
Citation: Gudder, S. Entropy of

Quantum Measurements. Entropy

2022, 24, 1686. https://doi.org/

10.3390/e24111686

Academic Editor: Ignazio Licata

Received: 25 October 2022

Accepted: 14 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy of Quantum Measurements
Stanley Gudder

Department of Mathematics, University of Denver, Denver, CO 80208, USA; sgudder@du.edu

Abstract: If a is a quantum effect and ρ is a state, we define the ρ-entropy Sa(ρ) which gives the
amount of uncertainty that a measurement of a provides about ρ. The smaller Sa(ρ) is, the more
information a measurement of a gives about ρ. In Entropy for Effects, we provide bounds on Sa(ρ)

and show that if a + b is an effect, then Sa+b(ρ) ≥ Sa(ρ) + Sb(ρ). We then prove a result concerning
convex mixtures of effects. We also consider sequential products of effects and their ρ-entropies.
In Entropy of Observables and Instruments, we employ Sa(ρ) to define the ρ-entropy SA(ρ) for an
observable A. We show that SA(ρ) directly provides the ρ-entropy SI (ρ) for an instrument I . We
establish bounds for SA(ρ) and prove characterizations for when these bounds are obtained. These
give simplified proofs of results given in the literature. We also consider ρ-entropies for measurement
models, sequential products of observables and coarse-graining of observables. Various examples
that illustrate the theory are provided.
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1. Introduction

In an interesting article, D. Šafránek and J. Thingna introduce the concept of entropy
for quantum instruments [1]. Various important theorems are proved and applications
are given. In quantum computation and information theory one of the most important
problems is to determine an unknown state by applying measurements on the system [2–5].
Entropy provides a quantification for the amount of information given to solve this so-
called state discrimination problem [6–8]. In this article, we first define the entropy for the
most basic measurement, namely a quantum effect a [2,3,9,10]. If ρ is a state, we define the ρ-
entropy Sa(ρ) which gives the amount of uncertainty (or randomness) that a measurement
of a provides about ρ. The smaller Sa(ρ) is, the more information a measurement of a
provides about ρ. In Section 2, we give bounds on Sa(ρ) and show that if a + b is an effect
then Sa+b(ρ) ≤ Sa(ρ) + Sb(ρ). We then prove a result concerning convex mixtures of effects.
We also consider sequential products of effects and their ρ-entropies.

In Section 3, we employ Sa(ρ) to define the entropy SA(ρ) for an observable A. Then
SA(ρ) gives the uncertainty that a measurement of A provides about ρ. We show that SA(ρ)
directly gives the ρ-entropy SI (ρ) for an instrument I . We establish bounds for SA(ρ) and
characterize when these bounds are obtained. These give simplified proofs of results given
in [1,5,11]. We also consider ρ-entropies for measurement models, sequential products
of observables and coarse-graining of observables. Various examples that illustrate the
theory are provided. In this work, all Hilbert spaces are assumed to be finite dimensional.
Although this is a restriction, the work applies for quantum computation and information
theory [2,3,9,10].

2. Entropy for Effects

Let H be a finite dimensional complex Hilbert space with dimension n. We denote the
set of linear operators on H by L(H) and the set of states on H by S(H). If ρ ∈ S(H) with
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nonzero eigenvalues λ1, λ2, . . . , λm including multiplicities, the von Neumann entropy of ρ
is [4,6–8].

S(ρ) = −
m

∑
i=1

λi ln(λi) = −tr [ρ ln(ρ)]

We consider S(ρ) as a measure of the randomness or uncertainty of ρ and smaller values
of S(ρ) indicate more information content. For example, ρ is the completely random state
I/n, where I is the identity operator, if and only if S(ρ) = ln(n) and ρ is a pure state if
and only if S(ρ) = 0. Moreover, it is well-known that 0 ≤ S(ρ) ≤ ln(n) for all ρ ∈ S(H).
The following properties of S are well-known [4,6,8]:

S(UρU∗) = S(ρ) when U is unitary

S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)

∑ µiS(ρi) ≤ S
(
∑ µiρi

)
≤∑ µiS(ρi)−∑ µi ln(µi)

where 0 ≤ µi = 1 with ∑ µi = 1.
An operator a ∈ L(H) that satisfies 0 ≤ a ≤ I is called an effect [2,3,9,10]. We think of

an effect a as a two-outcome yes-no measurement. If a measurement of a results in outcome
yes we say that a occurs and if it results in outcome no then a does not occur. The effect
a′ = I − a is the complement of a and a′ occurs if and only if a does not occur. We denote
the set of effects by E(H). If a ∈ E(H) and ρ ∈ S(H) then 0 ≤ tr (ρa) ≤ 1 and we interpret
tr (ρa) as the probability that a occurs when the system is in state ρ. If a 6= 0 we define the
ρ-entropy of a to be

Sa(ρ) = −tr (ρa) ln
[

tr (ρa)
tr (a)

]
(1)

We interpret Sa(ρ) as the amount of uncertainty that the system is in state ρ resulting from
a measurement of a. The smaller Sa(ρ) is, the more information a measurement of a gives
about ρ. Such information is useful for state discrimination problems [2–5].

If ρ is the completely random state I/n then (1) becomes

Sa(I/n) = −tr (Ia/n) ln
[

tr (Ia/n)
tr (a)

]
= − 1

n tr (a) ln
(

1
n

)
= tr (a)

n ln(n)

Since tr (a) ≤ n we conclude that Sa(I/n) ≤ S(I/n) for all a ∈ E(H). Another extreme
case is when a = λI for 0 < λ ≤ 1. We then have for any ρ ∈ S(H) that

SλI(ρ) = −tr (ρλI) ln
[

tr (ρλI)
tr (λI)

]
= −λ ln

[
λ

λtr (I)

]
= λ ln(n)

Thus, as λ gets smaller, the more information we gain.
A real-valued function with domain D( f ), an interval in R, is strictly convex if for any

x1, x2 ∈ D( f ) with x1 6= x2 and 0 < λ < 1 we have

f [λx1 + (1− λ)x2] < λ f (x1) + (1− λ) f (x2)

If the opposite inequality holds, then f is strictly concave. It is clear that f is strictly convex if
and only if − f is strictly concave. Of special importance in this work are the strictly convex
functions − ln x and x ln x. We shall frequently employ Jensen’s theorem which says: if f is

strictly convex and 0 ≤ µi ≤ 1 with
m
∑

i=1
µi = 1, then

f

(
m

∑
i=1

µixi

)
≤

m

∑
i=1

µi f (xi)

Moreover, we have equality if and only if xi = xj for all i, j = 1, 2, . . . , m [1].
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Theorem 1. If ρ ∈ S(H) with nonzero eigenvalues λi, i = 1, 2, . . . , m, and a ∈ E(H) with
tr (ρa) 6= 0, then

−∑
i

tr (Pia)λi ln(λi) ≤ Sa(ρ) ≤ ln
[

tr (a)
tr (ρa)

]
where ρ = ∑i λiPi is the spectral decomposition of ρ. Moreover, Sa(ρ) = ln[tr (a)/tr (ρa)] if and
only if tr (ρa) = 1 in which case Sa(ρ) = ln[tr (a)] and if

Sa(ρ) = −∑
i

tr (Pia)λi ln(λi) (2)

then tr (Pia) = tr (Pja) for all i, j = 1, 2, . . . , m and Sa(ρ) = (tr (a)/m)S(ρ) while if tr (Pia) =
tr (Pja) for all i, j = 1, 2, . . . m then Sa(ρ) = (tr (a)/m) ln(m).

Proof. Letting µj = tr (Pja)/tr (a), j = 1, 2, . . . , m, we have that 0 ≤ µj ≤ 1 and ∑j µj = 1.
Since −x ln(x) is strictly concave we obtain

Sa(ρ) = −tr (ρa) ln
[

tr (ρa)
tr (a)

]
= −tr

(
∑

i
λiPia

)
ln
[

tr (∑j λjPja)
tr (a)

]

= −∑ λitr (Pia) ln

(
∑

j
λjµj

)
= tr (a)

[
−∑

i
λiµi

(
∑

j
λjµj

)]
≥ −tr (a)∑

i
µiλi ln(λi) = −tr (a)∑

i

tr (Pia)
tr (a) λi ln(λi)

= −∑
i

tr (Pia)λi ln(λi)

Since
tr (ρa) = tr (a1/2ρa1/2) ≤ tr (ρ) = 1

we have that
Sa(ρ) = tr (ρa) ln

[
tr (a)

tr (ρa)

]
≤ ln

[
tr (a)

tr (ρa)

]
If tr (ρa) = 1, then

Sa(ρ) = −tr (ρa) ln
[

tr (ρa)
tr (ρa)

]
= − ln

[
1

tr (a)

]
= ln[tr (a)]

Conversely, if Sa(ρ) = ln[tr (a)/tr (ρa)], then clearly tr (ρa) = 1. If (2) holds, then we have
equality for Jensen’s inequality. Hence, tr (Pia) = tr (Pja) for all i, j = 1, 2, . . . , m. Since

tr (a) = ∑
i

tr (Pia) = mtr (Pia)

we conclude that
Sa(ρ) = −tr (P1a)∑

i
λi ln(λi) =

tr (a)
m S(ρ)

Finally, suppose tr (Pia) = tr (Pja) for all i, j = 1, 2, . . . , m. Then

tr (a) = ∑
i

tr (Pia) = mtr (P1a)

We conclude that

Sa(ρ) = −tr (P1a)∑
i

λi ln

[
∑

j
λj

tr (P1a)
tr (a)

]
= −tr (P1a)∑

i
λi ln

(
∑

j
λj

1
m

)
= −tr (P1a)∑

i
λi ln

(
1
m

)
= tr (a)

m ln(m)e
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For a, b ∈ E(H) we write a ⊥ b if a + b ∈ E(H).

Theorem 2. If a ⊥ b, then Sa+b(ρ) ≥ Sa(ρ) + Sb(ρ) for all ρ ∈ S(H). Moreover, Sa+b(ρ) =
Sa(ρ) + Sb(ρ) if and only if tr (b)tr (ρa) = tr (a)tr (ρb).

Proof. Since−x ln x is concave, letting λ1 = tr (a)/[tr (a) + tr (b)], λ2 = tr (b)/[tr (a) + tr (b)],
x1 = tr (ρa)/tr (a), x2 = tr (ρb)/tr (b) we obtain

Sa+b(ρ) = −tr [ρ(a + b)] ln
{

tr [ρ(a+b)]
tr (a+b)

}
= −tr (a + b)

[
tr (ρa)+tr (ρb)

tr (a+b)

]
ln
[

tr (ρa)+tr (ρb)
tr (a+b)

]
= −tr (a + b)(λ1x1 + λ2x2) ln(λ1x1 + λ2x2)

≥ −tr (a + b)[λ1x1 ln(x1) + λ2x2 ln(x2)]

= −tr (ρa) ln
[

tr (ρa)
tr (a)

]
− tr (ρb) ln

[
tr (ρb)
tr (b)

]
= Sa(ρ) + Sb(ρ)

We have equality if and only if x1 = x2 which is equivalent to tr (b)tr (ρa) = tr (a)tr (ρb).

Corollary 1. Sa(ρ) + Sa′(ρ) ≤ ln(n) and Sa(ρ) + Sa′(ρ) = ln(n) if and only if tr (a) =
ntr (ρa).

Proof. Applying Theorem 2 we obtain

Sa(ρ) + Sa′(ρ) ≤ Sa+a′(ρ) = SI(ρ) = ln(n)

We have equality ⇔ tr (a′)tr (ρa) = tr (a)tr (ρa′)

⇔ [n− tr (a)]tr (ρa) = tr (a)[1− tr (ρa)]
⇔ tr (a) = ntr (ρa)e

Corollary 2. Sa+b(ρ) ≥ Sa(ρ), Sb(ρ).

Corollary 3. If a ≤ b, then Sa(ρ) ≤ Sb(ρ) for all ρ ∈ S(H).

Proof. If a ≤ b, then b = a + c for c = b− a ∈ E(H). Hence,

Sb(ρ) = Sa+c(ρ) ≥ Sa(ρ) + Sc(ρ) ≥ Sa(ρ)

for every ρ ∈ S(H).

Applying Theorem 2 and induction we obtain the following.

Corollary 4. If a1 + a2 + · · ·+ am ≤ I, then S∑ ai (ρ) ≥ ∑ Sai (ρ). Moreover, we have equality if
and only if tr (aj)tr (ρai) = tr (ai)tr (ρaj) for all i, j = 1, 2, . . . , m.

Notice that E(H) is a convex set in the sense that if ai ∈ E(H) and 0 ≤ λi ≤ 1 with
∑m

i=1 λi = 1, then ∑ λiai ∈ E(H).

Corollary 5. (i) If 0 < λ ≤ 1 and a ∈ E(H), then Sλa(ρ) = λSa(ρ) for all ρ ∈ S(H). (ii) If

0 < λi ≤ 1, ai ∈ E(H), with
m
∑

i=1
λi = 1, then S∑ λiai (ρ) ≤ ∑ λiSai (ρ) for all ρ ∈ S(H). We

have equality if and only if tr (aj)tr (ρai) = tr (ai)tr (ρaj) for all i, j = 1, 2, . . . , m.
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Proof. (i) We have that

Sλa(ρ) = −tr (ρλa) ln
[

tr (ρλa)
tr (λa)

]
= −tr (ρa) ln

[
λtr (ρa)
λtr (a)

]
= λSa(ρ)

(ii) Applying (i) and Corollary 4 gives

S∑ λiai (ρ) ≥∑ Sλiai (ρ) = ∑ λiSai (ρ)

together with the equality condition.

As with E(H), S(H) is a convex set and we have the following.

Theorem 3. If 0 < λi ≤ 1 ρi ∈ S(H), i = 1, 2, . . . , m, with
m
∑

i=1
λi = 1, then

Sa
(
∑ λiρi

)
≥∑ λiSa(ρi)

for all a ∈ E(H). We have equality if and only if tr (ρia) = tr (ρja) for all i, j = 1, 2, . . . , m.

Proof. Letting xi = tr (ρia)/tr (a), since −x ln x is concave, we obtain

Sa
(
∑ λiρi

)
= −tr

(
∑ λiρia

)
ln
[

tr (∑ λiρia)
tr (a)

]
= −tr (a)∑ λi

tr (ρia)
tr (a) ln

[
∑ λitr (ρia)

tr (a)

]
= tr (a)

[
−∑ λixi ln

(
∑ λjxj

)]
≥ −tr (a)∑ λixi ln(xi)

= −tr (a)∑ λi
tr (ρia)
tr (a) ln

[
tr (ρia)
tr (a)

]
= −∑ λitr (ρia) ln

[
tr (ρia)
tr (a)

]
= ∑ λiSa(ρi)

We have equality if and only if xi = xj which is equivalent to tr (ρia) = tr (ρja) for all
i, j = 1, 2, . . . , m.

Theorem 4. If ai ∈ E(Hi), ρi ∈ S(Hi), i = 1, 2, then

Sa1⊗a2(ρ1 ⊗ ρ2) = tr (ρ2a2)Sa1(ρ1) + tr (ρ1a1)Sa2(ρ2) ≤ Sa1(ρ1) + Sa2(ρ2).

Proof. This follows from

Sa1⊗a2(ρ1 ⊗ ρ2) = −tr (ρ1 ⊗ ρ2a1 ⊗ a2) ln
[

tr (ρ1⊗ρ2a1⊗a2)
tr (a1⊗a2)

]
= −tr (ρ1a1)tr (ρ2a2) ln

[
tr (ρ1a1)tr (ρ2a2)

tr (a1)tr (a2)

]
= −tr (ρ1a1)tr (ρ2a2)

{
ln
[

tr (ρ1a1)
tr (a1)

]
+ ln

[
tr (ρ2a2)
tr (a2)

]}
= tr (ρ2a2)Sa1(ρ1) + tr (ρ1a1)Sa2(ρ2) ≤ Sa1(ρ1) + Sa2(ρ2)e

An operation on H is a completely positive linear map I : L(H) → L(H) such that
tr [I(A)] ≤ tr (A) for all A ∈ L(H) [2,3,6,9,10]. If I is an operation we define the dual of
I to be the unique linear map I∗ : L(H) → L(H) that satisfies tr [I(A)B] = tr [AI∗(B)]
for all A, B ∈ L(H). If a ∈ E(H) then for any ρ ∈ S(H) we have 0 ≤ tr [I(ρ)a] ≤ 1
and it follows that I∗(a) ∈ E(H). We say that I measures a ∈ E(H) if tr [I(ρ)] = tr (ρa)
for all ρ ∈ S(H). If I measures a we define the I-sequential product a ◦ b = I∗(b) for all
b ∈ E(H) [12,13]. Although a ◦ b depends on the operation used to measure a we do not
include I in the notation for simplicity. We interpret a ◦ b as the effect that results from first
measuring a using I and then measuring b.
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Theorem 5. (i) If b ⊥ c, then a ◦ (b + c) = a ◦ b + a ◦ c. (ii) a ◦ I = a. (iii) a ◦ b ≤ a for all
b ∈ E(H). (iv) Sa◦b(ρ) ≤ Sa(ρ) for all ρ ∈ S(H).

Proof. (i) For every ρ ∈ S(H) we obtain

tr [ρ a ◦ (b + c)] = tr [ρI∗(b + c)] = tr [I(ρ)(b + c)] = tr [I(ρ)b] + tr [I(ρ)c]
= tr [ρI∗(b)] + tr [ρI∗(c)] = tr [ρ a ◦ b] + tr [ρ a ◦ c]
= tr [ρ(a ◦ b + a ◦ c)]

Hence, a ◦ (b + c) = a ◦ b + a ◦ c. (ii) For all ρ ∈ S(H) we have

tr (ρ a ◦ I) = tr [ρI∗(I)] = tr [I(ρ)I] = tr [I(ρ)] = tr (ρa)

Hence, a ◦ I = a. (iii) By (i) and (ii) we have

a ◦ b + a ◦ b′ = a ◦ (b + b′) = a ◦ I = a

It follows that a ◦ b ≤ a. (iv) Since a ◦ b ≤ a, by Corollary 3 we obtain Sa◦b(ρ) ≤ Sa(ρ) for
all ρ ∈ S(H).

Theorem 5(iv) shows that a ◦ b gives more information than a about ρ. We can continue
this process and make more measurements as follows. If I i measures ai, i = 1, 2, . . . , m,
we have

a1 ◦ a2 ◦ · · · ◦ am = (I1)∗(I2)∗ · · · (Im−1)∗(am)

and it follows from Theorem 5(iv) that

Sa1◦a2◦···◦am(ρ) ≤ Sa1◦a2◦···◦am−1(ρ)

Notice that the probability of occurrence of the effect a1 ◦ a2 ◦ · ◦ am in state ρ is

tr (ρ a1 ◦ a2 ◦ · · · ◦ am) = tr
[
ρ(I1)∗(I2)∗ · · · (Im−1)∗(am)

]
= tr

[
Im−1Im−2 · · · I1(ρ)am

]
Thus, we begin with the input state ρ, then measure a1 using I1, then measure a2 using
I2, . . . and finally measuring am.

Example 1. 1 For a ∈ E(H) we define the Lüders operation La(A) = a1/2 Aa1/2 [14]. Since

tr [A(La)∗(B)] = [La(A)B] = tr
[

a1/2 Aa1/2B
]
= tr (Aa1/2Ba1/2)

we have (La)∗(B) = a1/2Ba1/2 so (La)∗ = La. We have that La measures a because

tr [La(ρ)] = tr (a1/2ρa1/2) = tr (ρa)

for every ρ ∈ S(H). We conclude that the La sequential product is

a ◦ b = (La)∗(b) = a1/2ba1/2

We also have that

Sa◦b(ρ) = −tr (ρ a ◦ b) ln
[

tr (ρ a◦b)
tr (a◦b)

]
= −tr (ρ a1/2ba1/2) ln

[
tr (ρ a1/2ba1/2)
tr (a1/2ba1/2)

]
= −tr (a ◦ ρ b) ln

[
tr (a◦ρ b)

tr (ab)

]
.
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Example 2. 2 For a ∈ E(H), α ∈ S(H) we define the Holevo operation [15]H(a,α)(A) = tr (Aa)α.
Since

tr
[

A
(
H(a,α)

)∗
(B)
]
= tr

[
H(a,α)(A)B

]
= tr [tr (Aa)αB] = tr (Aa)tr (αB)

= tr [Atr (αB)a]

we have
(
H(a,α)

)∗
(B) = tr (αB)a. We haveH(a,α) measures a because

tr
[
H(a,α)(ρ)

]
= tr (ρa)

for every ρ ∈ S(H). We conclude that theH(a,α) sequential product is

a ◦ b =
(
H(a,α)

)∗
(b) = tr (αb)a

We also have that

Sa◦b(ρ) = −tr (αb)tr (ρa) ln
[

tr (ρa)
tr (a)

]
= tr (αb)Sa(ρ)

If ai ∈ E(H), i = 1, 2, . . . , m, and we measure ai with operationsH(ai ,αi), i = 1, 2, . . . , m− 1, then

a1 ◦ a2 ◦ · · · ◦ am = a1 ◦ (a2 ◦ · · · ◦ am) = tr (α1a2 ◦ · · · ◦ am)a1

= tr [α1tr (α2a3 ◦ · · · ◦ am)a2]a1

= tr (α2a3 ◦ · · · ◦ am)tr (α1a2)a1

...

= tr (αm−1am)tr (αm−2am−1) · · · tr (α1a2)a1

Moreover, it follows from Corollary 5(i) that

Sa1◦···◦am(ρ) = tr (αm−1am)tr (αm−2am−1) · · · tr (α1a2)Sa1(ρ)

for all ρ ∈ S(H).

3. Entropy of Observables and Instruments

We now extend our work on entropy of effects to entropy of observables and instru-
ments. An observable on H is a finite collection of effects A = {Ax : x ∈ ΩA}, Ax 6= 0,
where ∑

x∈ΩA

Ax = I [2,3,9]. The set ΩA is called the outcome space of A. The effect Ax occurs

when a measurement of A results in the outcome x. If ρ ∈ S(H), then tr (ρAx) is the
probability that outcome x results from a measurement of A when the system is in state ρ.
If ∆ ⊆ ΩA, then

ΦA
ρ (∆) = ∑

x∈∆
tr (ρAx)

is the probability that A has an outcome in ∆ when the system is in state ρ and ΦA
ρ is

called the distribution of A. We also use the notation A(∆) = ∑{Ax : x ∈ ∆} so ΦA
ρ (∆) =

tr [ρA(∆)] for all ∆ ⊆ ΩA. In this way, an observable is a positive operation-valued measure
(POVM). We say that an observable A is sharp if Ax is a projection on H for all x ∈ ΩA and
A is atomic if Ax is a one-dimensional projection for all x ∈ ΩA.

If A is an observable and ρ ∈ S(H) the ρ-entropy of A is SA(ρ) = ∑ SAx (ρ) where the
sum is over the x ∈ ΩA such that tr (ρAx) 6= 0. Then SA(ρ) is a measure of the information
that a measurement of A gives about ρ. The smaller SA(ρ) is, the more information given.
Notice that if A is sharp, then tr (Ax) = dim(Ax) and if A is atomic, then

SA(ρ) = −∑
x

tr (ρAx) ln[tr (ρAx)]
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There are two interesting extremes for SA(ρ). If ρ has spectral decomposition ρ =
m
∑

i=1
λiPi

and A is the observable A = {Pi : i = 1, 2, . . . , m}, then

SA(ρ) = −∑
i

tr (ρPi) ln[tr (ρPi)] = −∑ λi ln(λi) = S(ρ)

As we shall see, this gives the minimum entropy (most information). For the completely
random state I/n and any observable A we obtain

SA(I/n) = −∑
x

tr (Ax)
n ln

[
tr (Ax)/n

tr (Ax)

]
= − 1

n ∑
x

tr (Ax) ln
(

1
n

)
= ln(n)

n ∑
x

tr (Ax) =
ln(n)

n tr (I) = ln(n) (3)

We shall also see that this gives the maximum entropy (least information).

Theorem 6. For any observable A and ρ ∈ S(H) we have

S(ρ) ≤ SA(ρ) ≤ ln(n)

Proof. Applying Theorem 1 we obtain

SA(ρ) = ∑
x∈ΩA

SAx (ρ) ≥ − ∑
x∈ΩA

∑
i

tr (Pi Ax)λi ln(λi)

= −∑
i

tr

(
Pi ∑

x∈ΩA

Ax

)
λi ln(λi)

= −∑
i

tr (Pi)λi ln(λi) = −∑
i

λi ln(λi) = S(ρ)

Since ln(x) is concave and tr (ρAx) > 0, ∑x tr (ρAx) = 1 we have by Jensen’s inequality

SA(ρ) = ∑
x

tr (ρAx) ln
[

tr (Ax)
tr (ρAx)

]
≤ ln

[
∑
x

tr (ρAx)
tr (Ax)

tr (ρAx)

]

= ln

[
∑
x

tr (Ax)

]
= ln[tr (I)] = ln(n)e

An observable A is trivial if Ax = λx I, 0 < λx ≤ 1, ∑ λx = 1.

Corollary 6. (i) SA(ρ) = ln(n) if and only if tr (Ax)tr (ρAy) = tr (Ay)tr (ρAx) for all x, y ∈
ΩA. (ii) A is trivial if and only if SA(ρ) = ln(n) for all ρ ∈ S(H). (iii) ρ = I/n if and only if
SA(ρ) = ln(n) for all observables A. (iv) S(ρ) = ln(n) if and only if ρ = I/n.

Proof. (i) This follows from the proof of Theorem 6 because this is the condition for
equality in Jensen’s inequality. (ii) Suppose A is trivial with Ax = λx I. Then for every
ρ ∈ S(H) we have

SA(ρ) = −∑
x

tr (ρλx I) ln
[

tr (ρλx I)
tr (λx I)

]
= −∑

x
λx ln

(
λx

nλx

)
= ln(n)∑

x
λx = ln(n)

Conversely, suppose SA(ρ) = ln(n) for all ρ ∈ S(H). By (i) we have that tr (Ax)tr (ρAy) =
tr (Ay)tr (ρAx) for all ρ ∈ S(H). It follows that

〈
φ, Ayφ

〉
= 〈φ, Axφ〉 tr (Ay)

tr (Ax)
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for every φ ∈ H, φ 6= 0. Hence, Ay = (tr (Ay))/(tr (Ax))Ax so that

I = ∑
y

Ay = ∑
y

tr (Ay)

tr (Ax)
Ax = n

tr (Ax)
Ax

We conclude that Ax = (tr (Ax))/n I for all x ∈ ΩA so A is trivial. (iii) If ρ = I/n, we
have shown in (3) that SA(ρ) = ln(n) for all observables A. Conversely, if SA(ρ) = ln(n)
for every observable A, as before, we have tr (Ax)tr (ρAy) = tr (Ay)tr (ρAx) for every
observable A. Letting Ax be the observable given by the spectral decomposition ρ =

∑ λx Ax where A is atomic, we conclude that λx = λy for all x, y ∈ ΩA. Hence, λx = 1/n
and ρ = ∑(1/n)Ax = I/n. (iv) If S(ρ) = ln(n), by Theorem 6, SA(ρ) = ln(n) for every
observable A. Applying (iii), ρ = I/n. Conversely, if ρ = I/n, then

S(ρ) = −
n

∑
i=1

1
n ln

(
1
n

)
= − ln

(
1
n

)
= ln(n)e

We now extend Corollary 5(ii) and Theorem 3 to observables. If Ai =
{

Ai
x : x ∈ Ω

}
are observables with the same outcome space Ω, i = 1, 2, . . . , m, and 0 < λi ≤ 1 with
m
∑

i=1
λi = 1, then the observable A = {Ax : x ∈ Ω} where Ax =

m
∑

i=1
λi Ai

x is called a convex

combination of the Ai [12].

Theorem 7. (i) If A is a convex combination of Ai, i = 1, 2, . . . , m, then for all ρ ∈ S(H) we have

SA(ρ) ≥
m

∑
i=1

λiSAi (ρ)

(ii) If 0 < λi ≤ 1 with
m
∑

i=1
λi = 1, ρi ∈ S(H), i = 1, 2, . . . , m, and A is an observable, then

SA

(
∑

i
λiρi

)
≥∑

i
λiSA(ρi)

Proof. (i) Applying Corollary 5(ii) gives

SA(ρ) = ∑
x

SAx (ρ) = ∑
x

S∑ λi Ai
x
(ρ) ≥∑

x
∑

i
λiSAi

x
(ρ)

= ∑
i

λi ∑
x

SAi
x
(ρ) = ∑

i
λiSAi (ρ)

(ii) Applying Theorem 3 gives

SA

(
∑

i
λiρi

)
= ∑

x
SAx

(
∑

i
λiρi

)
≥∑

x
∑

i
λiSAx (ρi)

= ∑
i

λi ∑
x

SAx (ρi) = ∑
i

λiSA(ρi)e

We say that an observable B is a coarse-graining of an observable A if there exists a
surjection f : ΩA → ΩB such that

By = ∑{Ax : f (x) = y} = A
[

f−1(y)
]

for every y ∈ ΩB [2,12,16].



Entropy 2022, 24, 1686 10 of 14

Theorem 8. If B is a coarse-graining of A, then SB(ρ) ≥ SA(ρ) for all ρ ∈ S(H).

Proof. Let By = A
[

f−1(y)
]

for all y ∈ ΩB and let py = tr (ρBy), p′x = tr (ρAx) for all
y ∈ Ωb, x ∈ ΩA. Then

py = tr

ρ ∑
f (x)=y

Ax

 = ∑
f (x)=y

tr (ρAx) = ∑
f (x)=y

p′x

Let Vy = tr (By), V′x = tr (Ax) so that

Vy = tr ∑

 ∑
f (x)=y

Ax

 = ∑
f (x)=y

tr (Ax) = ∑
f (x)=y

V′x

Since −x ln(x) is concave, we conclude that

SB(ρ) = −∑
y

py ln
(

py
Vy

)
= −∑

y
∑

f (x)=y
p′x ln

[
∑ f (x)=y p′x

Vy

]

= −∑
y

Vy

 ∑
f (x)=y

p′xV′x
V′xVy

 ln

 ∑
f (x)=y

p′xV′x
V′xVy


≥ −∑

y
Vy ∑

f (x)=y

V′x
Vy

[
p′x
V′x

ln
(

p′x
V′x

)]
= −∑

y
∑

f (x)=y
p′x ln

(
p′x
V′x

)
= −∑

x
p′x ln

(
p′x
V′x

)
= SA(ρ)e

The equality condition for Jensen’s inequality gives the following.

Corollary 7. An observable A possesses a coarse-graining By = A
[

f−1(y)
]

with SB(ρ) = SA(ρ)
for all ρ ∈ S(H) if and only if for every x1, x2 ∈ ΩA with f (x1) = f (x2) we have

tr (Ax2)tr (ρAx1) = tr (Ax1)tr (ρAx2)

A trace preserving operation is called a channel. An instrument on H is a finite collection
of operations I = {Ix : x ∈ Ω} such that ∑x∈ΩI Ix is a channel [2,3,9]. We call ΩI the
outcome space for I . If I is an instrument, there exists a unique observable A such that
tr (ρAx) = tr [Ix(ρ)] for all x ∈ ΩA = ΩI , ρ ∈ S(H) and we say that I measures A.
Although an instrument measures a unique observable, an observable is measured by many
instruments For example, if A is an observable, the corresponding Łüders instrument [14] is
defined by

LA
x (B) = A1/2

x BA1/2
x

for all B ∈ L(H). Then LA is an instrument because

tr

[
∑
x
LA

x (B)

]
= ∑

x
tr
[
LA

x (B)
]
= ∑

x
tr (A1/2

x BA1/2
x ) = ∑

x
tr (AxB)

= tr

(
∑
x

AxB

)
= tr (IB) = tr (B)

for all B ∈ L(H). Moreover, LA measures A because

tr
[
LA

x (ρ)
]
= tr (A1/2

x ρA1/2
x ) = tr (ρAx)
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for all ρ ∈ S(H). Of course, this is related to Example 1. Corresponding to Example 2, we
have a Holevo instrumentH(A,α) where αx ∈ S(H), x ∈ ΩA and

H(A,α)
x (B) = tr (BAx)αx

for all B ∈ L(H) [15]. To show thatH(A,α) is an instrument we have

tr

[
∑
x
H(A,α)

x (B)

]
= ∑

x
tr
[
H(A,α)

x (B)
]
= ∑

x
tr [tr (BAx)αx]

= ∑
x

tr (BAx) = tr

(
B ∑

x
Ax

)
= tr (B)

Moreover,H(A,α) measures A because

tr
[
HA,α

x (ρ)
]
= tr [(ρAx)αx] = tr (ρAx)tr (αx) = tr (ρAx)

Let A, B be observables and let I be an instrument that measures A. We define the
I-sequential product A ◦ B [12,13] by ΩA◦B = ΩA ×ΩB and

A ◦ B(x,y) = I∗x (By) = Ax ◦ By

Defining f : ΩA◦B → ΩA by f (x, y) = x,we obtain

A ◦ B
[

f−1(x)
]
= ∑

f (x,y)=x
Ax ◦ By = ∑

y∈ΩB

I∗x (By) = I∗α (I) = Ax

We conclude that A is a coarse-graining of A ◦ B. Applying Theorem 8 we obtain the following.

Corollary 8. If A, B are observables, the SA◦B(ρ) ≤ SA(ρ) for all ρ ∈ S(H). Equality
SA◦B(ρ) = SA(ρ) holds if and only if for every x ∈ ΩA, y1, y2 ∈ ΩB we have

tr (ρAx◦By1 )

tr (Ax◦By1 )
ln
[

tr (ρAx◦By1 )

tr (Ax◦By1 )

]
=

tr (ρAx◦By2 )

tr (Ax◦By2 )
ln
[

tr (ρAx◦By2 )

tr (Ax◦By2 )

]
Extending this work to more than two observables, let I1, I2, . . . , Im−1 be instruments

that measure the observables A1, A2, . . . , Am−1, respectively. If Am is another observable,
we have that

(A1 ◦ A2 ◦ · · · ◦ Am)(x1,x2,...,xm) = (I1
x1
)∗(I2

x2
)∗ · · · (Im−1

xm−1
)∗(Am

xm)

The next result follows from Corollary 8.

Corollary 9. If A1, A2, . . . , Am are observables, then

SA1◦A2◦···◦Am(ρ) ≤ SA1◦A2◦···◦Am−1(ρ)

for all ρ ∈ S(H).

If I is an instrument, let A be the unique observable that I measures so tr [Ix(ρ)] =
tr (ρAx) for all x ∈ ΩI and ρ ∈ S(H). We define the ρ-entropy of I as SI (ρ) = SA(ρ). Since
Ax = I∗x (I) we have

tr (Ax) = tr [I∗x (I)] = tr [Ix(I)]

Hence,

SI (ρ) = SA(ρ) = −∑
x

tr (ρAx) ln
[

tr (ρAx)
tr (Ax)

]
= −∑

x
tr [Ix(ρ)] ln

{
tr [Ix(ρ)]
tr [Ix(I)]

}
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Now let I1, I2, . . . , Im be instruments and let A1, A2, . . . , Am be the unique observables
they measure, respectively. Denoting the composition of two instruments I ,J by I ◦ J
we have

tr
[
Im

xm ◦ I
m−1
xm−1
◦ · · · ◦ I1

x1
(ρ)
]
= tr

[
ρ(I1

x1
)∗(I1

x2
)∗ · · · (Im

xm)
∗(I)

]
= tr (ρA1

x1
◦ A2

x2
◦ · · · ◦ Am

xm)

Hence, the observable measured by Im ◦ Im−1 ◦ · · · ◦ I1 is A1 ◦ A2 ◦ · · · ◦ Am. It follows that

SIm◦Im−1◦···◦I1(ρ) = SA1◦A2◦···◦Am(ρ)

We conclude that Theorems 1, 2 and 3 [1] follow from our results. Moreover, our proofs are
simpler since they come from the more basic concept of ρ-entropy for effects.

Let A, B be observables on H and let I be an instrument that measures A. The corre-
sponding sequential product becomes

(A ◦ B)(x,y) = I∗x (By) = Ax ◦ By

The ρ-entropy of A ◦ B has the form

SA◦B(ρ) = −∑
x,y

tr
[
ρ(A ◦ B)(x,y)

]
ln
{

tr [ρ(A◦B)(x,y)]
tr [(A◦B)(x,y)]

}
= −∑

x,y
tr
[
ρI∗x (By)

]
ln
{

tr [ρI∗x (By)]
tr [I∗x (By)]

}
= −∑

x,y
tr
[
Ix(ρ)By

]
ln
{

[Ix(ρ)By]
tr [Ix(I)By]

}

If LA is the Lüders instrument IA
x (ρ) = A1/2

x ρA1/2
x we have (A ◦ B)(x,y) = A1/2

x By A1/2
x and

SA◦B(ρ) = −∑
x,y

tr (A1/2
x ρA1/2

x By) ln

[
tr (A1/2

x ρA1/2
x By)

tr (AxBy)

]

IfH(A,α) is the Holevo instrumentH(A,α)
x (ρ) = tr (ρAx)αx, αx ∈ S(H) we obtain

SA◦B(ρ) = −∑
x,y

tr (ρAx)tr (αxBy) ln
[

tr (ρAx)tr (αx By)

tr (Ax)tr (αx By)

]
= −∑

x,y
tr (ρAx)tr (αxBy) ln

[
tr (ρAx)
tr (Ax)

]
= −∑

x
tr (ρAx) ln

[
tr (ρAx)
tr (Ax)

]
= SA(ρ)

This also follows from Corollary 8 because

tr (ρAx◦By)

tr (Ax◦By)
=

tr (αx By)tr (ρAx)

tr (αx By)tr (Ax)
= (ρAx)

tr (Ax)

If A is an observable on H and B is an observable on K we form the tensor product
observable A⊗ B on H ⊗ K given by (A⊗ B)(x,y) = Ax ⊗ By where ΩA⊗B = ΩA ×ΩB [12].

Lemma 1. If ρ1 ∈ S(H), ρ2 ∈ S(K), then

SA◦B(ρ1 ⊗ ρ2) = SA(ρ1) + SB(ρ2)
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Proof. From the definition of A⊗ B we obtain

SA⊗B(ρ1 ⊗ ρ2) = −∑
x,y

tr (ρ1 ⊗ ρ2 Ax ⊗ By) ln
[

tr (ρ1⊗ρ2 Ax⊗By)

tr (Ax⊗By)

]
= −∑

x,y
tr (ρ1 Ax)tr (ρ2By) ln

[
tr (ρ1 Ax)tr (ρ2By)

tr (Ax)tr (By)

]
= −∑

x,y
tr (ρ1 Ax)tr (ρ2By) ln

[
tr (ρ1 Ax)
tr (Ax)

]
−∑

x,y
tr (ρ1 Ax)tr (ρ2By) ln

[
tr (ρ2By)

tr (By)

]
= −∑

x
tr (ρ1 Ax) ln

[
tr (ρ1 Ax)
tr (Ax)

]
−∑

y
tr (ρ2By) ln

[
tr (ρ2By)

tr (By)

]
= SA(ρ1) + SB(ρ2)e

We conclude that A gives more information about ρ1 than A and B give about ρ1 ⊗ ρ2
and similarly for B.

A measurement model [2,3,9] is a 5-tuple M = (H, K, ν, σ, P) where H is the system
Hilbert space, K is the probe Hilbert space, ν is the interaction channel, σ ∈ S(K) is the
initial probe state and P is the probe observable on K. We interpretM as an apparatus that
is employed to measure an instrument and hence an observable. In fact,Mmeasures the
unique instrument I on H given by

Ix(ρ) = tr K[ν(ρ⊗ σ)(I ⊗ Px)]

In this way, a state ρ ∈ S(H) is input into the apparatus and combined with the initial
state σ of the probe system. The channel ν interacts the two states and a measurement
of the probe P is performed resulting in outcome x. The outcome state is reduced to H
by applying the partial trace over K. Now I measures an unique observable A on H
that satisfies

tr (ρAx) = tr [Ix(ρ)] = tr [ν(ρ⊗ σ)(I ⊗ Px)] (4)

The ρ-entropy of I becomes

SI (ρ) = SA(ρ) = −∑
x

tr (ρAx) ln
[

tr (ρAx)
tr (Ax)

]
where tr (ρAx) is given by (4). Of course, SI (ρ) = SA(ρ) gives the amount of information
that a measurement byM provides about ρ. A closely related concept is the observable
I ⊗ P and SI⊗P[ν(ρ⊗ σ)] also provides the amount of information that a measurement
M provides about ρ. It follows from (4) that the distribution of A in the state ρ equals
the distribution of I ⊗ P in the state ν(ρ⊗ σ). We now compare SA(ρ) and SI⊗P[ν(ρ⊗ σ)].
Applying (4) gives

SI⊗P[ν(ρ⊗ σ)]

= −∑
x

tr [ν(ρ⊗ σ)(I ⊗ Px)] ln
{

tr [ν(ρ⊗σ)(I⊗Px)]
tr (I⊗Px)

}
= −∑

x
tr (ρAx) ln

[
tr (ρAx)
ntr (Px)

]
= −∑

x
tr (ρAx) ln

[
tr (Ax)
ntr (Px)

tr (ρAx)
tr (Ax)

]
= −∑

x
tr (ρAx) ln

[
tr (ρAx)
tr (Ax)

]
−∑ tr (ρAx) ln

[
tr (Ax)
ntr (Px)

]
= SA(ρ)−∑

x
tr (ρAx) ln

[
tr (Ax)
ntr (Px)

]



Entropy 2022, 24, 1686 14 of 14

It follows that SA(ρ) ≤ SI⊗P[ν(ρ⊗ σ)] if and only if

∑
x

tr (ρAx) ln
[

tr (Ax)
ntr (Px)

]
≤ 0 (5)

Now (5) may or may not hold depending on A, ρ and P. In many cases, P is atomic [2,9]
and then

ln
[

tr (Ax)
ntr (Px)

]
= ln

[
tr (Ax)

n

]
< 0

so SA(ρ) ≤ SI⊗P[ν(ρ⊗ σ)] for all ρ ∈ S(H). Also, (5) holds if P is sharp.
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