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Abstract: We study an air-fluidized granular monolayer composed of plastic spheres which roll on a
metallic grid. The air current is adjusted so that the spheres never lose contact with the grid and so
that the dynamics may be regarded as pseudo two dimensional (or two dimensional, if the effects of
the sphere rolling are not taken into account). We find two surprising continuous transitions, both of
them displaying two coexisting phases. Moreover, in all the cases, we found the coexisting phases
display a strong energy non-equipartition. In the first transition, at a weak fluidization, a glass phase
coexists with a disordered fluid-like phase. In the second transition, a hexagonal crystal coexists
with the fluid phase. We analyze, for these two-phase systems, the specific diffusive properties of
each phase, as well as the velocity correlations. Surprisingly, we find a glass phase at a very low
packing fraction and for a wide range of granular temperatures. Both phases are also characterized
by strong anticorrelated velocities upon a collision. Thus, the dynamics observed for this quasi
two-dimensional system unveil phase transitions with peculiar properties, very different from the
predicted behavior in well-know theories for their equilibrium counterparts.

Keywords: phase transition; diffusion; granular matter

1. Introduction

The dynamics of granular matter has been an emerging field for several decades
now [1,2]. This is in part due to the fact that this kind of material has many industrial and
engineering applications [3] and is also partly due to the fact that granular setups can be
used as prototype non-equilibrium systems for experiments [4] and also from a theoretical
viewpoint. Thus, they allow for the development of the theory of non-equilibrium statistical
mechanics [5], fluid mechanics [6], and materials science [7,8]. Moreover, advances in the
theory of granular dynamics have clearly put in evidence that, at both the mesoscopic and
macroscopic levels, the dynamics of granular matter can present analogous phenomenology
to that of molecular matter and at the same time is usually present with a higher degree
of complexity [1,5,9]. This is the case, for instance, of phenomena such as stratification [3],
diffusion [10–12], segregation [13–16], mixing [3,17], laminar flow [6], hydrodynamic
instabilities [18,19], convection [18,20,21], turbulence [22,23], jamming [24,25], memory
effects [26,27], and phase transitions [17,28–32], just to name a few. With respect to a phase
transition, granular matter displays disordered states which can be, for instance, liquid-
like, glass transition or hyperuniform states, and ordered structures, such as nematic
phases [33,34], hexagonal [29,35], or cubic crystals [17,36]. It also shows phases that
are exclusive to two-dimensional (2D) systems, such as the hexatic phase. All of these
phenomena appear in granular matter in significantly more complex forms, in comparison
with molecular matter.

As an example of the higher complexity of granular dynamics, and just out of illus-
tration, the set of the steady base flows that can be observed in a plane Fourier/Couette
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configuration (a fluid confined within two infinite parallel walls) includes those that are
present in molecular gases plus new steady flows, which are specific to granular fluids [6].
In particular, the Fourier configuration (two static parallel walls) for a molecular gas yields
steady flows with a constant heat flux; these constant heat flux states are, however, possible
in a granular gas if the confining parallel walls are moving (Couette configuration) [37].
Moreover, in addition to this complex phenomenology that is also present in simpler forms
in molecular matter, there are phenomena in the granular matter that do not have an analog
in their equilibrium counterparts, such as granular nucleation [38], inelastic clustering [39],
collapse [4], or velocity correlations that, at a low density, clearly violate the molecular
chaos assumption [40]. So, granular dynamics can be regarded, from a theoretical point of
view, as an extension or generalization of the dynamics of molecular matter [5,9].

In this work, we focus instead on the phase transitions and the order/disorder phe-
nomenology in a monolayer of macroscopic spheres. Spheres are fluidized by turbulent air
currents in such a way that they keep rolling over a horizontal plane at all times. In this way,
the dynamics remain, after activation, as quasi-2D (or pseudo-2D, as preferred). On the
other hand, and as it is well known, a 2D equilibrium fluid crystallizes to a hexagonal phase
via a continuous transition that is mediated by a phase that is specific to two dimensions
(the hexatic phase). This process is well-described by the KTHNY scenario (from their
main authors Kösterlitz, Thouless, Halperin, Nelson, and Young; see their independent
works [41–44]). The hexatic phase appears exclusively in 2D and is characterized by having
quasi-long-ranged orientational correlations (with a power-law slow decay) and short-
ranged translational correlations (with an exponential decay). By contrast, the hexagonal
crystal shows the quasi-long-ranged translational order. Thus, as the crystal melts, the long
translational order is lost, and the correlations undergo a complete transformation process
toward complete disorder, which characterizes the liquid phase [45]. Moreover, the melting
process is defect-mediated [45].

This liquid–hexatic–crystal scenario has been observed in non-equilibrium systems
as well, although with (eventually) important differences. For instance, the hexatic phase
has been detected in a monolayer of vertically vibrated macroscopic spheres [35,46]. More
specifically, in the work by Olafsen and Urbach [35], the phenomenology for the quasi-2D
non-equilibrium system appears to be rather similar to that described for equilibrium
systems that are strictly two dimensional. In effect, a first transition was found, where the
crystal melts to the intermediate hexatic phase described by the KTHNY scenario, by means
of the expected (according to the predictions of the KTHNY scenario) process of the un-
binding of the dislocation pairs in the hexagonal lattice. A second transition consecutively
then occurs, where the hexatic phase decays to a liquid-like phase with complete disor-
der, through a process of the gradual unbinding of disclinations. In this way, the crystal
melting process occurs as a double continuous transition, without a coexistence with the
liquid phase ever taking place, unlike in three-dimensional matter. In the work by Olafsen
and Urbach [35], however, experiments were performed with only stainless steel spheres,
which are nearly elastic (see the work by Louge and collaborators [47], accompanied with
the comprehensive data table [47], where the coefficients of the restitution for steel and
other metals are given). In fact, the corresponding velocity distribution shows little to no
deviations off the Maxwellian distribution [48,49], meaning that the system is not far from
equilibrium [50,51]. In this way, one can say that the phase behavior might be expected not
to differ much from that of a truly equilibrium system. To the point that the experiments by
Olafsen and Urbach [35] in fact show virtually no difference with respect to the equilibrium
theory. However, the differences between the 2D phase behavior in granular matter and
the KTHNY were in fact to appear later. In this sense, further experiments performed by
Komatsu and Tanaka [46], with the same monolayer configuration, found an intriguing
disappearance of the KTHNY scenario. The key here is they used rubber spheres, which
are more inelastic than steel spheres [47]. Thus, non-equilibrium effects are significantly
stronger in their experiments, in comparison with the previous results by Olafsen and Ur-
bach [35]. Moreover, Komatsu and Tanaka observed an abrupt change from the continuous
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to the discontinuous melting. In fact, the melting transition for very inelastic spheres was
found to exhibit a phase coexistence between the crystal and the liquid, without the hexatic
phase ever showing up in the process, i.e., the KTHNY scenario disappears completely
at a high inelasticity. (In fact, a previous result for brass spheres, also more inelastic than
stainless steel [47], in a two-layer system, already proved that increasing the degree of
inelasticity can importantly alter the phase behavior of the granular layer [30]).

Furthermore, the 2D phase behavior in active matter seems to be even more complex
than in granular matter. In fact, a complex mélange between the KTHNY scenario with
the motility-induced phase separation (that is characteristic of active matter [52]) can be
observed for wide ranges of particle density and at strong particle activity [53]. In summary,
according to strong experimental and computational evidence, the KTHNY scenario is just
one of the possible realizations of the phase behavior in 2D or nearly 2D non-equilibrium
systems. Moreover, alternative scenarios in equilibrium systems seem to be posssible
as well and they depend upon the type of interaction between the particulate system
constituents [45]. In effect, first-order transitions in 2D equilibrium systems seem to be
viable, according to the theoretical analysis and Monte Carlo simulations, if the dislocation
and disclination unbinding are concurrent [45]. Moreover, this concurrence appears to
depend upon the features of the interactions between the particles of the system. Therefore,
particle interactions seem to play an important role in the phase behavior in 2D. This idea
motivates the present work.

Thus, the present work, which deals with a system of air-fluidized ping-pong balls, is
motivated by the previous discussion on the phase behavior in 2D particulate systems. A
previous experimental observation puts in evidence the existence of long-range repulsive
interactions between air-fluidized particles [54]. This interaction, whose origin lies in the
hydrodynamic interactions due to an interstitial fluid [55] (air in this case), is absent in the
case of the vibrated system. Moreover, in our case, this repulsion does not prevent particle
direct encounters (collisions) [54,56]. Thus, due to the combined action of inelastic collisions
plus the repulsive potential between particles, a different phase behavior could be expected.
An analysis is performed of the eventual departures from the KTHNY scenario when long-
ranged hydrodynamic interactions would be relevant for a more complete understanding of
the phase behavior in two-dimensional systems. Although this experimental configuration
had been studied in a number of previous works [54,56–59], the focus was put on other
phenomenology, and no detailed analyses were carried out on the phase behavior, except for
more recent work where a generic description has been provided [56,59].

For this reason, we focus in this work on the specific features of the observed phases
for air-fluidized rolling spheres and the transitions between them. As we will see, several
discontinuous phase transitions can clearly be detected as the air upflow intensity is
increased, giving rise to states with either a single phase or two coexisting phases. We
will perform the study as a function of the average granular temperature of the system
(here defined as T = (1/2m〈v2〉), where 〈v2〉 is the square of the particle velocity spatially
averaged over all the steady states). We will report the results for the system particle
density, granular temperature field, and pair correlation function. Additionally, we study
the diffusion and velocity autocorrelations of each of the observed phases, and we report
a strong discontinuity for these magnitudes between the coexisting phases. Moreover,
the combined analysis of these magnitudes allows us to identify the following phases:
the arrest, glass, liquid, and hexagonal crystal phases. In particular, we show that the
glass and crystal phases are clearly subdiffusive. Surprisingly, the liquid phase can display
either normal diffusion or weakly subdiffusive (or superdiffusive) behavior. As we will
see, these transitions in the diffusive behavior of the system occur in a discontinuous
way. Furthermore, in the glass phase, particle velocities are strongly anticorrelated at
early times, whereas the crystal anticorrelations are weak. We also found a strong energy
non-equipartition in all the cases of the two coexisting phases. Most importantly, we will
report the complete absence of the KTHNY scenario in all the reported results here, which
comprise a comprehensive set of experiments.
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The paper is structured as follows: Section 2 is devoted to the description of the
experimental setup and methods and also to a qualitative description of the observed phase
behavior. In Section 3, the results for the particle diffusion and velocity correlations of
each of the observed phases are analyzed separately and in detail. Finally, in Section 4, the
results and final conclusions are discussed.

2. Description of the Experiments
2.1. Setup

The experimental configuration we used in this work was designed in our lab. It
consists of an air table setup [60]. In our case, it is composed of two essential parts: (a) the
driving unit, which produces a stable quasi-laminar air upflow, consisting of a high-power
fan (SODECA HCT-71-6T) coupled to a system of short tunnel winds; and (b) the arena,
which consists of a flat metallic plate with a hexagonal lattice of perforatecd circular holes
(of 3 mm diameter) which is surrounded by circular walls (PLA plastic) of 4.5 cm height.
The metallic plate is carefully leveled to be horizontal (so that gravity does not enter into
the dynamics if it is restrained within the plate). Both parts are connected by a pair of
perpendicular channels that conduct the air released from the fan upward to the metallic
grid. See Figure 1 for a schematic representation of this configuration. A set of spherical
particles (ping-pong balls, made of ABS plastic with mass density 0.08 g cm−3) are placed
on the metallic grid. The spherical particles are all identical, having a diameter of σ = 4 cm
and a mass density ρ = 0.08 g cm−3 (ABS plastic material). The metallic grid has a square
shape (80× 80 cm2). A (circle-shaped) plastic wall is placed inside, centered, so that the
particles are enclosed within this circular region of radius R = 36.25 cm.

Figure 1. Sketch of the experimental set up.

In the middle of the conducting channels, there is a foam that homogenizes the upflow.
This foam helps the upflow reach under quasi-laminar conditions when it impinges from
below the set of spherical particles. This ping-pong ball on air table configuration is inspired
by a previous work by Ojha et al., where the solution to the equation of movement of a
Brownian particle (consisting of a ping-pong ball in an air table) was found and compared
to their experimental results [12]. Fan power is carefully adjusted so that the particles never
lose physical contact with the plate and so they keep rolling over the grid, much in the
same way of the aforementioned and other previous works [12,54,56,57,59].

Within the appropriate ranges of fan power, air upflow past the spheres produces
turbulent vortexes [12,56,61,62] that yield stochastic horizontal movement to the spheres
and thus the particle dynamics (if sphere rolling is excluded) are strictly two dimensional.
For a dimensional analysis with similar particles, please refer to the methods section in [12]
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and/or supplementary material file in [56]. As fan power is increased, the system passes
through a series of different physical configurations which are accessed through phase
transitions. We have observed phase coexistence during these transitions for experiments
in a range of values of particle density. We characterize particle density by means of the
packing fraction, which is defined here as φ ≡ Nσ2/(4R2), where N is the number of
particles present in the system. For this set of experiments, we used 40 ≤ N ≤ 252, which
roughly corresponds to packing fractions 0.12 < φ < 0.76. All curves presented in the
manuscript result from averaging all of the present particles in each experiment.

We perform each experiment by setting the fan onto a constant power. Once a sta-
tionary state is achieved, we record the particles dynamics from above by means of a
high-speed camera (Phantom VEO 410L) at 250 fps. We double check afterward that the
registered interval of the experiment is in effect under steady-state conditions by plotting
vs. time the relevant space-averaged magnitudes (e.g., average kinetic energy). In any case,
it is rather straightforward to ensure steady-state conditions by waiting for a time interval
equivalent to several collisions per particle [63]. Because the recorded stationary section of
the experiment that is recorded is always 100 s long, a large set of steady-state statistical
replicas corresponding to recorded frames is available to process (≈2× 104. In this way, we
can achieve statistical accuracy of our data. Data sets are obtained by processing experiment
movies with a particle tracking code that we developed specifically for this configuration.
This code is composed of a series of OpenCV [64] and TrackPy [65] functions, which allow
to obtain all particle positions over the acquired images and tag each particle so that they
will be tracked through the entire movie. An exact copy of the particle tracking code (in
python language) is freely accessible [66].

As described in detail in a previous work (see supplementary material in [56]), we
have achieved a high degree of accuracy in the particle tracking because measurement
error of particle displacement between consecutive frames is not higher than 0.03 σ (less
than 3% relative to particle diameter).

2.2. Phase Behavior

Figure 2 presents a series of movie snapshots displaying the different phase states that
we have detected in our experiments for two different packing fraction values (φ = 0.18
for the first row, φ = 0.55 for the second row). For each packing fraction, snapshots are
placed in ascending order of fan power. For φ = 0.18 and the lowest fan power, a subset
of particles is still static, because the turbulent vortexes intensity is not strong enough
so as to overcome static friction. We denote this static phase as arrest phase due to its
static nature. It corresponds to the upper right corner in Figure 2a. Interestingly, the arrest
phase has been detected before in analogous configurations [4] and is known to develop
a quasi-static ordered state that has been denoted as collapse phase. If current intensity
is high enough, however, a subset of the spheres can activate its thermal-like movement
(that, as we discussed, is due to the turbulent vortexes generated by the upflow past the
spheres). Their movement is initially limited so that we can observe caging effects for
these particles (bottom left section in Figure 2a). Thus, we have detected coexistence
between the arrest phase and a glass phase for the caged moving particles (Figure 2a).
The arrest phase eventually disappears as particles gradually activate, giving rise to a
pure glass phase and afterward (at stronger upflow intensity) to the coexistence of the
glass–liquid phase (for this coexistence, see Figure 2b, with the glass phase occupying the
lower-density region in the upper right corner of the snapshot). At higher density (φ = 0.55,
we observe consecutively: liquid phase (Figure 2c), liquid–crystal coexistence (the crystal
is hexagonal, see the developing hexagonal structure, with some defects, in bottom right
corner in Figure 2d), and crystal–liquid phase (Figure 2e). At this point, if the fan power is
still increased, there is gradual shrinkage of the hexagonal crystal (which melts). The crystal
completely disappears above a threshold value of air-current intensity. At this point, only
the liquid remains (again). This last stage is not represented because they look much like
the snapshots in Figure 2c,d. In any case, grasping the phase configuration out of these
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snapshots is not straightforward, and for this reason, we analyze in more detail the particle
trajectory structure in the next section.

Please see, in the Data Availability statement, the web link where a movie version of
Figure 2 can be downloaded.

a

d

b

c e

Figure 2. Snapshots of the different phase configurations observed in experiments. Packing
fraction is φ = 0.18 for (a,b) and φ = 0.55 for (c–e). Granular temperatures are, in order:
T/m = [0.16, 0.74, 0.38, 0.47, 0.70] σ2s−2 for the configurations (same order): glass–arrest phase,
glass–liquid, liquid, crystal, crystal–lquid.

3. Results
3.1. Trajectories and Granular Temperature Field

In order to analyze the dynamic properties (except for the static arrest phase) in more
detail, we separately analyze, for each phase, the trajectory shape, the temperature field,
and the properties of the diffusion and velocity autocorrelations. We define the temperature
field as T(x, y) = (1/2)〈v2〉xy, where 〈v2〉xy stands for the square of the particle velocity
(v) averaged at a given point (x, y) of the system, through all the measured steady states.
In this work, we use the concept of granular temperature (or simply, temperature) in the
same sense as first defined by Kanatani [67].

Let us now comment on the phase behavior and the transitions we detected. In the
first transition, at a low granular temperature, a glass is observed in coexistence with an
arrest phase. By the arrest phase, we refer to particles that, at a very low-energy input, lie
still due to friction [4,32]. In the second phase transitions, the glass decays to a liquid-like
phase, coexisting with it as it shrinks. At even higher temperatures, a hexagonal crystallite
develops in which we can observe, in certain ranges of the driving intensity, a coexistence
between a liquid and a hexagonal crystal [56]. Moreover, we have detected that a strong
energy non-equipartition occurs between the coexisting phases.

These results are illustrated in Figure 3. This figure shows, for a representative set of
experiments, the particle trajectories in the left column, the 2D color maps of the granular
temperature T(x, y) in the middle column, and the pair correlation function g(r) in the
right column. The experiments shown in Figure 3 correspond to two different densities
(low, with φ = 0.18, and high, with φ = 0.55), with each subset in an ascending order
of the upflow-current intensity. In it, we can see the phases that consecutively appear
as more energy is input into the system. Figure 3a shows two qualitatively different
types of arrangements of particle-trajectory phases: a disordered lattice of caged particle
trajectories (caged in the sense that the moving particles remain close to a disordered
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set of fixed points) and a disordered lattice of static particles (arrest phase). In effect,
the former set of trajectories can be identified as a glass phase because, although the particles
undergo a continuous stochastic movement, the caging effects are predominant [68,69]
and a disordered but permanent particle trajectory structure (lattice) can be observed.
To the best of our knowledge, it is not very common to find glass transitions at such low
densities. With respect to the latter, it is apparent that the particles remain static during the
complete 100 s experiment. From this qualitative difference between these two phases, a
strong energy non-equipartition emerges. In effect, as we can see in Figure 3b, the region
corresponding to the arrest phase has a vanishing granular temperature T, whereas for the
glass phase T is clearly non-null. Note that, contrary to what has been observed in the thin
layers, we have not detected a static phase that yields a hexagonal-ordered collapse phase,
as in a vertically vibrated monolayer of spheres [4]. This peculiar arrest phase, which is
also present in a vibrated granular monolayer [32], disappears here gradually as the upflow
current increases, to a point where we can observe the two-phase coexistence between
the glass-like and liquid-like phases, as in Figure 3c, where the liquid phase is observed
in the region where all the trajectories mix and cross each other during the experiment;
this is in contrast to the disordered pattern of the localized trajectories visible in the upper
left corner. Figure 3d–f show a fully developed glass phase at a low density (φ = 0.18).
Figure 3g–i, at a higher temperature, show the glass-and-liquid phase coexistence. The
g(r) curves for the glass phases (see the green curves in Figure 3c,f,i) do not help to
distinguish the glass phase from the liquid phase. We will have to resort to the peculiar
dynamic properties of the glass for that matter (the mean-squared displacement and velocity
autocorrelations) [68]. As we can see in Figure 3e,h, the energy non-equipartition is strong
here again, with the glass phase being noticeably cooler. At a higher density (packing
fraction φ = 0.55), we observe, consecutively, a monophase liquid-like system (Figure 3j–l);
a developing hexagonal crystal which almost occupies the entire region (Figure 3m–o)
and whose g(r) shows a higher first maximum; and a two-phase system, with a liquid
coexisting with a hexagonal lattice (Figure 3r). With respect to the corresponding behavior
of their pair correlation function, g(r), the curves for the liquid and the crystal are noticeably
different, with the curves for the crystal having stronger secondary peaks, as usual [35].
With respect to T(x, y), notice also that the non-equipartition is also present in the case of
the liquid–crystal two-phase system, with the crystal colder than the liquid (Figure 3h).

Overall, the fact that the non-equipartition is noticeably present in all the two-phase
system configurations denotes that each phase has its own peculiar dynamics. In particular,
this may be an indication that the diffusion process in each phase might have different
scales and behavior [70]. In this sense, note that the structure of the Brownian trajectories in
each phase is very different, as the trajectories in the left column of Figure 3 show. For this
reason, by identifying first which trajectories belong to each phase in all the experiments
(with the aid of the average coordination number for each particle, as extracted from
the corresponding Voronoi tesselations [56]), we have computed the diffusion coefficient
for each phase. This allows us to track the mean-squared displacement (MSD) for each
phase independently. Figures 4 and 5 show the evolution of the ensemble mean-squared
displacements which in 2D can be defined as

〈∆r(t)2〉 ≡ 〈∆x(t)2 + ∆y(t)2〉, (1)

where ∆x(t)2 ≡ (1/N (t))∑{t0}[x(t + t0)− x(t0)]
2 (and analogously for ∆y(t)2). For each

lag time, and under steady-state conditions, the squared displacements ∆x(t)2, ∆y(t)2 can
be obtained from averages over the N (t) available initial times t0 (basically, m where
Nst,frames is the number of images taken under the steady-state conditions, in our case,
Nst,frames u 25,000). The diffusion coefficient can be obtained from the MSD, because most
commonly the following relation is fulfilled [56,70]

〈∆r(t)2〉 = (4D)tα, (2)
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where α is a constant usually called the diffusive exponent. (When Equation (2) is not
fulfilled, the diffusion is said to be anomalous [70]). Trivially, from (2), the diffusive
exponent α corresponds to the slope of the diffusive part, in a Log–Log representation,
of the MSD vs. lag time, as in the curves displayed in Figures 4 and 5. By the diffusive
part, we mean, as usual, the part of the MSD vs. time curve that is after the ballistic regime,
which should always have α = 2 [70]. As a guide to the eye, the ballistic (α = 2) and normal
diffusion (α = 1) values were indicated inside each panel in Figures 4 and 5. However,
we have found that the slope in the diffusive part of the MSD curves is not constant in
some cases, and it may be said that the diffusion is anomalous in these cases, which is
in agreement with the experimental observations in a previous analysis [59]. Therefore,
the computed diffusive exponents α for these cases and the corresponding slope (and thus,
diffusion coefficient) from Equation (2) represent an averaged value.

In Figure 4, at a low packing fraction (φ = 0.18), we can see the MSD for the following
cases: observed—glass (a), glass–liquid (b), and liquid (c); whereas, in Figure 5, we can
see the cases only crystal (a), crystal–liquid (b), and only liquid (c). It is very apparent that
the behavior of the MSD for each phase is very different. In particular, the monophase
glass configuration (Figure 4a) presents an MSD with a local maximum at the end of the
ballistic regime, after which it presents a characteristic curvature in the diffusive part of the
curve, which is also strongly subdiffusive. The MSD behavior of the glass-like phase is thus
characterized by a short plateau in the MSD followed by an increase (when the particles
escape the current “caging” area and move to a new location). At a higher T, in Figure 4b,
we can see the glass–liquid coexistence. In this case, the emerging liquid phase is still
weakly subdiffusive (although with a clearly faster MSD, if compared to the companion
glass). This can be attributed to a liquid structure that is still in development as the glass
shrinks in size. In Figure 4c, the system with only a liquid phase already shows a normal
diffusion scenario. In contrast, Figure 5a, at a higher packing fraction (φ = 0.55), shows a
single crystal configuration, with the diffusive part of the MSD close to stagnation (the zero
time growth of the MSD), i.e., the dynamics are very strongly subdiffusive, as evidence of
the crystalline diffusion [29]. In the case of the crystal–liquid coexistence, Figure 5b, the less
disordered phase (glass) clearly undergoes subdiffusion, whereas the liquid has normal
diffusion. Normal diffusion can also be seen in Figure 5c, where the single liquid phase is
recovered. As we said before, and it is still worth remarking here again, an important and
surprising result is the confirmation, in view of the MSD behavior illustrated in Figure 4,
of a glass transition with clear caging processes at low densities, when in general these
processes are observed (to the best of our knowledge) in dense granular fluids [71]. This
result may be the outcome of an effective potential developed by the interaction between
the spherical balls through the intermediate air flow. In the same way, the crystal appears
at unusually low densities, in comparison with the case of hard particles [35].
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Figure 3. Phase behavior of our system in a central region of interest. Left column represents particle
trajectories; right column shows the corresponding granular temperature 2D fields (T). Packing frac-
tion is φ = 0.18 for (a–f) and φ = 0.55 for (g–o). The values of the granular temperature for each col-
umn of panels are given by, from top to bottom, respectively: T/m = [0.16, 0.69, 0.74, 0.38, 0.47, 0.70]
σ2s−2. In (a–c), we can see phase coexistence between a glass phase and the arrest phase at low den-
sity. In (d–f), low density but higher T, there is only glass, whereas for (g–i) there is glass-and-liquid
phase coexistence. (j–l) shows that the system is completely disordered (there is only a liquid phase)
state that can be observed at intermediate temperatures for all densities. At higher densities, if the
liquid is further heated (air upflow is increased), a cooler crystallite develops in coexistence with
the liquid; the crystal grows as T is increased, eventually occupying the entire system, as in (m–o).
At stronger driving, the crystal tends to melt, thus shrinking in size, as seen in (p–r).
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Figure 4. Log–Log representation of the mean-squared displacement for three representative experi-
ments of φ = 0.18, for different T: (a) T/m = 0.16 σ2s−2; (b) T/m = 0.74 σ2s−2; (c) T/m = 1.87 σ2s−2.
Case (b) corresponds to the state shown in Figure 3c,d.
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Figure 5. Log–Log representation of the mean-squared displacement for three representative experi-
ments of φ = 0.55, for different T: (a) T/m = 0.25 σ2s−2; (b) T/m = 0.70 σ2s−2; (c) T/m = 0.77 σ2s−2.
Case (b) corresponds to the state shown in Figure 3i,j.

3.2. Diffusion Coefficient

From the results in Figures 4 and 5, we may conclude that the evolution of the MSD for
each phase is qualitatively very different, which confirms our identification of the different
observed phases, as previously discussed. Next, we computed the diffusion coefficient
separately for each phase in this section. We represent in two figures our measurements of
the diffusion coefficient. In Figure 6, D is represented vs. the packing fraction for a series
of experiments in different ranges of T: T/m < 0.6 σ2/s2; 0.6 σ2/s2 < T/m < 0.8 σ2/s2;
0.8 σ2/s2 < T/m < 1.2 σ2/s2, and T/m > 1.2 σ2/s2, whereas in Figure 7, we plot D vs. T
for three representative packing fraction values (φ = 0.18; 0.46; 0.55).

Figure 6 highlights the diffusive stages of the different phase configurations, including
those with a phase coexistence (the coexisting phases are here joined with dashed vertical
lines). As we can see, at T/m < 0.6 σ2/s2 (top left panel), the diffusion coefficient gen-
erally tends to decrease with an increasing φ. Moreover, only glass or liquid phases are
visible at a very low T, with the liquid coexisting with the glass at low packing fractions,
whereas at intermediate packing fractions, we find the crystal–liquid coexistence and at
a larger φ only the crystal is detected, in this case with the lowest D values. At higher
intermediate temperatures (at 0.6 σ2/s2 < T/m < 0.8 σ2/s2, in the top right panel, and
at 0.8 σ2/s2 < T/m < 1.2 σ2/s2, bottom left), we can see the glass–liquid at a low density
and again the effects of a larger T cause the withdrawal of the crystal–liquid coexistence
at an intermediate φ, leaving the liquid (red symbols) alone. Again, at a higher φ, the
crystal–liquid and crystal are detected. Finally, in the largest range of values of T, it is
apparent that only the liquid is observed (except for a configuration with the densest system
we used) and that in this regime the diffusion coefficient is nearly constant with respect
to the packing fraction, except for a steep decay at a large φ (where the only two cases of
coexistence with a crystal are observed). It is also interesting to note that an extrapolation
of the curve averaged by the crystalline states extends to the low-density glass transition
zones. In summary, D tends to decrease for denser systems, except at a very high T, where
it tends to keep approximately constant.
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Now, Figure 7, which represents D vs. T, summarizes well the quantitative differences
in the diffusion coefficient for the three phases (glass, liquid, and crystal), together with the
ranges of the coexistence of the glass and crystal with the liquid phase. Overall, the liquid
predominates at a low and a moderate density (the left and center panels), whereas the glass
and crystal predominate at a very low and high density, respectively. It can also be observed
that both the glass and crystal are less diffusive than the liquid, as it was to be expected,
with the crystal having the lowest values, systematically, of the diffusion coefficient.

It is important to remark here that Figures 6 and 7 show plenty of evidence of the
finite differences in the diffusion coefficient in the same system state, as a strong experi-
mental proof of the discontinuous phase transition and phase coexistence. Moreover, we
have not observed in any case a continuously changing diffusion coefficient between the
different phases.

Figure 6. Diffusion coefficient D vs. packing fraction φ divided in four panels by the overall granular
temperature of each experiment, for different temperature ranges (in units of σ2s−2): (a) T/m < 0.6,
(b) 0.6 < T/m < 0.8; (c) 0.8 < T/m < 1.2; (d) T/m > 1.2. Each point corresponds to an experiment.
Wherever coexistence is visible, we have split D into two different points for the fluid (red) and
crystal/glass phase (blue/green).
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Figure 7. Average diffusion coefficients represented against granular temperature for three different
packing fractions: (a) φ = 0.18; (b) φ = 0.46; (c) φ = 0.55. Each point corresponds to an experiment.
Wherever coexistence is visible, we have split D into two different points for the fluid (red) and
crystal/glass phase (blue/green).
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As we mentioned before, previously to computing the diffusion coefficient, we de-
termine the diffusive exponent α as defined by Equation (2), and whose value defines
if the system is under superdiffusion (α > 1), subdiffusion (α < 1), or normal diffusion
(α = 1) [70,72]. So, we plot in Figure 8 the measurement of α for all the performed experi-
ments altogether. They are represented as a function system granular temperature T for
all the particle densities combined (here represented in the form of the packing fraction φ).
The red points signal the liquid-phase diffusive exponents, green stands for the glass phase,
and blue for the crystal. Note the logical order of α by the phases, with the crystal having
the lowest values, the glass in the intermediate region, and the liquid having the largest
α. Moreover, as we can see, the crystal and also the glass phases are very subdiffusive.
The liquid, however, can be either weakly subdiffusive or weakly superdiffusive. The
superdiffusive values (α > 1) are reached after the phase coexistence has vanished, i.e., the
pure-liquid phase tends to be superdiffusive, which we think is an indication again of
the repulsive forces between the particles. Especially at not large densities, the repulsion
between the particles may aide the particles diffuse in between the neighboring particles,
thus enhancing the diffusion.

0.0 0.5 1.0 1.5 2.0 2.5

T/m [σ2s−2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
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α
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Fluid

Figure 8. Diffusive exponent represented against granular temperature for all experiments. It has
been calculated by averaging the logarithmic slope of the MSD in the [3–6] s range. Each point
corresponds to an experiment; where coexistence is visible, we have split D into two different points
for the fluid (red) and crystal/glass phase (blue/green).

3.3. Velocity Autocorrelations

We also represented the velocity autocorrelation function, computing its trend for
the glass, liquid, and crystal. The velocity autocorrelations provide information on the
dynamics of the particle collision, in particular on the statistical relation between the pre-
collisional and post-collisional velocities. We define the velocity autocorrelation function at
lag time τ as usual [17]

Av(τ) =
〈v(t) · v(t + τ)〉
〈v(t) · v(t)〉 , (3)

where 〈. . . 〉 stands for the ensemble averaging over all the steady states at initial times
t0. Figure 9 represents the velocity correlations Av(τ) in the glass–liquid transition and
Figure 10 represents Av(τ) for the crystal–liquid transition. It is to be noted that the
particles in the glass phase (the left panel in Figure 9) show strong velocity anticorrelations
at early times (Av(τ < 1) < 0) and that these anticorrelations are transmitted to the
coexisting liquid (the center panel of Figure 9). Surprisingly as well, the depth of the
anticorrelation well is increased in the glass–liquid two-phase system, with respect to the
pure glass (the left panel). Furthermore, the liquid remains anticorrelated at τ < 1 even
when the glass has disappeared at a high T. By contrast, the pure-liquid phase does not
display the autocorrelations in the crystal–liquid transition (the right panel in Figure 10),
as well as an increase in the time required for the autocorrelation function to cancel for the
first time. However, there are weaker anticorrelations in the pure crystal (the left panel
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in Figure 10) and the crystal–liquid two-phase state, and a very short time for the first
cancellation of the autocorrelation function, typical of the crystal phase. Let us remark here
that the right panels in Figures 9 and 10 combined reveal that the liquid phase has a variety
of internal behaviors. This variety of behaviors is closely related to the occurrence of the
glass transition at low densities because, as mentioned before, at low densities there is a
repulsive interaction between the particles mediated by the upward air flow (as if they had
a soft core with a diameter greater than that of the balls), and when the density is increased,
this effective potential does not prevent the direct collision between the spherical balls.
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Figure 9. Normalized velocity autocorrelation at φ = 0.18, and for three different values of T:
(a) T/m = 0.16 σ2s−2; (b) T/m = 0.74 σ2s−2; (c) T/m = 1.87 σ2s−2. They correspond to the cases
presented for the MSD in Figure 4.
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Figure 10. Normalized velocity autocorrelation for φ = 0.55, and three different T: (a) T/m = 0.25 σ2s−2;
(b) T/m = 0.70 σ2s−2; (c) T/m = 0.77 σ2s−2. They correspond to the cases presented for the MSD in
Figure 5.

4. Discussion

We have studied the nearly 2D dynamics of a system of (inelastic) rolling spheres
under steady-state conditions. The dynamics of the set of spheres is sustained by the means
of the turbulent vortexes that originate out of an air upflow past the spheres. As we have
seen, the phase behavior of the system is very complex. We have been able to detect an
arrest phase (the particles that remain still or static for the low-energy input), a glass phase
(the disordered lattice of Brownian particles with sporadic jumps to other lattice positions),
a liquid (a completely disordered phase), and a hexagonal crystal. The detection of each
of the phases has been achieved by the means of a direct observation of the arrangement
of the particles and/or an analysis of the properties of the corresponding pair correlation
function. Interestingly, the glass phase appears at very low densities, which is a very
rare situation [69]. The appearance of this low-density glass is undoubtedly due to the
underlying long-ranged repulsive forces between the air-fluidized particles [54]. However,
we need to point out that one could not expect that the existence of these long-ranged
interactions would necessarily lead to the emergence of a low-density glass [55]. As a
matter of fact, this kind of low-density glass phase had not been reported previously in
granular matter, to the best of our knowledge. Moreover, the glass and the hexagonal
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crystal can coexist with the liquid (again, the glass–liquid coexistence had not been reported
previously in the context of granular dynamics, to the best of our knowledge).

Additionally, we have observed that the glass can also coexist with the arrest phase, at
a low air-current intensity (the dynamics in the process of activation were again not detected
previously). In fact, the dynamics of the system are so complex that we have been able to
detect important qualitative differences in the behavior of a single phase. For instance, as we
mentioned above, the velocities of the particles in the liquid phase can be either strongly
anticorrelated at early times or not anticorrelated at all, depending on the configuration of
the system. As another example, the crystal can display a vanishing diffusive exponent
(and in any case, the crystal is always strongly subdiffusive; see Figure 8).

For all the coexisting phases, we have observed a strong energy non-equipartition
and finite jumps in the values of magnitudes, such as the diffusion coefficient (and its
diffusive exponent; see Figures 6–8), and the depth of the first minimum of the respective
velocity autocorrelation function. This supports the evidence that the phase transitions we
described for these experiments are discontinuous, as opposed to the continuous nature
of the melting transition described in the KTHNY scenario. Furthermore, the diffusive
properties of the observed phases are, in general, rather different. Both the glass and the
crystal are always subdiffusive and present anticorrelated velocities. In contrast, the liquid
presents an always nearly normal diffusion. Furthermore, all the transitions observed
in this work occur through the phase coexistence, contrary to the liquid–hexatic–crystal
continuous phase transition without the coexistence that occurs for the KTHNY scenario.
Specifically, the fact that the hexagonal crystal in our setup melts by shrinking in size,
giving rise to a growing liquid, and that the transition is not defect mediated, guarantees
the complete absence of a hexatic phase and a defect-mediated melting process.

Our experimental configurations are very far away from equilibrium because they
simultaneously undergo strong repulsive forces (due to the interstitial air) and energy
dissipation (due to friction). We think this is the reason for the strong differences between
the phase transition scenario observed for air-fluidized rolling spheres and the KTHNY
scenario described for both 2D equilibrium systems [45] and (under certain conditions) non-
equilibrium systems, such as a vibrated granular monolayer [35,46] and 2D active Brownian
disks [53]. Here, however, this KTHNY scenario is, as we said, absent and the hexatic phase
has not been observed in any situation, which is a very peculiar situation in the context of
two-dimensional matter. In this sense, the results reported here can provide more insight
for the development of the theory on 2D phase transitions for non-equilibrium systems.

It remains for future theoretical work to study in more detail the structure of this
intriguing phase behavior.
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