb(φ, φt,∇φ,∇∇φ)dx, (9)

where eb is the energy density per unit volume. Especially, the kinetic energy in the bulk
to account for the inertia effect in the system is included in eb, which is related to φt and
is usually be chosen as ρ

2 φ2
t . We consider a binary material system with a boundary that

may have its distinctive properties than the bulk and possesses its own surface energy of
derivatives up to the second order in space

Es[ψ] =
∫

∂Ω
es(ψ, ψt,∇sψ,∇s∇sψ)ds, (10)

where ψ(x, t) is the surface phase field variable, not necessarily the same as φ(x, t) confined
to the surface, es is the surface energy density per unit area including the kinetic energy
on the surface ρs

2 ψ2
t and ∇s is the surface gradient operator over smooth boundary ∂Ω as

those in [45,46].
In the following, we will use the volume and area fraction to illustrate why we use two

phase variables or order parameters in bulk and surface, respectively. Actually, the phase
field variables can include the mass fraction or density fraction in place of the volume
fraction. We define the effective volume of the two particles as v1 and v2 and assume there
are N1 and N2 particles, respectively, in a material volume δV = N1v1 + N2v2. Analogously,
we define the effective areas of the two particles’ cross-section in the surface as s1 and s2
and assume there are Ns

1 and Ns
2 particles in a material surface δS = Ns

1s1 + Ns
2s2. Then,

the bulk volume fraction φ and the surface area fraction ψ for the first material can be
defined as follows:

φ(x) =
N1(x)v1

N1(x)v1 + N2(x)v2
=

N1(x)
N1(x) + N2(x)

v2
v1

, (11)

ψ(s) =
Ns

1(s)s1

Ns
1(s)s1 + Ns

2(s)s2
=

Ns
1(s)

Ns
1(s) + Ns

2(s)
s2
s1

. (12)

Clearly, there are no reasons to believe Ni = Ns
i nor v2

v1
= s2

s1
. For example, we can choose

the volume fraction of the first material component as the order parameter in the bulk
while choosing the area fraction of the second material component as the order parameter
at the boundary. So, φ|∂Ω and ψ can be two different phase field variables. So we introduce
coupling energy in the model to account for the free energy due to the discrepancy between
the two physical quantities

Ec[φ, ψ] =
∫

∂Ω
ec(φ,∇sφ,∇s∇sφ, ψ,∇sψ,∇s∇sψ)ds, (13)
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where φ = φ(x, t)|∂Ω and ec is the coupling energy density per unit area. For example,
the coupling free energy can be used to describe different boundary surface properties,
such as attractive or repulsive, between the material components in different regions of the
boundary [29].

The total free energy of the system is given by

E[φ, ψ] =
∫

Ω eb(φ, φt,∇φ,∇∇φ)dx +
∫

∂Ω[es(ψ, ψt,∇sψ,∇s∇sψ)
+ec(φ,∇sφ,∇s∇sφ, ψ,∇sψ,∇s∇sψ)]ds.

(14)

We calculate the time rate of change of the free energy as follows, assuming domain Ω
is fixed,

dE
dt =

∫
Ω µbφtdx +

∫
∂Ω[ ∂es

∂ψt
ψtt +

∂(es+ec)
∂ψ ψt +

∂(es+ec)
∂∇sψ ∇sψt +

∂(es+ec)
∂∇s∇sψ∇s∇sψt

+ ∂(es+ec)
∂φ φt +

∂(es+ec)
∂∇sφ ∇sφt +

∂(es+ec)
∂∇s∇sφ∇s∇sφt + n · ∂eb

∂∇φ φt +
∂eb

∂∇∇φ : n∇φt − n∇ : ∂eb
∂∇∇φ φt]ds

=
∫

Ω µbφtdx +
∫

∂Ω[ρsψtψtt +
∂(es+ec)

∂ψ ψt −∇s · ∂(es+ec)
∂∇sψ ψt − 2Hn · ∂(es+ec)

∂∇sψ ψt −∇s · ∂(es+ec)
∂∇s∇sψ · ∇sψt

−2Hn · ∂(es+ec)
∂∇s∇sψ · ∇sψt +

∂(es+ec)
∂φ φt −∇s · ∂(es+ec)

∂∇sφ φt − 2Hn · ∂(es+ec)
∂∇sφ φt −∇s · ∂(es+ec)

∂∇s∇sφ · ∇sφt

−2Hn · ∂(es+ec)
∂∇s∇sφ · ∇sφt + n · ∂eb

∂∇φ φt +
∂eb

∂∇∇φ : n∇φt − (n∇ : ∂eb
∂∇∇φ )φt]ds

=
∫

Ω µbφtdx +
∫

∂Ω[µsψt + µcφt + µg(n · ∇φt)]ds,

(15)

where H is the mean curvature of the boundary, n is the unit external normal of ∂Ω, the bulk
chemical potential µb, surface chemical potentials µs, µc, and the conjugate variable µg are
given, respectively, by

µb = ρφtt +
∂eb
∂φ −∇ ·

∂eb
∂∇φ +∇∇ : ∂eb

∂∇∇φ ,

µs = ρsψtt +
∂(es+ec)

∂ψ −∇s · ∂(es+ec)
∂∇sψ − 2Hn · ∂(es+ec)

∂∇sψ +∇s∇s : ∂(es+ec)
∂∇s∇sψ + 2Hn∇s : ∂(es+ec)

∂∇s∇sψ+

∇s · (2Hn · ∂(es+ec)
∂∇s∇sψ ) + 4H2nn : ∂(es+ec)

∂∇s∇sψ ,

µc =
∂ec
∂φ −∇s · ∂ec

∂∇sφ − 2Hn · ∂ec
∂∇sφ +∇s∇s : ∂ec

∂∇s∇sφ + 2Hn∇s : ∂ec
∂∇s∇sφ+

∇s · (2Hn · ∂ec
∂∇s∇sφ ) + 4H2nn : ∂ec

∂∇s∇sφ + n · ∂eb
∂∇φ − n∇ : ∂eb

∇∇φ −∇sn : ∂eb
∂∇∇φ − 2Hnn : ∂eb

∂∇∇φ ,

µg = ∂eb
∂∇∇φ : nn.

(16)

Remark 1. (i) There exist two surface chemical potentials, one corresponding to φ is denoted as µc,
while the other corresponding to ψ is denoted as µs at the boundary. The surface chemical potential,
µc, includes contributions from the coupling free energy as well as that from the bulk energy confined
to the boundary, while µs only includes contributions from the surface and coupling energies. (ii)
The mean curvature shows up in the surface chemical potentials, indicating that curvature of the
boundary affects the surface dynamics. (iii) More surface terms can appear if the free energy density
function depends on higher order spatial derivatives. We adopt the Einstein notation for tensors
here, denote tensor product of vector n and v as nv = nivj, use one dot · to represent inner product
n · v = nivi and two dots: to represent contraction of two second order tensor A : C = AijCij,
where n, v are vectors, A, C are second order tensors.

2.2.1. Dynamics in the Bulk

We apply the generalized Onsager principle firstly to the bulk integral in (15) to obtain
the transport equation for φ in the bulk, Ω,

−M−1
b φt = µb ⇔ φt = −Mbµb, x ∈ Ω, (17)

where Mb is the mobility operator and M−1
b is the friction operator which is positive semi-

definite to ensure energy dissipation. We limit the mobility operator in the following form
in this study

Mb = M(1)
b −∇ ·M

(2)
b · ∇, (18)
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where M(1)
b ≥ 0 is a scalar function of φ and M(2)

b ∈ R3×3 is a semi-definite positive matrix

which can be a function of φ as well. If M(2)
b = M(2)

b I and M(2)
b is also a scalar function of φ,

then a special case∇ ·M(2)
b · ∇ = ∇ · (M(2)

b ∇) can be obtained. We note that the derivation
applies to a more general mobility operator with high order derivatives as well, which we
will not pursue in this study. The presence of spatial derivatives in the mobility indicates
the non-local interaction is accounted for in friction operator M−1

b . This is shown in the
form of pseudo-differential operators. With this, the energy dissipation rate reduces to

dE
dt = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx +

∫
∂Ω[µsψt + µcφt + µg∇nφt + µbn ·M(2)

b · ∇µb]ds. (19)

We remark that n ·M(2)
b · ∇µb is the flux of the volume fraction across the boundary. This

physical quantity is determined by the balance between the surface and bulk chemical
potential. We next derive consistent boundary conditions for this model.

2.2.2. Dynamics on the Boundary

We recognize that the boundary energy flux density is a quadratic form and then apply
the Onsager principle the second time to the energy flux density to establish a dynamical
constitutive equation at the boundary:

φt
ψt
fm
∇nφt

 = −M4×4 ·


µc
µs
µb
µg

, (20)

where fm = n ·M(2)
b · ∇µb is the inward volume flux, φt, ψt,∇nφt are time rate of changes

of three quantities, identified as generalized fluxes, and M4×4 ≥ 0 is the surface mobility
operator, a 4× 4 matrix or second-order tensor. M4×4 ≥ 0 means that its symmetric part is
semi-positive definite. Then,

dE
dt = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx−

∫
∂Ω[(µc, µs, µb, µg)(M4×4)(µc, µs, µb, µg)T ]ds ≤ 0, (21)

which indicates the system is dissipative. The linear response relation in (20) links the
generalized fluxes with the generalized forces which gives a very general boundary surface
dynamical system. We next give two examples of the mobility operator to make contact
with the existing thermodynamically consistent phase field models in the literature.

Example 1 (First type dynamic boundary conditions (DBCs): a purely dissipative boundary
condition). We specify a symmetric mobility operator as follows

M4×4 =


Mc +

γ2

α
βγ
α − γ

α
γθ
α

βγ
α Ms +

β2

α − β
α

βθ
α

− γ
α − β

α
1
α − θ

α
γθ
α

βθ
α − θ

α Mg +
θ2

α

. (22)

where Mc, Ms, Mg ≥ 0 are three semi-definite positive operators, α ≥ 0 is a friction coefficient,
β, γ, θ are weight coefficients which can take arbitrary values.

This constitutive equation establishes a balance between the inward volume flux at the boundary
and the generalized chemical potential difference between the bulk and the surface: it assumes the
inward volume flux is proportional to the difference between the chemical potential in the bulk and
the weighted one at the boundary. When the weighted surface energy is higher than the bulk energy
confined to the boundary, the volume flux is inward; otherwise, the volume flux flows outward.
In either case, the total energy dissipates since M4×4 ≥ 0.

The governing equation together with the DBCs in this model is summarized as follows
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φt = −Mbµb, x ∈ Ω,

φt = −(Mc +
γ2

α )µc − βγ
α µs +

γ
α µb − γθ

α µg, ψt = − βγ
α µc − (Ms +

β2

α )µs +
β
α µb −

βθ
α µg, s ∈ ∂Ω,

αn ·M(2)
b · ∇µb = −µb + βµs + γµc + θµg, ∇nφt = − γθ

α µc − βθ
α µs +

θ
α µb − (Mg +

θ2

α )µg, s ∈ ∂Ω.

(23)

The corresponding energy dissipation rate is given by

dE
dt = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx−

∫
∂Ω µg Mgµg ds

−
∫

∂Ω µc Mcµcds−
∫

∂Ω µs Msµsds− 1
α

∫
∂Ω(γµc + βµs + θµg − µb)

2ds.
(24)

The surface transport equation of φ can be rewritten into an alternative and more suggestive form
on boundary ∂Ω as follows

φt = −Mcµc − γ fm, ψt = −Msµs − β fm, ∂∇nφ
∂t = −Mgµg − θ fm, s ∈ ∂Ω, (25)

where the inward volume fraction flux is stipulated as follows at the boundary

fm = n ·M(2)
b · ∇µb =

1
α
(βµs + γµc + θµg − µb). (26)

Notice that β, γ, θ can be of any numerical values and if µg = 0, we set θ = 0 and drop
n · ∇φt from the constitutive equation in (20). (25) indicates that so long as the volume fraction
flux is balanced by (26), the relaxation dynamics of the three variables φ, ψ, n · ∇φ at the boundary
are dictated by the differences between the corresponding chemical potentials and the weighted
inward volume fraction flux, where the weights are delicately tied to the volume fraction flux at
the boundary. This gives one a great deal of flexibility to fine-tune the volume fraction flux at the
boundary to control the bulk dynamics. So, there is no surprise that this model includes many
existing thermodynamically consistent phase field models with DBCs in the literature [23,24,27–29].

Example 2 (Second DBCs: a dissipative and transportive boundary condition). In the second
example, we specify the mobility operator in another form with a non-zero antisymmetric component:

M4×4 =


Mc 0 γ

α 0
0 Ms

β
α 0

− γ
α − β

α
1
α − θ

α

0 0 θ
α Mg

 =


Mc 0 0 0
0 Ms 0 0
0 0 1

α 0
0 0 0 Mg

+


0 0 γ

α 0
0 0 β

α 0
− γ

α − β
α 0 − θ

α

0 0 θ
α 0

, (27)

where the antisymmetric component contributes to transport dynamics at the boundary, in addition
to the dissipative part given by the positive semi-definite operator in M4×4. The antisymmetric
mobility component represents an energy exchange between the bulk and the boundary without
inducing any dissipation.

The governing system of equations together with the dynamic boundary conditions in this
model is summarized as follows

φt = −Mbµb, x ∈ Ω,
φt = −Mcµc − γ

α µb, ψt = −Msµs − β
α µb, s ∈ ∂Ω,

αn ·M(2)
b · ∇µb = −µb + βµs + γµc + θµg, ∇nφt = −Mgµg − θ

α µb, s ∈ ∂Ω.
(28)

The corresponding energy dissipation rate is given by

dE
dt = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx−

∫
∂Ω[µc Mcµc + µs Msµs +

1
α µ2

b + µg Mgµg]ds. (29)

Notice that the mobility matrix has an antisymmetric component that does not contribute to
the energy dissipation. In fact, if we change the antisymmetric part into a symmetric one by negating
signs of the non-zero off-diagonal entries in the antisymmetric operator, we recover the model given
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in the previous example. This set of boundary conditions has the following interpretation: the time
rate of changes of the variables at the boundary is proportional to the differences between the surface
chemical potentials and weighted bulk chemical potentials. The dynamics are thus different from the
previous example and the energy dissipation rate is altered as well.

The two examples of dynamic boundary conditions are derived from two different con-
siderations of mobility operators, as well as effective chemical potentials, which contribute
to distinct energy dissipation mechanisms, following the generalized Onsager principle
under a unified assumption that the boundary volume fraction flux is proportional to the
difference of the bulk chemical potential confined at the boundary and weighted surface
energy. In the first case, the time rate of change of the volume fraction is proportional to
the difference between the surface chemical potential and the outward volume flux. As a
result, the distinctive surface energy dissipation rate is directly linked to the magnitude
of the volume fraction flux across the boundary surface. In the second case, the time rate
of change of the volume fraction is proportional to the difference between the surface
chemical potential and the weighted bulk chemical potential confined to the boundary.
Consequentially, the distinctive surface energy dissipation rate is measured by the bulk
chemical potential confined to the surface, and the other surface chemical potentials. Two
different dissipative mechanisms define two different dynamical models at the boundary.
There are more cases that one can elaborate by specifying specific form of operator M4×4,
which we will not enumerate here.

2.3. Effect of Mobilities in the Bulk and on the Surface

In general, mobility operator in the bulk Mb = Msym
b + Manti

b in (17) is decomposed
into symmetric and antisymmetric parts, where Msym

b is semi-definite positive. There can be
many thermodynamically consistent boundary conditions that are compatible to the given
bulk transport equation. However, the dissipative property of the boundary transport
equation system depends not only on the mobility operator, but also on the geometry of
the boundary as well. Now let us examine the special case where M(2)

b = 0, the energy
dissipation rate in (19) is given by

dE
dt = −

∫
Ω µb M(1)

b µbdx +
∫

∂Ω[µsψt + µcφt + µg∇nφt]ds. (30)

One choice of the surface dynamics is given by φt
ψt
∇nφt

 = −

Mc 0 0
0 Ms 0
0 0 Mg

 ·
 µc

µs
µg

, (31)

which is the limiting case for (23) and (28) with M(2)
b = 0 and α → +∞. The general

models with two types of dynamic boundary conditions reduce to the same set of dynamic
boundary conditions. For the more general case, where Mb = ∑K

k=0(−1)k M(k)
b ∇

2k,

dE
dt = −

∫
Ω ∑K

k=0∇kµb M(k)
b ∇

kµbdx +
∫

∂Ω[µsψt + µcφt + µg∇nφt

+∑k
k=0(−1)k M(k)

b ∑K
i=0(−1)i∇iµb · n · ∇2k−i−1µb]ds.

(32)

To make the energy dissipation rate non-positive, suitable boundary conditions for the
unknowns must be taken into consideration. However, this is not our focus here.

For the mobility operators at the boundary, we consider the following forms, analo-
gously to the bulk,

Mc = M(1)
c −∇s ·M(2)

c · ∇s, Ms = M(1)
s −∇s ·M(2)

s · ∇s, Mg = M(1)
g −∇s ·M(2)

g · ∇s, (33)
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where M(1)
c ≥ 0, M(1)

s ≥ 0, M(1)
g ≥ 0, M(2)

c , M(2)
s and M(2)

g are 3× 3 positive semi-definite
matrices. Then,

−
∫

∂Ω[µc Mcµc]ds = −
∫

∂Ω[µc M(1)
c µc +∇sµc ·M(2)

c · ∇sµc + 2Hµcn ·M(2)
c · ∇sµc]ds,

−
∫

∂Ω[µs Msµs]ds = −
∫

∂Ω[µs M(1)
s µs +∇sµs ·M(2)

s · ∇sµs + 2Hµsn ·M(2)
s · ∇sµs]ds,

−
∫

∂Ω[µg Mgµg]ds = −
∫

∂Ω[µg M(1)
g µg +∇sµg ·M(2)

g · ∇sµg + 2Hµgn ·M(2)
g · ∇sµg]ds.

(34)

Whether or not the energy dissipation rate at the boundary is non-positive depends on the
last term in all three lines in (34), which are linearly proportional to the mean curvature,
surface chemical potential, and the corresponding surface flux of each variable.

Having discussed the energy dissipative property of the model, let us investigate
how the volume fraction variable evolves dynamically by examining special cases. If
M(2)

c = M(2)
c I, M(2)

s = M(2)
s I and M(2)

g = M(2)
g I, where M(2)

c ≥ 0, M(2)
s ≥ 0 and M(2)

g ≥ 0
are scalar functions of φ, the last term in each line of (34) vanishes and the energy dissipation
rate at the boundary is non-positive due to n · ∇sµc = n · ∇sµs = n · ∇sµg = 0. Of course,
H = 0 is also a sufficient condition for non-positive energy dissipation rates.

It follows from (23) that

d
dt [
∫

Ω βφdx +
∫

∂Ω ψds] = −β
∫

Ω M(1)
b µbdx−

∫
∂Ω[M(1)

s µs + 2Hn ·M(2)
s · ∇sµs]ds, (35)

If M(1)
b = M(1)

s = 0 and M(2)
s = M(2)

s I or H = 0,

d
dt
[
∫

Ω
βφdx +

∫
∂Ω

ψds] = 0. (36)

This indicates a β−weighted volume fraction in the bulk and the area fraction over the
surface is conserved under this dynamic boundary condition within the Cahn–Hilliard
surface dynamics. Since β is not limited to be positive, this result simply reveals a delicate
balance between the volume fraction in the bulk and that on the surface must be maintained
during the dynamical process at all times.

Similarly, it also follows from (23) that

d
dt [
∫

Ω γφdx +
∫

∂Ω φds] = −γ
∫

Ω M(1)
b µbdx−

∫
∂Ω[M(1)

c µc + 2Hn ·M(2)
c · ∇sµc]ds, (37)

If M(1)
b = M(1)

c = 0 and M(2)
c = M(2)

c I or H = 0,

d
dt
[
∫

Ω
γφdx +

∫
∂Ω

φds] = 0. (38)

This replicates an analogous delicate balance between the bulk volume fraction and the sur-
face one that is preserved in the dynamical process in the Cahn–Hilliard surface dynamics,
where γ is that delicate weight parameter with potentially an arbitrary value.

Model (23) and (28) give two fairly general phase field models with two different
dynamic boundary conditions, where the surface transport equations of phase variables at
the boundary set the two models apart. In the first one, the cross-boundary volume fraction
flux contributes directly to the energy dissipation on the surface; while in the second,
it is the bulk chemical potential limited to the boundary that contributes to the energy
dissipation on the surface directly. We next examine various limiting cases (23) and (28),
respectively, and show that they reduce to the thermodynamically consistent phase field
models in the literature. In fact, when the cross-boundary volume fraction flux (inward or
outward flux) vanishes, i.e., α = ∞ and γ = β = θ = 0, the two types of dynamic boundary
conditions are identical.
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3. Reduction to Limiting Cases

We examine three limiting cases of the model to make contact with the existing
thermodynamically consistent phase field models and then present a new reactive transport
limiting model with reactive dynamic boundary conditions.

3.1. The Jing–Wang Model [24]

We choose ec = 1
2K (φ − ψ)2, where K > 0 is a penalizing parameter, and define a

symmetric mobility operator as follows

M4×4 =


Ms +

β2

α Ms +
β2

α − β
α

βθ
α

Ms +
β2

α Ms +
β2

α − β
α

βθ
α

− β
α − β

α
1
α − θ

α
βθ
α

βθ
α − θ

α Mg

. (39)

The governing equation system together with the boundary conditions in this model
is given as follows

φt = −Mbµb, x ∈ Ω,

ψt = −(Ms +
β2

α )(µs + µc) +
β
α µb −

βθ
α µg, φt = −(Ms +

β2

α )(µs + µc) +
β
α µb −

βθ
α µg, s ∈ ∂Ω,

αn ·M(2)
b · ∇µb = −µb + β(µs + µc) + θµg, ∇nφt = −Mgµg − θ fm, s ∈ ∂Ω.

(40)

When K → 0, ψ = φ|∂Ω and the governing equation system reduces to

φt = −Mbµb, x ∈ Ω,

φt = −(Ms +
β2

α )(µs + µc) +
β
α µb −

βθ
α µg, s ∈ ∂Ω,

αn ·M(2)
b · ∇µb = −µb + β(µs + µc) + θµg, ∇nφt = −Mgµg − θ fm, s ∈ ∂Ω.

(41)

The corresponding energy dissipation rate is given by

dE
dt = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx−

∫
∂Ω[µg Mgµg]ds−∫

∂Ω[(µc + µs)Ms(µc + µs)]ds− 1
α

∫
∂Ω(β(µc + µs) + θµg − µb)

2ds.
(42)

Setting θ = 0, this system reduces to the general model with the first type dynamic
boundary condition derived in [24] by the authors. Similarly, we deduce the general model
with the second type dynamic boundary condition in [24] by selecting the mobility operator
corresponding to the second type boundary condition alluded to in the previous section.

3.2. The Knopf–Lam Model [28] and the Liu–Wu Model [27]

We define the free energy densities as follows

eb = ε
2 |∇φ|2 + 1

ε F(φ), es =
σ
2 |∇sψ|2 + 1

σ G(ψ), ec =
1

2K (H(ψ)− φ)2. (43)

The corresponding energy dissipation rate is given by

dE
dt =

∫
Ω(−ε∇2φ + 1

ε F′(φ))φtdx +
∫

∂Ω(εn · ∇φ− 1
K (H(ψ)− φ))φtds

+
∫

∂Ω(−σ∇2
s ψ + 1

σ G′(ψ) + 1
K (H(ψ)− φ)H′(ψ))ψtds

=
∫

Ω µbφtdx +
∫

∂Ω[µcφt + µsψt]ds
= −

∫
Ω |∇µb|2dx +

∫
∂Ω[µcφt + µsψt + µbn · ∇µb]ds.

(44)

The transport equation in the bulk is given by

φt = ∇2µb, µb = −ε∇2φ + 1
ε F′(φ), x ∈ Ω. (45)
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We choose such a relationship between the general fluxes and general forces at the surface
as follows  φt

ψt
n · ∇µb

 = −

 κ1 0 0
0 −∇2

s 0
0 0 κ2

 ·
 µc

µs
µb

, (46)

where µc = εn · ∇φ − 1
K (H(ψ) − φ), µs = −σ∇2

s ψ + 1
σ G′(ψ) + 1

K (H(ψ) − φ)H′(ψ),
κ1, κ2 ≥ 0. The boundary equations are

φt = −κ1µc, ψt = ∇2
s µs, n · ∇µb = −κ2µb, s ∈ ∂Ω. (47)

Then the energy dissipation rate is given by

dE
dt =

∫
Ω(−ε∇2φ + 1

ε F′(φ))φtdx +
∫

∂Ω(−σ∇2
s ψ + 1

σ G′(ψ) + εH′(ψ)n · ∇φ)ψtds
= −

∫
Ω |∇µb|2dx−

∫
∂Ω[κ1µ2

c + |∇sµs|2 + κ2µ2
b]ds ≤ 0.

(48)

In the limit κ1 → ∞, κ2 → 0, the governing equations in the bulk and on the boundary
are given by

φt = ∇2µb, µb = −ε∇2φ + 1
ε F′(φ), x ∈ Ω,

ψt = ∇2
s µs, µs = −σ∇2

s ψ + 1
σ G′(ψ) + εH′(ψ)n · ∇φ, s ∈ ∂Ω,

n · ∇µb = 0, εn · ∇φ = 1
K (H(ψ)− φ), s ∈ ∂Ω.

(49)

The general model reduces to the Knopf–Lam model in [28]. Moreover, when H(ψ) = ψ
and K → 0, H(ψ)→ φ. The energy dissipation rate in (44) reduces to

dE
dt =

∫
Ω(−ε∇2φ + 1

ε F′(φ))φtdx +
∫

∂Ω(εn · ∇φ)− σ∇2
s φ + 1

σ G′(φ)φtds
=
∫

Ω µbφtdx +
∫

∂Ω(µc + µs)φtds.
(50)

The thermodynamically consistent model reduces to the Liu–Wu model in [27]

φt = ∇2µb, µb = −ε∇2φ + 1
ε F′(φ), x ∈ Ω,

φt = ∇2
s (µc + µs), µc + µs = εn · ∇φ− σ∇2

s φ + 1
σ G′(φ), n · ∇µb = 0, s ∈ ∂Ω.

(51)

3.3. Non-Local Models including the Knopf–Signori Model [29]

We consider phase field models with a non-local bulk free energy [47,48] given by

Eb =
∫

Ω
[
∫

Ω

1
4

J(‖x− y‖)(φ(x, t)− φ(y, t))2dy + f (φ)]dx, (52)

where J(‖x‖) is the interaction kernel and f is the free energy density for the bulk. This
form of free energy is perhaps more generic than the one that depends on spatial derivatives
of the phase variable. We call this a strongly non-local free energy. The bulk chemical
potential is given by

µb = ρφtt +
∫

Ω
J(‖x− y‖)(−φ(y, t))dy + f ′(φ) + a(x)φ(x, t), (53)

where a(x) =
∫

Ω J(‖x− y‖)dy. Likewise, we consider the surface energy and coupling
energy given, respectively, by

Es =
∫

∂Ω
[
∫

∂Ω

1
4

K(‖x− y‖)(ψ(x, t)− ψ(y, t))2dsy + g(ψ)]dsx, (54)

Ec =
∫

∂Ω
[
∫

∂Ω

1
4

L(‖x− y‖)(φ(x, t)− ψ(y, t))2dsy + h(φ, ψ)]dsx, (55)
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where g(φ) is the surface energy density per area and h(φ, ψ) is the coupling energy density
per area. The surface chemical potentials are obtained as follows

µs = ρsψtt +
∫

∂Ω K(‖x− y‖)(−ψ(y, t))dsy + g′(ψ) + aS(x)ψ(x, t)
+ 1

2

∫
∂Ω L(‖x− y‖)(−φ(y, t))dsy +

1
2 ac(x)ψ(x, t) + ∂h(φ,ψ)

∂ψ ,

µc =
1
2

∫
∂Ω L(‖x− y‖)(−ψ(y, t))dsy +

1
2 ac(x)φ(x, t) + ∂h(φ,ψ)

∂φ ,
(56)

where aS(x) =
∫

∂Ω K(‖x− y‖)dsy, ac(x) =
∫

∂Ω L(‖x− y‖)dsy. The total free energy is then
given by

E =
∫

Ω
ρφ2

t /2dx +
∫

Ω
ρsψ2

t /2ds + Eb + Es + Ec. (57)

We calculate the time rate of change of the free energy as follows

d
dt

E =
∫

Ω
µbφtdx +

∫
∂Ω

µsψtdsx +
∫

∂Ω
µcφtdsx. (58)

We apply the generalized Onsager principle to the bulk term to arrive at

φt = −Mbµb, x ∈ Ω, (59)

where Mb is the mobility operator. For Mb = M(1)
b −∇ ·M

(2)
b · ∇,

d
dt E = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx +

∫
∂Ω[µsψt + µbn ·M(2)

b · ∇µb + µcφt]dsx

= −
∫

Ω[µb M(1)
b µb +∇µb ·M

(2)
b · ∇µb]dx +

∫
∂Ω[µsψt + µcφt + µb fm]dsx.

(60)

We specify boundary dynamic equations by using the generalized Onsager principle as
follows  φt

ψt
fm

 = −M3×3 ·

 µc
µs
µb

, s ∈ ∂Ω, (61)

where M3×3 is the non-negative definite boundary mobility operator.
The energy dissipation rate is given by

d
dt E = −

∫
Ω[µb M(1)

b µb +∇µb ·M
(2)
b · ∇µb]dx−

∫
∂Ω[(µc, µs, µb) ·M3×3 · (µc, µs, µb)

T ]dsx. (62)

When setting

M3×3 =

 κ3 0 0

0 −M(2)
s ∇2

s +
β2

α − β
α

0 − β
α

1
α

, (63)

the general model reduces to the non-local model with dynamic boundary conditions
in [29] in the limit, κ3 → ∞.

3.4. Reactive Transport Equation in a Binary Polymeric System

Finally, we present a new phase field model for a binary reactive polymeric system
and assume the two polymer chains are long enough so that they can be viewed as ideal
chains. We also assume there are reactions in both the bulk and the surface described as
follows,



Entropy 2022, 24, 1683 14 of 24

A
k+b
�
k−b

B, in Ω, (64)

A
k+s
�
k−s

B, in ∂Ω, (65)

where k+i , k−i , i = b, s are the forward and backward reaction rates in the bulk and on the
surface, respectively. The reaction rates in the bulk and surface may be different due to
different pressure, exposure to catalysts, enzymes, light, etc.

The corresponding bulk free energy of the reactive system is given by

Eb =
∫

Ω
b2

6 ∇φ · ∇φ + 1
n1

φ(ln φ− 1− ln Q1) +
1

n2
(1− φ)(ln(1− φ)− 1− ln Q2) + χφ(1− φ)dx, (66)

and the surface and coupling free energies are, respectively, given by

Es =
∫

∂Ω
b2

6 ∇sφ · ∇sφ + 1
n1

ψ(ln ψ− 1− ln Q1) +
1

n2
(1− ψ)(ln(1− ψ)− 1− ln Q2) + χsψ(1− ψ)ds,

Ec =
∫

∂Ω
η
2 (H(ψ)− φ)2ds,

(67)

where φ, ψ are two order parameters to describe the volume fraction and the area fraction
of the polymer segments in the bulk and the surface, respectively, b is the scaled Kuhn
length of the polymer segment, Q1, Q2 are the dimensionless partition functions for the
polymer segments, ni, i = 1, 2, are the polymerization index for the two polymer chains,
and χ, χs measure the mixing energy due to the volume exclusion effects between segments
in the bulk and surface, respectively.

Using the generalized Onsager principle, we obtain the governing equation with the
dynamic boundary condition of the first kind:

∂φ
∂t = −(M(1)

b −M(2)
b ∇

2)µb, x ∈ Ω,
µb = − b2

3 ∇2φ + 1
n (ln φ− ln Q1)− 1

n (ln(1− φ)− ln Q2) + χ(1− 2φ), x ∈ Ω,
∂φ
∂t = −(M(1)

c −M(2)
c ∇2

s )µc − γM(2)
b n · ∇µb, µc =

b2

6 n · ∇φ− η(H(ψ)− φ), s ∈ ∂Ω,
∂ψ
∂t = −(M(1)

s −M(2)
s ∇2

s )µs − βM(2)
b n · ∇µb, s ∈ ∂Ω,

µs = − b2

3 ∇2
s φs +

1
n (ln ψ− ln Q1)− 1

n (ln(1− ψ)− ln Q2) + χs(1− 2ψ) + ηH′(ψ)(H(ψ)− φ), s ∈ ∂Ω,
αM(2)

b n · ∇µb = βµs + γµc − µb, s ∈ ∂Ω,

(68)

where

M(1)
b = −kb

Q2φ−Q1(1−φ)
ln(Q2φ)−ln(Q1(1−φ))

, M(2)
b ≥ 0, M(1)

c ≥ 0,

M(2)
c ≥ 0, M(1)

s = −ks
Q2ψ−Q1(1−ψ)

ln(Q2ψ)−ln(Q1(1−ψ))
, M(2)

s ≥ 0,
(69)

kb and ks are two dimensionless parameters measuring the reaction rates in the bulk and
the surface, respectively. M(1)

b and M(1)
s are two Logarithmic means, which depend on the

order parameters and are non-negative. For more details about variable mobilities M(1)
b

and M(1)
s , readers are referred to our forthcoming paper [49]. The total energy of the system

is dissipative. In the following, we briefly derive the model.
The dynamical description for the reactive transport in the binary system in bulk can

be written as

∂tΦ = −Λ( δF
δΦ − L1), (70)
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where Φ = (φ1, φ2)
T is the volume fraction vector, φi, i = 1, 2 represent the volume fraction

for the ith material component, Λ = Λ(1) −Λ(2)∇2, Λ(1) is the mobility for reaction and
−Λ(2)∇2 is the mobility for transport. The bulk free energy is given by

F =
∫

Ω[ b2

12∇φ1 · ∇φ1 +
b2

12∇φ2 · ∇φ2 +
1

n1
φ1(ln φ1 − 1− ln Q1) +

1
n2

φ2(ln φ2 − 1− ln Q2) + χφ1φ2]dx. (71)

In this model, we assume n1 = n2 = n. For reaction dynamics, the mobility operator is
given by

Λ(1) = kb
Q2φ1−Q1φ2

ln(Q2φ1)−ln(Q1φ2)

(
1 −1
−1 1

)
. (72)

For transport dynamics, we set

Λ(2) =

(
λ11 λ12
λ12 λ22

)
. (73)

The bulk transport equation is then given by

∂
∂t

(
φ1
φ2

)
= −kb

Q2φ1−Q1φ2
ln(Q2φ1)−ln(Q1φ2)

(
1 −1
−1 1

)(
µ1 − L
µ2 − L

)
+

(
λ11 λ12
λ12 λ22

)
∇2
(

µ1 − L
µ2 − L

)
= −kb

Q2φ1−Q1φ2
ln(Q2φ1)−ln(Q1φ2)

(
1 −1
−1 1

)(
µ1
µ2

)
+

(
λ11 λ12
λ12 λ22

)
∇2
(

µ1 − L
µ2 − L

)
.

(74)

Substituting µ1 = δF
δφ1

= − b2

6 ∇2φ1 + 1
n (ln φ1 − ln Q1) + χφ2, µ2 = δF

δφ2
= − b2

6 ∇2φ2

+ 1
n (ln φ2− ln Q2) + χφ1 into the governing equation in the bulk, and using incompressible

condition φ1 + φ2 = 1, we obtain

L = (λ11+λ12)µ1+(λ12+λ22)µ2
λ11+2λ12+λ22

,
∂φ1
∂t = −kb

Q2φ1−Q1φ2
ln(Q2φ1)−ln(Q1φ2)

(µ1 − µ2) +
λ11λ22−λ12λ12
λ11+2λ12+λ22

∇2(µ1 − µ2),
(75)

where the second equation is in the form: ∂φ
∂t = −M(1)

b µb + M(2)
b ∇

2µb when φ = φ1 is
identified and

M(1)
b = kb

Q2φ−Q1(1−φ)
ln(Q2φ)−ln(Q1(1−φ))

,

M(2)
b = λ11λ22−λ12λ12

λ11+2λ12+λ22
,

µb = µ1 − µ2.

(76)

For the reactive binary system, we could introduce different order parameters besides
φ = φ1. For example, φ = φ2 or φ = φ1 − φ2 in the bulk are all acceptable. Analogously, we
obtain the mobilities/dynamics on the boundary. The choice of the order parameters on
the boundary may be different from the one in the bulk. For example, φs = (φs,1 − φs,2)|∂Ω,
ψs = ψs,1, where ψs,1,2 are surface area fraction for the two polymeric components,
respectively.

Recall the lattice model for polymers melts/solutions/blends [50], where one divides
the domain into small lattices and uses the outermost lattices in the domain to represent
the boundary. φ(x) at these outermost lattice can be identified as cφ(s), s ∈ ∂Ω, where
c is a parameter to make sure φ(s) represents the area fraction while φ(x) is the volume
fraction. We also add one layer of lattices at the outside of the domain and introduce ψ(s)
to this layer. Although φ(s) and ψ(s) are in different layers, both of them can be viewed as
representing quantities “on the surface”, when the thickness of the outermost lattices in the
domain and outside is small enough. For any lattice we discussed above, we assume they
are infinitesimal in macroscopic scale so that the “area fraction” and the volume fraction in
the infinite thin layer limit can indeed be different.
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There have been quite a number of papers investigating the reaction-diffusion phe-
nomenon with dynamic boundary conditions in the last two decades in both experiments
and modeling [51–55]. However, some of them are not thermodynamically consistent and
the concept of the free energy used in the models is not clearly defined. In this paper,
we use a simple binary reactive transport to illustrate how thermodynamically consistent
models can be derived following the generalized Onsager principle. For more general
reactive transport systems, readers are referred to our forthcoming paper [49].

4. Numerical Results for a Binary Reactive System

We take the binary reactive transport system as our numerical example to showcase
how boundary dynamics impact bulk ones in a compact domain in 2-D. In the rectangular
domain, the four sides are labeled as Γ1, Γ2, Γ3, and Γ4, respectively. We use the same free
energies as those in the reactive transport system for the binary polymer system presented
in section Section 3.4. The coupled dynamic equations in the bulk and at the boundary are
given by the following

∂φ
∂t = −(M(1)

b −M(2)
b ∇

2)µb, x ∈ Ω,
µb = − b2

3 ∇2φ + 1
n (ln φ− ln Q1)− 1

n (ln(1− φ)− ln Q2) + χ(1− 2φ), x ∈ Ω,
∂φ
∂t = −(M(1)

c −M(2)
c ∇2

s )µc − γM(2)
b n · ∇µb, µc =

b2

6 n · ∇φ− η(H(ψ)− φ), s ∈ Γ1,
∂ψ
∂t = −(M(1)

s −M(2)
s ∇2

s )µs − βM(2)
b n · ∇µb, s ∈ Γ1,

µs = − b2

3 ∇2
s φs +

1
n (ln ψ− ln Q1)− 1

n (ln(1− ψ)− ln Q2) + χs(1− 2ψ) + ηH′(ψ)(H(ψ)− φ), s ∈ Γ1,
αM(2)

b n · ∇µb = βµs + γµc − µb, s ∈ Γ1,
n · ∇φ = n · ∇µb = 0, s ∈ Γ2, Γ3, Γ4,

(77)

where M(1)
b = −kb

Q2φ−Q1(1−φ)
ln(Q2φ)−ln(Q1(1−φ))

, M(1)
s = −ks

Q2ψ−Q1(1−ψ)
ln(Q2ψ)−ln(Q1(1−ψ))

, kb, ks, Q1, Q2 are
assumed dimensionless parameters. In this model, we allow dynamic, reactive boundary
conditions at Γ1, and homogeneous Neumann boundary conditions at the other sides of
the boundary. We adopt H(ψ) = ψ in the simulation and note that kb and ks parameterize
the reactive rates in the bulk and boundary, respectively.

In the numerical treatment of the coupled PDE system, we use the energy quadra-
tization technique coupled with the Crank–Nicolson method in time with time step
δt = 1× 10−5, and the second order finite difference method on staggered grids in space
Ω = [0, 1]2 with spatial mesh size 1/256 in both x and y direction to obtain a thermody-
namically consistent numerical algorithm. The numerical algorithm guarantees that the
total energy dissipates in time. For more details about the algorithm please refer to our
previous papers [7,56,57]. We use the following initial condition in the simulations

φ(x) = 0.3 + 0.01 ∗ ζ, φ(s) = limx→Γ1 φ(x), ψ(s) = φ(s), ζ is random ∈ [−1, 1]. (78)

Note that the Robin boundary condition on Γ1 reduces to the homogeneous Neumann
boundary condition when α→ ∞.

The numerical examples presented next are intended to showcase the effect of bound-
ary reactive dynamics on the bulk dynamics at a set of parameter values. To explore the
solution behavior of the model, a comprehensive study is needed which we will defer to
another study. In the first simulation, we show the time evolution of spinodal decompo-
sition of the binary polymer system with homogeneous Neumann boundary conditions
at all four sides in Figure 1a–c. In the second simulation, we set the homogeneous Neu-
mann boundary condition at Γi, i = 2, 3, 4 and the dynamic boundary condition at Γ1 with
α = β = γ = 1, ks = 0, η = 100 and present the solution in Figure 1d–f. In the third one,
we use α = β = γ = 1, ks = 5× 10−2, η = 100 with the same set of boundary conditions as
in the second simulation and show the solution in Figure 1g–i. The first case decouples the
bulk dynamics from the surface ones. The second case includes the coupling between the
surface dynamics and the bulk dynamics without surface reaction. The third case includes
reactive surface dynamics in dynamic coupling. Comparing the three simulations, we find



Entropy 2022, 24, 1683 17 of 24

that the dynamic boundary condition on the surface affects the bulk dynamics noticeably
due to the non-negligible volume fraction flux (inward or outward) across the surface.
The enhanced surface reaction on the boundary accelerate the merging of the droplets in
the bulk in Figure 1g–i.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Time evolution of the spinodal decomposition of the binary polymer system with static
(a–c) and dynamic boundary conditions (d–i), respectively. Snapshots of numerical solution φ are
taken at T = 0, 4, 8, respectively. (a–c). The solution is obtained with homogeneous Neumann
boundary conditions on Γi, i = 1, 2, 3, 4. (d–f). The solution is obtained with a set of dynamic
boundary conditions at ks = 0, η = 100, α = 1, β = 1, γ = 1. Dynamic boundary effects on the
bulk solution near Γ1 are observed. (g–i). The solution is obtained with a set of dynamic boundary
conditions at ks = 5× 10−2, η = 100, α = 1, β = 1, γ = 1. The boundary reactive dynamics shown
to impact the bulk solution more significantly near Γ1. The other model parameter values used in

the simulations are given as follows: β = γ = n = Q1 = Q2 = 1, M(1)
b = M(1)

c = 0, M(2)
b = M(2)

c =

M(2)
s = 1× 10−4, χ = χs = 4, kb = 0, b = 0.02.

In this reactive-transport model, the volume fraction flux dictates boundary dynamics,
as well as bulk ones near the boundary. We then depict the time evolution of the bulk
volume fraction and bulk free energy in the three cases, respectively, in Figure 2. We notice
that the bulk volume fraction with the homogeneous Neumann boundary condition is
constant with time as expected, whereas the bulk volume fractions in the other two cases
increase with time. The increasing bulk volume fractions in case 2 and case 3 lead to two
different patterns in Figure 1d,i. In addition, the bulk free energies with dynamic boundary
conditions dissipate faster than that with the homogeneous Neumann boundary condition.
The enhanced reaction process accelerates the energy dissipation rate in the bulk.
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(a) (b)

Figure 2. Time evolution of the bulk volume fraction in (a) and bulk free energy in (b) with respect
to the three simulations depicted in Figure 1. It is obvious that the bulk volume fraction with
homogeneous Neumann boundary conditions keeps as a constant. However, no matter whether or
not there is the reaction on the boundary, the bulk volume fraction increases with time when the
boundary conditions are dynamic. Compared with the DBCs without reaction, the bulk volume
fraction in the DBCs with reaction increases faster than that without reaction. The bulk free energy in
each case decays in time as expected. Due to the existence of chemical reaction, the bulk free energy
in the third simulation (with surface reaction) decreases faster than that in the second one (without
surface reaction).

Notice that the coupling energy at the boundary is a new physical quantity in this
formulation and an intriguing one that determines the difference between φ(s) and ψ(s)
and possibly influences transport dynamics in the bulk. Next, we investigate the effect
of the coupling free energy together with the boundary reactive dynamics on the bulk
dynamics at the presence of the inward/outward flux. The coupling free energy density
adopted in the simulations is given by

ec =
η

2
(ψ− φ)2, (79)

which measures the deviation between the two surface-bound variables. We present the
case where the inward/outward flux is present (α = β = γ = 1) in Figure 3. If η = 1× 102,
representing a strong coupling, ψ(s) can significantly affect φ(s) as shown in Figure 3a.
When η = 0 in Figure 3b, the coupling energy vanishes so does the boundary dynamic effect
of ψ(s). We also show the effect of surface reaction rate ks on bulk patterns in Figure 3b,d
with η = 1× 102 and η = 0, respectively. Figure 3a,b plot the numerical results without
the surface reaction (i.e., ks = 0), while Figure 3c,d do the ones with the surface reaction
(ks = 5× 10−2). Comparing Figure 2a,c (or Figure 2b,d), we find that the magnitude of the
chemical reaction at the boundary, measured by the reactive rate parameter, affects the bulk
dynamics near the reactive boundary significantly.

We then examine time evolution of the bulk volume fraction for these four test cases in
Figure 4a. We observe that the bulk volume fraction increases with time in test 1, 3, and 4,
which explain the mechanism of merging droplets or lamellar in Figure 3a,c,d. In Figure 4a,
the bulk volume fraction in test 2 decreases with time, which indicates the bulk volume
fraction flows from the bulk to the boundary so that there are less droplets near the
boundary in Figure 3b. We also examine time evolution of the total free energies in the
tests in Figure 4b, which show that our numerical algorithm used is energy-dissipative and
warrant the second law of thermodynamics numerically.
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(a) (b)

(c) (d)

Figure 3. The effect of the boundary reaction rate and magnitude of the coupling free energy on
bulk dynamics in the presence of inward/outward flux (α = β = γ = 1). Snapshots of the solution
of φ are taken T = 8. (a) Test 1: strong coupling without boundary reaction (ks = 0, η = 1× 102).
(b) Test 2: decoupling without boundary reaction (ks = η = 0). (c) Test 3: strong coupling with
boundary reaction (ks = 5× 10−2, η = 1× 102). (d) Test 4: decoupling with boundary reaction
(ks = 5× 10−2, η = 0). The other model parameter values are the same as those listed in the caption
in Figure 1. These four plots show that the non-trivial effect from both the coupling energy and the
boundary reaction impacts the bulk dynamics nearby the boundary. In (a,c, and d), there are large
merging droplets or lamellar shown near the boundary.

(a) (b)

Figure 4. Time evolution of the bulk volume fractions in (a) and the total free energy in (b) with
respect to the four tests in Figure 2. We find the bulk volume fractions increase with time in tests 1, 3,
and 4, which are related to the merging droplets or lamellar in Figure 3a,b,d. Since there is a leakage
of bulk volume fraction in test 2, we do not find any large droplets or lamellar in Figure 3b. The total
free energy in each test decays in time as expected.
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To explore the effects of η and ks further, we employ another set of α, β, and γ values
next. Firstly, we set α = 0.1, β = γ = 10 and plot the snapshots of the numerical solution
of φ at T = 8 with respect to several combinations of (η, ks) in Figure 5. Secondly, we set
α = 10, β = γ = 0.1 and plot the snapshots of the numerical solution of φ at T = 8 with
respect to the same combination of (η, ks) in Figure 6. There are almost no differences
among the snapshots in Figure 5 with respect to different η and ks. Coincidentally, there are
also no significant differences among the snapshots in Figure 6 with respect to different η
and ks either. Finally, we show the time evolution of the bulk volume fractions in Figure 7.
The results show the bulk volume fractions in tests 5–8 increase with time while the bulk
volume fractions in tests 9–12 decrease with time. The inward/outward flux is influenced
by the magnitudes of α, β, γ, and ks, η, which shows a slight effect on the pattern before
T = 8 in the eight tests.

(a) (b)

(c) (d)

Figure 5. The effect of the boundary reaction rate and magnitude of the coupling free energy on bulk
dynamics in the presence of inward/outward flux (α = 0.1, β = γ = 10). Snapshots of the solution
of φ are taken T = 8. (a) Test 5: strong coupling without boundary reaction (ks = 0, η = 1× 102).
(b) Test 6: decoupling without boundary reaction (ks = η = 0). (c) Test 7: strong coupling with
boundary reaction (ks = 5× 10−2, η = 1× 102). (d) Test 8: decoupling with boundary reaction
(ks = 5× 10−2, η = 0). The other model parameter values are the same as those listed in the caption
in Figure 1. These four plots show both the coupling energy and the boundary reaction impact the
bulk dynamics near the boundary.
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(a) (b)

(c) (d)

Figure 6. The effect of the boundary reaction rate and magnitude of the coupling free energy on bulk
dynamics in the presence of inward/outward flux (α = 10, β = γ = 0.1). Snapshots of the solution
of φ are taken T = 8. (a) Test 9: strong coupling without boundary reaction (ks = 0, η = 1× 102).
(b) Test 10: decoupling without boundary reaction (ks = η = 0). (c) Test 11: strong coupling with
boundary reaction (ks = 5× 10−2, η = 1× 102). (d) Test 12: decoupling with boundary reaction
(ks = 5× 10−2, η = 0). The other model parameter values are the same as those listed in the caption
in Figure 1. These four plots show that both the coupling energy and the boundary reaction impact
the bulk dynamics near the boundary.

(a) (b)

Figure 7. Time evolution of the bulk volume fractions in test 5–8 in (a) and test 9–12 in (b). We find
the bulk volume fractions increase with time in tests 5–8, which are related to the merging droplets or
lamellar in Figure 5. Since there are leakages of bulk volume fractions in tests 9–12, we find there are
lamellar formed by the other phase in Figure 6.
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5. Conclusions

Guided by the generalized Onsager principle, we have demonstrated a paradigm
for deriving coupled, thermodynamically consistent dynamic models for the bulk and
the boundary systematically using a phase field model for a binary fluid system as an
example. All the existing, thermodynamically consistent phase field models for binary fluid
systems accounting for dynamic boundary conditions are shown to be limits of this general
phase field model. Then, we use a structure-preserving algorithm that we developed to
numerically solve the phase field model for a binary fluid model with a reactive boundary
to illustrate how boundary dynamics, including reactive dynamics and coupling energy,
impact the bulk dynamics. This general framework anatomize the thermodynamical
models with respect to both the bulk and boundary equations, laying a groundwork for
analysing and designing efficient structure-preserving numerical approximations to these
models in the future.

Author Contributions: Conceptualization, Q.W.; Methodology, X.J. and Q.W.; Software, X.J.; Valida-
tion, X.J.; Formal analysis, X.J. and Q.W.; Investigation, X.J. and Q.W.; Data curation, X.J.; Writing –
original draft, X.J.; Writing – review & editing, Q.W.; Visualization, X.J.; Supervision, Q.W.; Project
administration, Q.W.; Funding acquisition, X.J. and Q.W. All authors have read and agreed to the
published version of the manuscript.

Funding: Xiaobo Jing’s research is partially supported by NSFC awards #12147165 and NSAF-
U1930402 to CSRC. Qi Wang’s research is partially supported by NSF awards OIA-1655740.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Q. Generalized Onsager Principle and its Application. In Frontiers and Progress of Current Soft Matter Research; Liu, X.Y., Ed.;

Springer Nature: Cham, Switzerland, 2020.
2. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405. [CrossRef]
3. Yang, X.; Li, J.; Forest, M.G.; Wang, Q. Hydrodynamic theories for flows of active liquid crystals and the generalized Onsager

principle. Entropy 2016, 18, 202. [CrossRef]
4. Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 1931, 38, 2265. [CrossRef]
5. Li, J.; Zhao, J.; Wang, Q. Energy and entropy preserving numerical approximations of thermodynamically consistent crystal

growth models. J. Comput. Phys. 2019, 382, 202–220. [CrossRef]
6. Zhao, X.; Qian, T.; Wang, Q. Thermodynamically Consistent Hydrodynamic Models of Multi-Component Compressible Fluid

Flows. Commun. Math. Sci. 2020, 18, 1441–1468. [CrossRef]
7. Zhao, J.; Yang, X.; Gong, Y.; Zhao, X.; Yang, X.; Li, J.; Wang, Q. A general strategy for numerical approximations of non-equilibrium

models part I: Thermodynamical systems. Int. J. Numer. Anal. Model. 2018, 15, 884–918.
8. Sun, S.; Li, J.; Zhao, J.; Wang, Q. Structure-Preserving Numerical Approximations to a Non-isothermal Hydrodynamic Model of

Binary Fluid Flows. J. Sci. Comput. 2020, 83, 50. [CrossRef]
9. Xing, X. Topology and geometry of smectic order on compact curved substrates. J. Stat. Phys. 2009, 134, 487–536. [CrossRef]
10. Steinbach, I.; Pezzolla, F.; Nestler, B.; Seeßelberg, M.; Prieler, R.; Schmitz, G.J.; Rezende, J.L. A phase field concept for multiphase

systems. Phys. D 1996, 94, 135–147. [CrossRef]
11. Singer-Loginova, I.; Singer, H. The phase field technique for modeling multiphase materials. Rep. Prog. Phys. 2008, 71, 106501.

[CrossRef]
12. Steinbach, I. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 2009, 17, 073001. [CrossRef]
13. Chen, L.Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 2002, 32, 113–140. [CrossRef]
14. Galenko, P.; Jou, D. Rapid solidification as non-ergodic phenomenon. Phys. Rep. 2019, 818, 1–70. [CrossRef]
15. Salhoumi, A.; Galenko, P. Gibbs-Thomson condition for the rapidly moving interface in a binary system. Phys. A Stat. Mech. Appl.

2016, 447, 161–171. [CrossRef]
16. Elder, K.; Grant, M.; Provatas, N.; Kosterlitz, J. Sharp interface limits of phase-field models. Phys. Rev. E 2001, 64, 021604.

[CrossRef]
17. Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958, 28, 258–267. [CrossRef]
18. Qin, R.; Bhadeshia, H. Phase field method. Mater. Sci. Technol. 2010, 26, 803–811. [CrossRef]

http://doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.3390/e18060202
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1016/j.jcp.2018.12.033
http://dx.doi.org/10.4310/CMS.2020.v18.n5.a11
http://dx.doi.org/10.1007/s10915-020-01229-6
http://dx.doi.org/10.1007/s10955-009-9681-9
http://dx.doi.org/10.1016/0167-2789(95)00298-7
http://dx.doi.org/10.1088/0034-4885/71/10/106501
http://dx.doi.org/10.1088/0965-0393/17/7/073001
http://dx.doi.org/10.1146/annurev.matsci.32.112001.132041
http://dx.doi.org/10.1016/j.physrep.2019.06.002
http://dx.doi.org/10.1016/j.physa.2015.12.042
http://dx.doi.org/10.1103/PhysRevE.64.021604
http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1179/174328409X453190


Entropy 2022, 24, 1683 23 of 24

19. Cirillo, E.N.; Ianiro, N.; Sciarra, G. Allen–Cahn and Cahn–Hilliard like equations for dissipative dynamics of saturated porous
media. J. Mech. Phys. Solids 2013, 61, 629–651. [CrossRef]

20. Nestler, B.; Choudhury, A. Phase-field modeling of multi-component systems. Curr. Opin. Solid State Mater. Sci. 2011, 15, 93–105.
[CrossRef]

21. Kim, J. Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 2012, 12, 613–661. [CrossRef]
22. Provatas, N.; Elder, K. Phase-Field Methods in Materials Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011.
23. Knopf, P.; Lam, K.F.; Liu, C.; Metzger, S. Phase-field dynamics with transfer of materials: The Cahn–Hilliard equation with

reaction rate dependent dynamic boundary conditions. ESAIM Math. Model. Numer. Anal. 2021, 55, 229–282. [CrossRef]
24. Jing, X.; Wang, Q. Thermodynamically Consistent Dynamic Boundary Conditions of Phase Field Models. arXiv 2022,

arXiv:2211.04966.
25. Gal, C.G. A Cahn–Hilliard model in bounded domains with permeable walls. Math. Method Appl. Sci. 2006, 29, 2009–2036.

[CrossRef]
26. Goldstein, G.R.; Miranville, A.; Schimperna, G. A Cahn–Hilliard model in a domain with non-permeable walls. Phys. D 2011,

240, 754–766. [CrossRef]
27. Liu, C.; Wu, H. An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: Model

derivation and mathematical analysis. Arch. Ration. Mech. Anal. 2019, 233, 167–247. [CrossRef]
28. Knopf, P.; Lam, K.F. Convergence of a Robin boundary approximation for a Cahn–Hilliard system with dynamic boundary

conditions. Nonlinearity 2020, 33, 4191. [CrossRef]
29. Knopf, P.; Signori, A. On the nonlocal Cahn–Hilliard equation with nonlocal dynamic boundary condition and boundary

penalization. J. Differ. Equ. 2021, 280, 236–291. [CrossRef]
30. Yoon, G.H. Topology optimization for nonlinear dynamic problem with multiple materials and material-dependent boundary

condition. Finite Elem. Anal. Des. 2011, 47, 753–763. [CrossRef]
31. Gavrilyuk, S.; Gouin, H. Dynamic boundary conditions for membranes whose surface energy depends on the mean and Gaussian

curvatures. Math. Mech. Complex Syst. 2019, 7, 131–157. [CrossRef]
32. Rakita, Y.; Lubomirsky, I.; Cahen, D. When defects become dynamic: Halide perovskites: A new window on materials? Mater.

Horiz. 2019, 6, 1297–1305. [CrossRef]
33. Martínez-González, J.A.; Zhou, Y.; Rahimi, M.; Bukusoglu, E.; Abbott, N.L.; de Pablo, J.J. Blue-phase liquid crystal droplets. Proc.

Natl. Acad. Sci. USA 2015, 112, 13195–13200. [CrossRef] [PubMed]
34. Chen, C.W.; Hou, C.T.; Li, C.C.; Jau, H.C.; Wang, C.T.; Hong, C.L.; Guo, D.Y.; Wang, C.Y.; Chiang, S.P.; Bunning, T.J.; et al. Large

three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 2017, 8, 727. [CrossRef]
[PubMed]

35. Rahman, M.A.; Said, S.M.; Balamurugan, S. Blue phase liquid crystal: Strategies for phase stabilization and device development.
Sci. Technol. Adv. Mater. 2015, 16, 033501. [CrossRef] [PubMed]

36. Colli, P.; Fukao, T.; Lam, K.F. On a coupled bulk–surface Allen–Cahn system with an affine linear transmission condition and its
approximation by a Robin boundary condition. Nonlinear Anal. 2019, 184, 116–147. [CrossRef]

37. Fukao, T.; Wu, H. Separation property and convergence to equilibrium for the equation and dynamic boundary condition of
Cahn–Hilliard type with singular potential. Asymptot. Anal. 2021, 124, 303–341. [CrossRef]

38. Gal, C.G.; Wu, H. Asymptotic behavior of a Cahn–Hilliard equation with Wentzell boundary conditions and mass conservation.
Discret. Contin. Dyn. Syst. 2008, 22, 1041. [CrossRef]

39. Garcke, H.; Knopf, P. Weak Solutions of the Cahn–Hilliard System with Dynamic Boundary Conditions: A Gradient Flow
Approach. SIAM J. Math. Anal. 2020, 52, 340–369. [CrossRef]

40. Colli, P.; Fukao, T. Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math.
Anal. Appl. 2015, 429, 1190–1213. [CrossRef]

41. Fukao, T.; Yoshikawa, S.; Wada, S. Structure-preserving finite difference schemes for the Cahn–Hilliard equation with dynamic
boundary conditions in the one-dimensional case. Commun. Pure Appl. Anal. 2017, 16, 1915. [CrossRef]

42. Okumura, M.; Furihata, D. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition.
Discret. Contin. Dyn. Syst. 2020, 40, 4927. [CrossRef]

43. Onsager, L.; Machlup, S. Fluctuations and irreversible processes. Phys. Rev. 1953, 91, 1505. [CrossRef]
44. Machlup, S.; Onsager, L. Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 1953, 91, 1512.

[CrossRef]
45. Dziuk, G.; Elliott, C.M. Finite element methods for surface PDEs. Acta Numer. 2013, 22, 289–396. [CrossRef]
46. Brenner, H. Interfacial Transport Processes and Rheology; Elsevier: Amsterdam, The Netherlands, 2013.
47. Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits.

J. Stat. Phys. 1997, 87, 37–61. [CrossRef]
48. Gal, C.G. Doubly nonlocal Cahn–Hilliard equations. Annales de l’Institut Henri Poincaré C Analyse non Linéaire 2018, 35, 357–392.

[CrossRef]
49. Jing, X.; Forest, M.G.; Zhao, J.; Wang, Q. Thermodynamically Consistent Models for Reactive Transport in Multi-phase

Incompressible Polymeric Systems. 2022, to be submitted.
50. Doi, M. Introduction to Polymer Physics; Oxford University Press: Oxford, UK, 1996.

http://dx.doi.org/10.1016/j.jmps.2012.08.014
http://dx.doi.org/10.1016/j.cossms.2011.01.003
http://dx.doi.org/10.4208/cicp.301110.040811a
http://dx.doi.org/10.1051/m2an/2020090
http://dx.doi.org/10.1002/mma.757
http://dx.doi.org/10.1016/j.physd.2010.12.007
http://dx.doi.org/10.1007/s00205-019-01356-x
http://dx.doi.org/10.1088/1361-6544/ab8351
http://dx.doi.org/10.1016/j.jde.2021.01.012
http://dx.doi.org/10.1016/j.finel.2011.02.006
http://dx.doi.org/10.2140/memocs.2019.7.131
http://dx.doi.org/10.1039/C9MH00606K
http://dx.doi.org/10.1073/pnas.1514251112
http://www.ncbi.nlm.nih.gov/pubmed/26460039
http://dx.doi.org/10.1038/s41467-017-00822-y
http://www.ncbi.nlm.nih.gov/pubmed/28959009
http://dx.doi.org/10.1088/1468-6996/16/3/033501
http://www.ncbi.nlm.nih.gov/pubmed/27877782
http://dx.doi.org/10.1016/j.na.2018.10.018
http://dx.doi.org/10.3233/ASY-201646
http://dx.doi.org/10.3934/dcds.2008.22.1041
http://dx.doi.org/10.1137/19M1258840
http://dx.doi.org/10.1016/j.jmaa.2015.04.057
http://dx.doi.org/10.3934/cpaa.2017093
http://dx.doi.org/10.3934/dcds.2020206
http://dx.doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/10.1103/PhysRev.91.1512
http://dx.doi.org/10.1017/S0962492913000056
http://dx.doi.org/10.1007/BF02181479
http://dx.doi.org/10.1016/j.anihpc.2017.05.001


Entropy 2022, 24, 1683 24 of 24

51. Levine, H.; Rappel, W.J. Membrane-bound Turing patterns. Phys. Rev. E 2005, 72, 061912. [CrossRef]
52. Novak, I.L.; Gao, F.; Choi, Y.S.; Resasco, D.; Schaff, J.C.; Slepchenko, B.M. Diffusion on a curved surface coupled to diffusion in

the volume: Application to cell biology. J. Comput. Phys. 2007, 226, 1271–1290. [CrossRef]
53. Yang, W.; Rånby, B. Bulk surface photografting process and its applications. I. Reactions and kinetics. J. Appl. Polym. Sci. 1996,

62, 533–543. [CrossRef]
54. Garcke, H.; Kampmann, J.; Rätz, A.; Röger, M. A coupled surface-Cahn–Hilliard bulk-diffusion system modeling lipid raft

formation in cell membranes. Math. Model. Methods Appl. Sci. 2016, 26, 1149–1189. [CrossRef]
55. Yang, W.; Rånby, B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J.

Appl. Polym. Sci. 1996, 62, 545–555. [CrossRef]
56. Jing, X.; Li, J.; Zhao, X.; Wang, Q. Second order linear energy stable schemes for Allen-Cahn equations with nonlocal constraints.

J. Sci. Comput. 2019, 80, 500–537. [CrossRef]
57. Zhao, J.; Wang, Q.; Yang, X. Numerical approximations for a phase field dendritic crystal growth model based on the invariant

energy quadratization approach. Int. J. Numer. Meth. Eng. 2017, 110, 279–300. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.72.061912
http://dx.doi.org/10.1016/j.jcp.2007.05.025
http://dx.doi.org/10.1002/(SICI)1097-4628(19961017)62:3<533::AID-APP11>3.0.CO;2-
http://dx.doi.org/10.1142/S0218202516500275
http://dx.doi.org/10.1002/(SICI)1097-4628(19961017)62:3<545::AID-APP12>3.0.CO;2-Y
http://dx.doi.org/10.1007/s10915-019-00946-x
http://dx.doi.org/10.1002/nme.5372

	Introduction
	Thermodynamically Consistent Phase Field Models with Consistent Dynamic Boundary Conditions
	Generalized Onsager Principle
	Models with the Free Energy up to Second Spatial Derivatives
	Dynamics in the Bulk
	Dynamics on the Boundary

	Effect of Mobilities in the Bulk and on the Surface

	Reduction to Limiting Cases
	The Jing–WangJW Model CMS 
	The Knopf–LamKL Model knopf2019convergence and the Liu–WuLW Model liu2019energetic
	 Non-Local Models including the Knopf–SignoriKS Model knopf2021nonlocal
	Reactive Transport Equation in a Binary Polymeric System

	Numerical Results for a Binary Reactive System
	Conclusions
	References

