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Abstract: Mission planning for multiple unmanned aerial vehicles (UAVs) is a complex problem
that is expected to be solved by quantum computing. With the increasing application of UAVs, the
demand for efficient conflict management strategies to ensure airspace safety continues to increase.
In the era of noisy intermediate-scale quantum (NISQ) devices, variational quantum algorithms
(VQA) for optimizing parameterized quantum circuits with the help of classical optimizers are
currently one of the most promising strategies to gain quantum advantage. In this paper, we
propose a mathematical model for the UAV collision avoidance problem that maps the collision
avoidance problem to a quadratic unconstrained binary optimization (QUBO) problem. The problem
is formulated as an Ising Hamiltonian, then the ground state is solved using two kinds of VQAs:
the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm
(QAOA). We select conditional value-at-risk (CVaR) to further promote the performance of our model.
Four examples are given to validate that with our method the probability of obtaining a feasible
solution can exceed 90% based on appropriate parameters, and our method can enhance the efficiency
of a UAVs’ collision avoidance model.

Keywords: collision avoidance of UAVs; variational quantum algorithms; variational quantum
eigensolver; quantum approximate optimization algorithm; conditional value-at-risk

1. Introduction

The emergence of UAVs has dramatically changed the way people use transporta-
tion [1], such as aerial logistics networks and short- and medium-range manned transporta-
tion at low altitude. UAVs have the characteristics of a small safety risk factor and low cost.
Therefore, in the foreseeable future, the frequency of UAV use will rise, and the workload of
low-altitude air traffic flow management (ATFM) will also increase accordingly. Deploying
UAVs on a large scale faces an issue of collision avoidance problem of UAVs. Therefore,
it is necessary to build an algorithm for unmanned traffic management (UTM) [2]. We
need to determine the UAVs’ collision avoidance actions, including takeoff delays and local
maneuvers, that the aircraft needs to implement in real time according to the potential
conflicts of different aircraft routes, and avoid conflicts while ensuring a low cost of collision
avoidance. Mathematically, this problem is an optimization problem to avoid collisions at
minimum cost. With the expansion of the problem scale and the increase of constraints,
the required computing resources also increase exponentially, which leads to increasing
difficulty of solving optimization problems.

As quantum computers have continued to advance in recent decades, researchers
have begun to use quantum computers to find solutions to optimization problems [3–5].
Quantum computers have the capability of parallel computing and considerable computing
advantages over classical computers. In some specific tasks, they have even surpassed the
current most advanced classical computers [6–8]. Current quantum computers are noisy
intermediate-scale quantum (NISQ) computers [9]. Although the most advanced quantum
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computers have reached fifty to hundreds of qubits, they are still unable to achieve fault
tolerance, hence fault-tolerant quantum computers may not be available in the short term.
VQA combines the advantages of quantum and classical computing by using parametric
quantum circuits running on a quantum computer followed by parametric optimization on
a classical optimizer [10]. Utilizing classical computers, VQA, not only compensates for the
shortage of quantum bits and pushes the complexity to classical computers, but running
only short-depth quantum circuits is an extremely effective strategy to reduce errors in
NISQ devices.

Given that VQA, with promising properties, can support a form of quantum advan-
tage [11,12], and considerable progress have been made in its experimental realization [13],
we select popular VQA, such as the variational quantum eigensolver (VQE) [14] and the
quantum approximate optimization algorithm (QAOA) [5], to solve our collision avoidance
problem. Furthermore, in order to enhance the efficiency of VQA, we also introduce the
recently proposed conditional value-at-risk (CVaR) as an aggregation function to optimize
the original cost function and compare the performance with the original VQA [4].

When solving optimization problems with quantum computers, the optimization
problem is often formulated as a quadratic unconstrained binary optimization (QUBO)
problem [15]. In the transportation domain, researchers have used quantum computing
to solve air traffic management problems. A kind of air traffic management (ATM) prob-
lem has been converted to a QUBO problem and handled by a quantum computer [3].
Additionally, quantum computing is also being used for railway conflict management
problems [16].

In the field of public transportation, UAVs are gaining attention as a promising means
of transportation, and they have become one of the main available options for the trans-
portation of medical supplies [17]. Internationally, there are already many mature and
well established applications for drone transport, such as the East African medical drone
transport [18], Amazon’s PrimeAir drone delivery service, etc. In 2021, Sumitomo Japan
developed thousands of flight paths for drones through quantum computing for Urban
Air Mobility [19]. In order to maintain the efficiency and safety of the both goods and
people, the National Aeronautics and Space Administration (NASA) proposed the concept
of Urban Air Mobility (UAM) in 2017 [20].

UAV transportation missions require huge numbers of UAVs to collaborate, which in-
volves the route planning of multiple UAVs that include collision avoidance, task allocation,
and so on. In this paper, we study the collision avoidance problem of UAVs based on VQA.
We consider not only spatio-temporal constraints, but also the necessary factors such as
preparation time, early takeoff time, and heterogeneity among multiple UAVs that should
be accounted in practical missions. Inspired by the QUBO method in [3], we mathematically
model the UAV collision avoidance problem in Section 2 through considering the collision
avoidance by delaying the takeoff time of the aircraft and transforming the problem into
a QUBO problem after discretization. Following that, we discuss the Ising model for the
QUBO problem and related concepts of the variational quantum algorithm in Section 3. In
Section 4, we present the test results of the four examples. Finally, we present a summary
and outlook of the article.

Based on the particulars of the actual UAV flight, we considered the following conditions:

• Spatio-temporal conditions. For the objective requirement of the aircraft to ensure
safety of flight, the distance between any two aircraft at the same point in time must
be greater than a threshold value. From the standpoint of flight tasks, this requires us
to adjust the trajectory of the aircraft or change the time of arrival at the conflict point
when a conflict occurs. If we put it in mathematical perspective, it means that we
must ensure that, for at least one of the two, the spatial function A and the temporal
function T, should be bigger than 0.

• Preparation condition. Because of the special features of UAVs, the aircraft require
preparation before takeoff. Nevertheless, the preparation time needed before takeoff
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is different for various types of aircraft, so we set a non-negative extra time for each
aircraft, which is named pre-takeoff preparation time.

• Early takeoff condition. Unlike civil flights carrying people, in the mission of the
UAVs we allow aircraft to take off earlier than scheduled departure time in order to
avoid conflicts. This means that the departure delay time of the aircraft can not only
be positive but also be negative.

• Heterogeneity condition. A UAV formation has different types and different models of
aircraft that are required to perform different missions. For the priority of the aircraft
resulting from the importance of missions to be performed or the urgency of tasks to
be executed, we assign corresponding weights to each aircraft.

2. UAV Collision Avoidance Theory

The collision avoidance problem of UAVs is a complex problem and an important
part of route planning. The input of the problem is a series of aircraft trajectories. For
the purpose of saving flight cost, we tend to choose the optimal flight trajectory that has
the lowest flight cost and minimum flight time when planning the route for the aircraft.
This leads to the possibility that the optimal flight paths chosen by different aircraft will
overlap with one another, thus increasing the probability of aircraft collisions. In this paper,
assuming that the trajectories are known, we focus on the collision elimination by adjusting
the takeoff time.

In the collision avoidance problem, the most common solution strategy is to change
course or speed, but this also inevitably increases the cost of flight. However, the easiest
way to de-conflict trajectory conflicts while taking into account flight costs is to delay the
departure of aircraft having conflicting routes. When the delay time is short, there is hardly
any negative impact on the completion of most tasks. This is the strategy we will utilize
and analyze in this article.

2.1. Problem Description

In this research, it is assumed that delaying the takeoff time of a certain aircraft
will not introduce new conflicts, and the input trajectory is Ai =

(
Ai,ti

)
, where A =

{i|i ∈ [1, F]} represents the set of aircraft, Ai,t represents the position of the aircraft i at time
t (including its longitude, latitude, and altitude), ti ∈ [τi,0, τi,1] is the flight time of aircraft i,
and τi,0 and τi,1 are the takeoff time and landing time of i, respectively.

Let the delay when the aircraft i arrives at the point Ai,ti be Di,ti and the maximum
and minimum delay allowed is, respectively, Dmax

i,ti
and Dmin

i,ti
, then the total delay of all

aircraft is

D =
F

∑
i=1

Di,τi,1 . (1)

The waypoint Ai,ti , Aj,tj of a pair of aircraft (i, j) will not conflict if and only if their
space and time functions are greater than their respective separation criteria ∆a and ∆t,
where ∆a and ∆t are non-negative real numbers. For example, the position separation
criteria ∆a can be set to 10 m, and the time separation ∆t can be set to 2 s. In the research on
the collision avoidance of UAVs, the following conditions should be met:

max{A, T} > 0, (2)

where
A =

∥∥∥Ai,ti −Aj,tj

∥∥∥− ∆a, (3)

T =
∥∥∥(ti + Di,ti

)
−
(

tj + Dj,tj

)∥∥∥− ∆t. (4)

Consider the values of A and T, if (i, j) exists a collision, then there must be Ai,ti , Aj,tj
such that A < 0 and T < 0. By Equation (4) we can find that, if T < 0, then
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∣∣ti − tj
∣∣− ∣∣∣Dj,tj − Di,ti

∣∣∣ ≤ ∣∣∣(ti − tj
)
−
(

Dj,tj − Di,ti

)∣∣∣ < ∆t, (5)

which implies that ∣∣∣Dj,tj − Di,ti

∣∣∣+ ∆t >
∣∣ti − tj

∣∣. (6)

It can be seen that
(

Di,ti , Dj,tj

)
∈
[

Dmin
i,ti

, Dmax
i,ti

]
×
[

Dmin
j,tj

, Dmax
j,tj

]
, i.e.,

Dmin
i,ti
≤ Di,ti ≤ Dmax

i,ti
,

Dmin
j,tj
≤ Dj,tj ≤ Dmax

j,tj
.

(7)

It follows from Equation (7) that

Dmin
i,ti
− Dmax

j,tj
≤ Di,ti − Dj,tj ≤ Dmax

i,ti
− Dmin

j,tj
. (8)

Combining Equations (6) and (8) yields

max
{
|Dmax

i,ti
− Dmin

j,tj
|, |Dmax

j,tj
− Dmin

i,ti
|
}
+ ∆t >

∣∣ti − tj
∣∣, (9)

and it is clear that there exists
(

Di,ti , Dj,tj

)
making T < 0, so the trajectories of (i, j) have

the risk of conflict. Assuming that the closest conflict point of the trajectory distance of (i, j)
is M, then there must be other potential conflict points near M.

As shown in Figure 1, in the adjacent area C of M, we have A < 0. Thus, if Ai,t′i
conflicts

with Aj,t′j
, and Ai,t′′i

also conflicts with Aj,t′′j
, then for any ti ∈

[
min

{
t′i, t′′i

}
, max

{
t′i, t′′i

}]
,

there exists tj ∈
[
min

{
t′j, t′′j

}
, max

{
t′j, t′′j

}]
for which Ai,ti conflicts with Aj,tj . These con-

flicts can be called conflicts derived from point M, and we can express the whole of the
conflicts derived from point M as Cm. Similarly, the set of all aircraft collisions can be
expressed as the set of mutually disjoint Cm,

C =
⋃

Cm, (10)

Figure 1. Schematic diagram of a pair of conflicting routes.

We set the aircraft related to the conflict m as Rm = {i | i ∈ Cm}, then the set of
conflicts related to the aircraft i is Mi = {m | i ∈ Rm}. Let di,m be the scheduling delay
of aircraft i, which is the delay incurred to prevent the collision m; di,p is the pre-takeoff
preparation time of aircraft i. This means that the total delay before aircraft i encounters
collision m is

Di,m = di,p + ∑
m′∈Mi,m

di,m′ ,

Mi,m =
{

m′ < m | m′ ∈ Mi
}

.
(11)
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Then, for the conflict m between aircraft i and j, the total time pair satisfying the
condition T < 0 can be written as

Tm =
{(

ti, tj
)
|
{
(i, ti),

(
j, tj
)}
∈ Cm, i < j

}
, (12)

where ti and tj denote times as non-negative real numbers. We can obtain a range Bm
from Tm,

Bm =
⋃

(ti ,tj)∈Tm

(
−∆t + tj − ti, ∆t + tj − ti

)
,

=

[
1− ∆t + min

(ti ,tj)∈Tm

(
tj − ti

)
, ∆t − 1 + max

(ti ,tj)∈Tm

(
tj − ti

)]
.

(13)

If it is satisfied that Dm = Di,m − Dj,m /∈ Bm, which is equivalent to potential conflicts
being avoided. Therefore, we can express the total delay as

D =
F

∑
i=1

(
di,p + ∑

m∈Mi

di,m

)
. (14)

In order to reduce unnecessary calculation costs, we can remove the aircraft with no
conflicts when calculating the delay time, which means we only need to re-calculate the
aircraft i ∈ [1, Nc](Nc ≤ F) with conflict risk. We want to minimize the value of D while
eliminating collisions through optimization. At the same time, we only consider the conflict
avoidance by delaying the departure time of the aircraft, which means that for aircraft i, we
can use di to denote ∑m∈Mi

di,m, namely, the scheduling delay time of aircraft i. Thus, the
total delay can be simplified as

D =
Nc

∑
i=1

Di, (15)

where Di = di,p + di is the delay sum of aircraft i. The configuration space of the problem
is D = {Di | i ∈ [1, Nc]}. Taking into account the importance of missions or the urgency
of tasks, we assign weights to the delays of each aircraft, and the above formula can be
transformed into

D =
Nc

∑
i=1

f (i) · Di. (16)

2.2. Mapping Problem to QUBO

We first encode the configuration space D as a series of binary variables, and then
solve the collision avoidance problem with quantum computing. To achieve this, we must
first discretize the delay time allowed by the aircraft. Let ∆d be the discretization step size
of the delay. Then dmax

i = Nmax
i · ∆d is the maximum scheduling delay time allowed by

aircraft i, so di ∈
{

∆dl | l ∈
[
0, Nmax

i
]}

. At the same time, in some cases, we can also avoid
conflicts by advancing the departure time of the aircraft, that is, the minimum scheduling
delay time dmin

i = Nmin
i · ∆d < 0, therefore di ∈

{
l∆d | l ∈

[
Nmin

i , Nmax
i
]}

. Similarly, di,p

can also be expressed as di,p = pi · ∆d, then Di = `∆d, ` ∈
[
pi + Nmin

i , pi + Nmax
i
]
. As the

configuration space increases, the number of qubits required for encoding will also increase,
so ∆d has a great impact on the quality of the solution. Next we describe how to map the
collision avoidance problem to the QUBO problem.

We need to encode Di as a binary variable after discretizing the configuration space.
In this case, we introduce a decision variable

xi,` =

{
1, Di = `∆d

0, otherwise
. (17)
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If the aircraft takes off with delay Di, then xi,` takes the value 1; otherwise xi,` takes 0. Thus,
the weighted sum of the total delays is

f =
Nc

∑
i=1

Di = ∆d

Nc

∑
i=1

pi+Nmax
i

∑
`=pi+Nmin

i

f (i) · `xi,`. (18)

To transform the problem into an unconstrained problem, we define a function with penalty.
We have discussed above that if (13) holds, potential conflicts can be avoided, which is also
a hard constraint for collision avoidance:

Pcon = pcon ∑
m

∑
`,`′ |∆d(`−`′)∈Bm

i,j∈Rm |i<j

xi,` · xj,`′ , (19)

where pcon is penalized for a sufficiently large positive constant. Because each aircraft can
only choose one total delay, namely

pi+Nmax
i

∑
`=pi+Nmin

i

xi,` = 1, i ∈ [1, Nc], (20)

this constraint can be transformed into the following quadratic penalty function,

Pen = pen

Nc

∑
i=1

 pi+Nmax
i

∑
`=pi+Nmin

i

xi,` − 1

2

, (21)

where pen is a constant penalty. Therefore, the total cost function we need to minimize is

Cost = f + Pcon + Pen. (22)

For the total cost function, we must choose an acceptable penalty. If the penalty is too
large, the total cost function is only slightly perturbed, but if the penalty is too small, we will
probably end up with a solution that does not work. If we let n = ∑Nc

i=1

(
Nmax

i − Nmin
i + 1

)
,

then
Nc

∑
i=1

pi+Nmax
i

∑
`=pi+Nmin

i

xi,` =
n

∑
k=1

xk, k ∈ [1, n], (23)

that is, xi,` is equivalent to xk, where

` ∈
[

pi + Nmin
i , pi + Nmax

i

]
,

k ∈
(

i−1

∑
j=1

(
Nmax

j − Nmin
j + 1

)
,

i

∑
j=1

(
Nmax

j − Nmin
j + 1

)]
,

(24)

for aircraft i 6= 1. When i = 1, We have ` ∈
[
p1 + Nmin

1 , p1 + Nmax
1

]
and k ∈ [1, Nmax

1 −
Nmin

1 + 1]. In particular, if the maximum system delay allowed by the aircraft and the
early takeoff time are the same, they are Nmax and Nmin, respectively. Correspondingly,
for k ∈ [1, n], we can express the serial number i of the aircraft and the discretized ` with k
as follows:

i(k) = d k
Nmax − Nmin + 1

e,

`(k) = (k− 1) mod
(

Nmax − Nmin + 1
)
+ pi(k) + Nmin.

(25)

Therefore,
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f = ∆d

n

∑
k=1

f (i(k)) · `(k)xk , (26)

Pcon =
pcon

2

n

∑
k,k′=1

δi(k),i(k′)δ`(k),`(k′)xkxk′ , (27)

Pen = pen

(
n

∑
k,k′=1

δk,k′xkxk′ −
n

∑
k=1

xk + Nc

)
, (28)

where

δk,k′ =

{
1, i(k) = i(k′) and k 6= k′

0, otherwise
,

δi(k),i(k′) =

{
1, i(k)i(k′) ∈ Rm

0, otherwise
,

δ`(k),`(k′) =

{
1, − k−k′

|k−k′ |∆d(`(k)− `(k′)) ∈ Bm

0, otherwise
.

(29)

In addition, we can also remove the constant offset in formula (28) to transform it into

Pen = pen

(
n

∑
k,k′=1

δk,k′xkxk′ −
n

∑
k=1

xk + Nc

)
− pen · Nc

= pen

(
n

∑
k,k′=1

δk,k′xkxk′ −
n

∑
k=1

xk

)
.

(30)

The total cost function can also be expressed as

Q(X) = f + Pcon + Pen − pen · Nc, X = (x1, x2, . . . xn). (31)

3. Ising Model and Variational Quantum Algorithm
3.1. Ising Model and QUBO Problem

As one of the most common research areas in quantum computing and quantum
annealing in the NISQ era, combinatorial optimization problems can usually be represented
as quadratic unconstrained binary optimization (QUBO) problems that are easily solved
by quantum computers. Researchers in combinatorial optimization have investigated the
QUBO problem since the 1960s. A QUBO problem with n binary decision variables x can
be expressed as

min
x∈{0,1}n

xTQx + bTx, (32)

where Q ∈ Rn×n is a matrix with symmetry, and b ∈ Rn is a vector. Because the binary
variable satisfies xi = x2

i , b can be added to the diagonal of Q. The symmetry of the matrix
Q can always be maintained. The QUBO model has become one of the crucial elements in
the NISQ era of combinatorial optimization problem solutions due to its characteristics and
suitability for the Ising model [15,21]. In the beginning, the Ising model was a mathematical
representation of ferromagnetism within statistical mechanics. The model is made up of
several discrete variables that were initially described as the direction of the microscopic
magnetic momentum associated with the atom’s “spin”, which can be in two states of +1
or −1. Therefore, the QUBO problem and the Ising model are highly correlated, and an
Ising model

min
z∈{−1,+1}n

zT Jz + hTz (33)
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can be obtained by transforming the QUBO problem (32) through a simple mapping
as follows:

xi =
1 + zi

2
, zi ∈ {−1,+1}. (34)

For a quantum system containing n qubits, we can convert the Ising model (33) into
the Hamiltonian after using the Pauli Z-matrix σi

Z to replace zi [22]. Specifically, we can
consider zi as acting σi

Z on the ith qubit, and similarly zi · zj can be expressed using the

tensor product σi
Z ⊗ σ

j
Z. The eigenvalue of σi

Z is +1 and −1, which corresponds to the spin
direction of the Ising model (33).

3.2. Variational Quantum Eigensolver (VQE)

The solution of the ground state E of a certain Hamiltonian can usually be solved
by VQE, which is the first variational quantum algorithm that was proposed [14] and
originally applied to the estimation of the energy of molecular ground states in quantum
chemistry. In VQE, according to the Rayleigh–Ritz principle, given a Hamiltonian H whose
minimum eigenvalue λmin and ground state |ψmin〉 are unknown, then

λmin ≤ λθ = 〈ψ(θ)|H|ψ(θ)〉, (35)

where |ψ(θ)〉 = U(θ)|ψ0〉 is the result of the initial state |ψ0〉 after the parameterized
quantum circuit U(θ), which represents the eigenstate corresponding to λθ , and |ψ(θ)〉 is
an estimate of |ψmin〉. The cost function C(θ) is defined as:

C(θ) = 〈ψ(θ)|H|ψ(θ)〉. (36)

As shown in Figure 2a, we use the cost function C(θ) to optimize the parameter θ through
a classical optimizer and continue to iterate until convergence is reached. Specifically,
the parameterized quantum circuits (PQC) we use in this paper are the commonly used
hardware efficient ansatz, which is able to somewhat reduce the circuit depth required to
implement U(θ) [23,24]. For a quantum circuit consisting of n qubits, we first apply the
RY-gate once to each qubit, then apply the CNOT-gate (i controls j) to all qubits satisfying
i < j, and finally apply the R-gate again to each qubit, repeating the last two steps p times,
where p is the number of layers. We also plotted a quantum circuit of a p-layer PQC
containing four qubits (Figure 2b).

(a)

Figure 2. Cont.
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(b)

Figure 2. (a) A VQE circuit diagram. (b) An example of a hardware efficient ansatz for a p-layer with
four qubits.

3.3. Quantum Approximate Optimization Algorithms

QAOA is another variational quantum algorithm proposed after VQE [5], which was
influenced by quantum adiabatic algorithms and initially utilized to approximately solve
combinatorial problems [25–27]. The combinatorial optimization problem is defined as n
binary strings x = (x1, · · · , xn), and the goal of the problem is to maximize or minimize the
classical objective function f (x). By transforming the classical binary variable xi into the
Pauli spin −1/2 operator σz

i , QAOA maps f (x) to the problem Hamiltonian HP. QAOA
follows the ground state evolution process as

H(t) = (1− t)HM + tHP, t ∈ [0, 1]. (37)

Usually, the problem Hamiltonian HP can also be expressed in the form of an Ising
Hamiltonian

HP =
n

∑
i=1

hiσ
i
Z +

n

∑
i,j=1

Jijσ
i
Z ⊗ σ

j
Z, (38)

and the mixer Hamiltonian is defined as

HM =
n

∑
i=1

σx
i , (39)

where hi, Jij are real coefficients, and σz
i and σx

i are the Pauli-Z/X operators applied to the
i-th qubit, respectively.

What is used in QAOA is an alternating structure ansatz, often referred to as the
quantum alternation operator ansatz [28]; the adiabatic evolution is replaced by p alternate
time propagations between HP and HM. As shown in Figure 3, in the p-layer QAOA, the
initial state is |+〉⊗n, the evolution time interval is treated as a variational parameter, i.e.,
θ = {γ, β}, and the two Hamiltonians are applied alternately p times.The variational form
of QAOA is defined as

U(β, γ) =

[
p

∏
i=1

UP(βi)UM(γi)

]
H⊗n, i ∈ 1, 2, . . . , p, (40)

where

UP(γi) = e−iγi HP = e−iγi

(
∑n

i=1 hiσ
i
Z+∑n

i,j=1 Jijσ
i
Z⊗σ

j
Z

)
,

UM(βi) = e−iβi HM = e−iβi ∑n
i=1 σi

X ,
(41)

The quantum state generated after ansatz is

|γ, β〉 = U(γ, β)|0〉. (42)
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Similarly, the cost function of QAOA is defined as:

C(γ, β) = 〈γ, β|HP|γ.β〉. (43)

The evaluation of the cost function is done by repeatedly measuring |γ, β〉 on a quantum
computer and then optimizing and adjusting {γ, β} with the help of a classical optimizer
until an acceptable {γ, β} is found.

Figure 3. QAOA circuit diagram.

3.4. Conditional Value-at-Risk

For either VQE or QAOA, we cannot directly obtain the expected value of the cost
function (Equations (36) and (43)). Taking VQE as an example, we cannot get all information
of |ψ(θ)〉 by just one measurement. However, we can obtain an estimate of the cost function
by multiple measurements. Specifically, we can perform one measurement for n-qubits
and get a measurement sample q0q1 . . . qn−1. For this sample of measurements, we can
write quantum states |ψk(θ)〉 = |q0q1 . . . qn−1〉 and then calculate Ek(θ) = 〈ψk(θ)|H|ψk(θ)〉.
Then, the whole sample after K times measurement can be expressed as Ek(θ)(k = 1, . . . , K),
and the expected value of Equation (36) is the mean value of the sample

1
K

K

∑
k=1

Ek(θ). (44)

To improve the efficiency of VQE and QAOA, we attempt to use CVaR as their objective
function [4]. Given a cumulative density function F(X) of a random variable X, the CVaR
of X is defined as the expected value of X when X < F−1(α) when the confidence interval
is α, that is

CVaRα(X) = E
[

X | X ≤ F−1
X (α)

]
, α ∈ [0, 1]. (45)

Shortly, CVaR is the expected value on the left-hand side of the distribution of X. Suppose
that results of K times measurement are arranged in increasing order from smallest to
largest as {E1, . . . , EK}, then the corresponding CVaRα is

CVaRα =
1
dαKe

dαKe

∑
k=1

Ek. (46)

The value of CVaR is the mean of the sample, which is the standard objective function
when α = 1.

4. Result

In this section, we study four examples: (2, 1) with Nmax = 2, Nmin = 0 (Figure 4a),
(3, 3) (Figure 4b), (4, 5) (Figure 4c), and (2, 1) with Nmax = 2, Nmin = −2 (Figure 4d),
where (n, k) denotes k pairs of conflict among n aircraft. We use the qasm simulator
of IBM’s qiskit to solve the collision avoidance problem by VQE and QAOA. We set
∆d = 1, pcon = pen = 12. In the first three examples, the allowable scheduling delay of each
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flight is set as Nmax = 2, Nmin = 0, so the number of qubits required is n · (Nmax + 1). For
the last example, we set Nmax = 2 and Nmin = −2, and the number of qubits required is
n · (Nmax − Nmin + 1).

(a) (b)

(c) (d)

Figure 4. (a) The aircraft conflict information of (2, 1) with Nmax = 2, Nmin = 0. (b) The aircraft
conflict information of (3, 3). (c) The aircraft conflict information of (4, 5). (d) The aircraft conflict
information of (2, 1) with Nmax = 2, Nmin = −2. The di,p and f (i), respectively, represents the
pre-takeoff preparation time and weight of flight i (i = 1, 2, 3, 4).

In the solution process, first we encode the problem in the form of Equation (31), then
map to get the Ising Hamiltonian HP, and then use VQE or QAOA to find the ground
state. We use the gradient-free optimizer linear approximation constrained optimization
(COBYLA) optimizer to optimize the variable parameters of PQC for the solution of all
four examples. For each example, we tested the performance of QAOA versus VQE for
p = 1, 2 and α ∈ {0.05, 0.1, 0.25, 0.5, 1}.

To compare the two variational quantum algorithms for different values of depth p
and α, we also plot the number of iterations of the classical optimizer (COBYLA) against the
value of the objective function under each example. In addition, we also plot the ground
state sampling probabilities of the Hamiltonian during the iterative process:

P|ψg〉 =
∣∣〈ψ | ψg

〉∣∣2. (47)

where |ψ〉 is the quantum state after the quantum circuit and
∣∣ψg
〉

is the ground state of the
Hamiltonian. We intend that the ground state probability P|ψg〉 obtained by the algorithm
should be as large as possible, or at least larger than our given α value.

4.1. Example 1

In the first example, we successfully solved example (2, 1) shown in Figure 4a, whose
route diagram is shown in Figure 5a. As this problem is relatively small in size, we use
only six qubits to encode the problem. The lowest energy is −18, i.e., the minimum value
of Equation (31), corresponding to X = (0, 1, 0, 1, 0, 0), which is the optimal solution to the
problem, and the total delay for each aircraft is D1 = 3, D2 = 0. In Figure 5b, we show the
optimized route corresponding to the optimal solution.
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（a） （b）

Figure 5. (a) Initial planning route for example 1. (b) The optimized conflict-free route in example 1.

4.2. Example 2

In the second test, we try to solve example (3, 3) (as shown in Figure 4b), corre-
sponding to the route in Figure 6a, where we use nine qubits to encode the problem.
Finally, we get the optimized route corresponding to the optimal solution (Figure 6b), when
X = (0, 1, 0, 1, 0, 0, 1, 0, 0), the minimum energy is −29 and the total delay for each aircraft
is D1 = 3, D2 = 1, D3 = 0.

（a） （b）（a） （b）（a） （b）

Figure 6. (a) Initial planning route for example 2. (b) The optimized conflict-free route in example 2.

4.3. Example 3

Here, we use 12 qubits to solve the collision example of four aircraft containing
five pairs of conflict, corresponding to the details of the conflicts and the routes shown
in Figures 4c and 7a. We obtain a minimum energy of −35, the optimal solution is
X = (0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), and the total delay time of the four aircraft are D1 = 3,
D2 = 1, D3 = 0, D4 = 2 (the optimized routes are shown in Figure 7b).
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（a） （b）（a） （b）（a） （b）

Figure 7. (a) Initial planning route for example 3. (b) The optimized conflict-free route in example 3.

4.4. Example 4

In the last example, we solve another example of the (2, 1) problem using 10 qubits
(details of the conflict are shown in Figure 4d). Unlike example 1, in this example we take
Nmin = −2 to test the availability of the model, whereas Nmax is still set as 2. The minimum
energy obtained by two algorithms separately is −16 and X = [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
while the total delay of the two aircraft is D1 = 3 and D2 = −1, respectively. Similarly, we
have plotted the routes of the two aircraft before and after optimization (Figure 8).

（a） （b）（a） （b）（a） （b）

Figure 8. (a) Initial planning route for example 4. (b) The optimized conflict-free route in example 4.

In the following discussion, we write VQE and QAOA that use CVaR as the objective
function (α < 1) as CVaR-VQE and CVaR-QAOA, respectively.

We first compare the objective functions of the original VQE and CVaR-VQE during the
iterative process. In Figures 9 and 10, we plot the probability of the objective function values
against the optimal solution, respectively. It is obvious from Figure 9 that when we choose
α < 1, the number of iterations required to converge the objective function value to the
ground state energy is significantly lower than the original VQE. To take example 1, which
uses six qubits, in Figure 9a, the original VQE does not reach the ground state energy until
the 100th iteration, whereas even the slowest convergence, α = 0.5, reaches convergence
at about the 70th iteration. And as the number of qubits increases, the performance of
CVaR-VQE is still superior to the original VQE, although it also decreases. For the ground
state probability P|ψg〉, the number of iterations required for P|ψg〉 to converge increases
as the α value rises, but even in example 3, which has the highest number of iterations,
CVaR-VQE still has an advantage in the number of iterations required for the ground state
probabilities and the objective function value to reach convergence.
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VQE--Example3 (12 qubit )
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(d)

Figure 9. The objective function values corresponding to the number of iterations of VQE at different
α and p in the four examples; (a–d) represent examples 1–4, respectively.
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VQE--Example3 (12 qubit )
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(d)

Figure 10. The ground state probability corresponding to the number of iterations of VQE at different
α and p in the four examples; (a–d) represent examples 1–4, respectively.

As the depth p increases and α decreases, we find that there is a certain improvement
in both the objective function value and the ground state probability P|ψg〉 of QAOA
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(as shown in Figures 11 and 12). However, overall, the convergence rate of QAOA is
still very slow and the ground state probability is generally very low, with the highest
P|ψg〉 still less than 0.15. When we optimize, most QAOA ends when the number of
iterations reaches 50. Compared to the VQE, the performance of QAOA is inferior. Without
considering the impact of the classical optimizer, one of the important reasons for our
analysis is that the hardware efficient ansatz is used in the VQE. A VQE of depth p contains
n(p + 1) variational parameters and additional control gates, whereas the QAOA has
only 2p variational parameters. Therefore, if we want to improve the performance of
QAOA, increasing the depth p is an effective way. However, this will also inevitably lead
to an increase in the solution time. Due to the current NISQ devices, it is still difficult
to successfully implement quantum circuits with excessive depth. It has been shown in
some previous studies that when NISQ devices run quantum algorithms, the fidelity of
the quantum state prepared by the quantum program and the minimum expected value of
the Hamiltonian will be affected because of the existence of noise, which makes the results
have deviations [29].
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Figure 11. The objective function values corresponding to the number of iterations of QAOA at
different α and p in the four examples; (a–d) represent examples 1–4, respectively.

Finally, in order to compare the solution results, we plot the probability of obtaining
the optimal solution (Figure 13) and the feasible solution (Figure 14) using VQE and QAOA
in solving the four examples. From the resulting probability of optimal solution, the results
of the VQE solution also confirm to some extent that the performance of VQE decreases as
the α value increases. Taking the most remarkable example 3 as an example, the probability
of obtaining the optimal solution even differs by 0.4 between the solution results of the
original VQE and the CVaR-VQE (at α = 0.05) when p = 2. From the results of QAOA, the
accuracy of its solution is indeed lower than that of VQE to a certain extent. In terms of the
probability of feasible solutions obtained from the QAOA solution, both the application
of CVaR and the increase of depth p have improved the performance of QAOA. Recalling
our previous discussion of the existence of QAOA with small ground state probability
P|ψg〉 at iteration, we believe that this could be determined by the characteristics of QAOA
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itself—–to obtain an approximate solution to the combinatorial problem rather than an
optimal solution, i.e., the quantum state be relatively flat, and this phenomenon was studied
in recent work [4]. This means that the impact of the CVaR strategy we employ for QAOA
is likely to be positive but relatively small. The probability of feasible solutions obtained by
solving VQE and QAOA (as shown in Figure 14) also demonstrates the positive impact of
CVaR on VQE and QAOA from the side.
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Figure 12. The ground state probability corresponding to the number of iterations of QAOA at
different α and p in the four examples; (a–d) represent examples 1–4, respectively.
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Figure 13. Subfigures (a,b) plot the optimal solution probabilities obtained using VQE and QAOA
for different depths p and α values, respectively.
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Figure 14. Subfigures (a,b) plot the feasible solution probabilities obtained using VQE and QAOA
for different depths p and α values, respectively.

5. Conclusions

In this paper, we propose a model for the aircraft collision avoidance problem and give
a mapping of the model to the QUBO problem. First, the potential conflicts are formulated
as mutually disjoint conflict sets. Subsequently, in order to encode the problem as a QUBO
problem, we discretize the configuration space of the problem. After encoding the problem
as a Hamiltonian, we use two variational quantum algorithms (VQE and QAOA) to solve
the ground state of the Hamiltonian of the problem, respectively. In the experimental
section, we test these two variational quantum algorithms in four different examples and
compare the performance of the two algorithms under different α values and variational
form depth p.

CVaR had a positive impact on VQA, because both CVaR-VQE and CVaR-QAOA have
improved the performance of the algorithm. For the four examples we have solved, the
probability of the resulting feasible solution is still approximately 70%, even for the worst
solution result, and the best solution is even more than 95%. Of course, the probability
of the best solution is relatively low, and the worst solution result is only approximately
30%. In conclusion, if we adjust the value of α appropriately, the probability of obtaining
a feasible solution to the problem can be raised to a fairly high level. In real applications,
we can obtain feasible and optimal solutions by repeatedly running the QAOA or VQE
algorithms, but this also means that we must choose between the quality of the solution
and the running time when solving.

The focus of this paper is on the collision avoidance problem of aircraft and the
variational quantum algorithm used for this problem. For future work, we suggest that
further research can be conducted in two ways.

• In model building, the main consideration of this paper is to avoid collision by ex-
tending the aircraft takeoff time. In a real situation, in order to extend the usability
of the model, we can also consider making some adjustments to the flight path to
avoid collision, including changing the flight speed in a specific interval and partially
changing the flight path of the aircraft, etc. These strategies can be collectively referred
to as maneuvering collision avoidance strategies. We can adjust the cost function of
the model by mapping the maneuver cost to the time delay cost in conjunction with
the actual demand.

• In the aspect of quantum computing, on the one hand, in order to improve the
efficiency of model solving, we can use more efficient coding methods to reduce the
number of qubits required and the depth of quantum circuits to compress the time
to solve the problem when encoding the decision variables. However, this requires
us to modify the mapping between the model and the QUBO problem. Second,
from the algorithmic point of view, improving the classical optimizer or adopting a
more efficient ansatz structure is also an effective way to improve the efficiency of
the algorithm.
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