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Abstract: This paper presents a model and experimental study of a chaotic spike oscillator based
on a leaky integrate-and-fire (LIF) neuron, which has a switching element with an S-type current-
voltage characteristic (S-switch). The oscillator generates spikes of the S-switch in the form of chaotic
pulse position modulation driven by the feedback with rate coding instability of LIF neuron. The
oscillator model with piecewise function of the S-switch has resistive feedback using a second order
filter. The oscillator circuit is built on four operational amplifiers and two field-effect transistors
(MOSFETs) that form an S-switch based on a Schmitt trigger, an active RC filter and a matching
amplifier. We investigate the bifurcation diagrams of the model and the circuit and calculate the
entropy of oscillations. For the analog circuit, the “regular oscillation-chaos” transition is analysed
in a series of tests initiated by a step voltage in the matching amplifier. Entropy values are used to
estimate the average time for the transition of oscillations to chaos and the degree of signal correlation
of the transition mode of different tests. Study results can be applied in various reservoir computing
applications, for example, in choosing and configuring the LogNNet network reservoir circuits.

Keywords: chaotic oscillator; LIF neuron; entropy; pulse position modulation; reservoir computing

1. Introduction

Chaotic dynamics is widely represented in various fields of science and technology.
In engineering, chaotic systems can be used in communication security systems [1–3]
automatic control methods [4], device failure diagnostics [5], time series forecasting [6],
and pattern recognition [7]. Circuits of chaotic signal generators are modelled in physics,
biology, chemistry, and economics. In neuroscience, electronic circuits imitate real neurons
based on various biosimilar models with chaotic dynamics [8–10].

A leaky integrate-and-fire (LIF) neuron [10–15] represents the simplest spiking neuron
model, which is based on a threshold (switching) element and an RC integrator, and has
multiple implementation methods, including methods based on CMOS technology [14,15].
A two-terminal element with an S-shaped I–V characteristic (S-IVC) [13] can be used
as a switching element and is widely represented in electronics, for example, in silicon
trigger diodes and thin-film structures based on oxides of transition metals (V, Nb, Ti and
others) [16]. An S-switch with non-volatile memory, as in the Pt/TiO2/Pt structure [17],
is classified as memristor, and has high potential for applications in neurotechnologies
as an electronic component of neural circuits, including LIF models [18,19]. An S-switch
with volatile memory can be built of various combinations of transistors [20], for example,
as a complementary pair, where the base of one transistor is connected to the collector of
another transistor. Using a Schmitt trigger and MOSFET, we developed an active S-switch
with high switching stability (see, Section 2.2).

Reservoir Computing (RC) is nonlinear dynamics based neurotechnology, where
chaotic physical systems can be directly involved in the computational process. Such
systems can be of mechanical, optical, or electronic nature [21]. Echo state [22] and liquid
state machines [23] are RC concepts that use reservoirs consisting of a large number
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of unstable dynamic subsystems (neurons) with random connections. Simplified RC
architectures, where the reservoir consists of only one node, can be represented as a one-
dimensional machine that has a set of virtual nodes with time-multiplexed states [24–26].
The LogNNet network is another concept of RC that uses discrete chaotic mapping and
matrix transformation of input data [27,28]. The reservoir of this network transforms the
input data vectors from one dimension to another in a unique way for a given chaotic
mapping and can be configured with mapping parameters.

Good prediction and recognition results are shown by RCs where the reservoir dy-
namics is on the edge of chaos with a sharp transition from a regular regime to a chaotic
one [21–24]. The transitions can be identified by the change from regular low-entropy oscil-
lations to high-entropy oscillations of irregular (chaotic) dynamics. A preliminary entropy
analysis of chaotic models can reveal the characteristics of their bifurcation behaviour and
find the options for their optimal tuning in reservoir networks.

The use of physical oscillators in RC is problematic; however, this problem does not
exist in their mathematical (completely computational) representation. The problem is the
generation of well-repeatable (at least at the initial stage) excited states of the reservoir
under the same action, or the same input signals of the network. Otherwise, the reservoir
will not be able to transform the input signals to the network’s output layer preserving
signals’ characteristics. In other words, the reservoir will not have dynamic memory. For
example, the LogNNet network uses a repeating chaotic time series for each input data
vector, and the repetitions are easily implemented using mathematical mappings. However,
for physical chaotic oscillators, the repeatability of time series from run to run can be a
problem that requires additional study.

In the current study, we present a new chaotic spike (LIF) oscillator and a bifurcation
and entropy analysis of its dynamics. In entropy analysis, the entropy NNetEn based
on the LogNNet network [29] is calculated. The advantage of this method is the high
sensitivity of the entropy estimate to the irregularity of short time series. We investigate the
stationary mode of oscillations of the oscillator’s mathematical model and the experimental
(analogue) circuit based on this model. In the experimental circuit, we analyse the “regular
oscillations-chaos” transient mode in a series of multiple tests. The study results can be
used in RC applications, and in particular, when choosing and configuring the LogNNet
network reservoir circuit.

2. Methods
2.1. Chaotic LIF Oscillator Model

S-IVC has the following (piecewise linear) model of the dependence of current on
voltage Isw(Usw) and the switching of states [13,30]:

Isw(Usw) ≈
{

Usw
Roff

, if state = OFF
Usw
Ron

, if state = ON
switching⇒

{
OFF→ ON, if Usw > Uth
ON→ OFF, if Usw < Uh

(1)

where Ron and Roff are resistances of low (ON state) and high (OFF state) branches and Uth
and Uh are threshold and holder voltages of the S-switch (Figure 1a).

When constructing a mathematical model of the LIF oscillator based on the S-switch,
there is a problem associated with the ambiguity of the S-IVC function (1). This ambiguity
can be eliminated by a small inductance Lsw connected in series to the switch (Figure 1b).
Such inductance increases the dimension of the model, but makes it possible to use the
inverse to (1), piecewise linear and single-valued function Usw(Isw) [13]):

Usw(Isw) =
Ron + Roff

2
Isw +

Rndr − Roff
2

(|Isw − Ith| − Ith)−
Rndr − Ron

2
(|Isw − Ih| − Ih) (2)
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with the resistance Rndr in the negative differential conductance (NDC) section (Figure 1a):

Rndr =
Uh −Uth
Ih − Ith

(3)

where Ith = Uth/Roff and Ih = Uh/Ron are threshold and holder currents of the S-switch.
The physical meaning of adding the inductance is the accounting for the inertia of the
S-switch, that is, the finite time of the current change during the transitions between OFF
and ON states.
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Figure 1. (a) S-IVC with NDC segments (red line). (b) General circuit of a chaotic LIF oscillator
with feedback and two amplified modulus KF and Kfb (UF and Ufb are input and output voltages of
FILTER). UF can be proportional to both current Isw and voltage Usw of the switch. Lsw is noted by
the dash as inner inductive element of the OSC block.

Figure 1b presents the general concept of a chaotic LIF oscillator with an S-switch [30].
A basic spike oscillator (or LIF neuron), shown as an OSC block in Figure 1b, consists of
two series capacitors C1 and C2 parallel to the switching element, and one of the capacitors
(C1) has a parallel branch with a variable resistance R. The power supply of the circuit
Io sets the oscillator in self-oscillation mode: if the Io value is in the NDC range, the
LIF neuron generates regular impulses (spikes). A feature of the LIF neuron-oscillator
is the dependence of spike frequencies F on the variable resistance R as a sigmoid type
nonlinearity. The F(R) function has an inflection point at R = Ro, where its second derivative
is equal to zero [31].

The chaotic LIF oscillator (Figure 1b) has a feedback loop between the output signal of
LIF neuron (current or voltage pulses of the S-switch) and variable resistance R through
a second-order filter (FILTER, Figure 1b). In addition, two amplifying modules (with
coefficients KF and Kfb) are connected in series with the filter (UF and Ufb are input
and output voltages of FILTER). These modules have the large input resistances, thereby
eliminating the reverse effect of the filter on the LIF neuron (and vice versa). As modelled
in [30], if the initial (reference) resistance value R(t = 0) = R* is set close to Ro, and the
parameters KF and Kf (taking into account their sign) are chosen, the circuit of Figure 1b
generates chaotic PPM oscillations.

Let us consider a variant, when the second-order filter of the circuit Figure 1b is a
series oscillating LC circuit with conductance Cos, inductance Los and resistor Ros. The
input voltage of the filter (UF) is proportional with the coefficient KF to the current of the
switch (UF = KF·Isw), and its output voltage (Ufb) is the voltage on the capacitor Cos.
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Taking into account the infinitely large input resistances of the amplifying modules,
based on the Kirchhoff laws, we obtain the following system of five differential equations
for the circuit of Figure 1b:{

C1
dU1
dt = Io − Isw − S(Ufb)U1; Cp

dUsum
dt = Io − Isw − S(Ufb)U1;

Lsw
dIsw

dt = Usum −Usw(Isw); Cos
dUfb

dt = Ios; Los
dIos
dt = KF Isw −Ufb − Ros Ios

(4)

where Usum = U1 + U2 is the total voltage across capacitors C1 and C2, Cp = (C1+C2)/C2, Ios
is the current in the LC circuit. In system (4), in addition to the non-linear (piecewise-linear)
function of the switch Usw(Isw) (2), there is an inverse-linear function of the controlled
resistance on the voltage Ufb:

S(Ufb) =
1

Rrate + KfbUfb
(5)

with the operating point Rrate, which should be set to a value close to Ro. The Table 1
lists all parameters of the S-switch and the circuit (Figure 1) that were used in [30] (expect
for Lsw) and in this study. For the parameters given in Table 1, the reference resistance is
Rrate~Ro = 190 Ω.

Table 1. Parameters of the S-switch and model circuit (Figure 1).

S-Switch

Uth, Ith Uh, Ih Ron Roff Io C1, C2 Lsw KF Kfb Los Ros Cos

4 V
0.1 mA

2 V
10 mA 200 Ω 40 kΩ 0.15

mA
0.01 µF

1 µF 0.1 µH 1
V·A−1

−100
kΩ·V−1 1 mH 1 Ω 100 µF

The limit Lsw → 0 corresponds to the condition that the current change during
ON←→ OFF switch transitions is much shorter than the times of charging and discharging
the capacitors C1 and C2 of the oscillator. In this case, in system (4), the third equation
becomes a piecewise linear equation: Usw(Isw) = Us. In [30], model (4) is presented in a
dimensionless form with time t′ = t/a1 = t/(Ros·Cos).

2.2. Chaotic LIF Oscillator Circuit

The non-inductive analog circuit (Figure 2a) is based on the model circuit of Figure 1b
and consists of three blocks: OSC, FILTER and Amp connected in feedback loop. The block
OSC has a supply current Io. The blocks FILTER and Amp have 20 V supply voltages. All
parameters of the circuit (Figure 2) used in the current study are listed in Table 2.

Table 2. Parameters of the analog circuit (Figure 2).

Schmitt Trigger S-Switch
(Figure 2b) Io C1, C2

C3, C4,
C5, C6

R8, R9 R10, R11 R12, R13 R14, R15 R16, R17 RV1, RV2 Rk
R1, R2 R3, R4 R5, R6, R7

1 kΩ
100 kΩ 39 kΩ

300 kΩ
500 kΩ
100 kΩ

0.5
mA

22 nF
1 µF 0.1 µF 1 kΩ

100 kΩ
510 kΩ
180 kΩ

20 kΩ
0.5 kΩ 10 kΩ 100 kΩ 0 ÷ 10 kΩ

0 ÷ 50 kΩ
10
kΩ

Amplifiers A1–A4 MOSFETs T1 and T2

TL082CP ZVN2120
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Figure 2. (a) Experimental chaotic LIF oscillator circuit based on operational amplifiers and MOSFETs.
The circuit has additional branch with a switch S and resistance Rk between nodes (1) and (2) at the
non-inverting input of the matching amplifier (Amp). The circuit (b) and experimental IVC (c) of the
S-switch based on Schmitt trigger and MOSFET T1. (A) and (B) in figure (b) are terminals, similar to
Figure 1a. The black and red lines in figure (c) are the ascending and descending of IVC branches.
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The block OSC is a basic spike neuron-oscillator, similar as in Figure 1b, but without
the inductance (Lsw) in the switch circuit. The switch is formed as an active two-terminal
circuit based on the Schmitt trigger (comparator A1) in combination with the MOSFET T1
(Figure 2b). The output signal of the trigger (Ush(t)) are rectangular pulses, suitable for
digital processing.

The S-shaped IVC of the circuit Figure 2b is formed as follows. The voltage at the
non-inverting input (U(+)) of comparator A1 changes over time in two ways:

U(+)(t) =

 U(+)
1 (t) = Usw(t)·R6+U(1) ·R2

R2+R6
, if Ush = U(1)

U(+)
2 (t) = Usw(t)·R6+U(2) ·R2

R2+R6
, if Ush = U(2)

(6)

since the voltage Ush can take only two values: low level U(1) and high level U(2). If
Ush = U(1) and the voltage U(+)(t) = U1

(+)(t) reaches the value Uref, which is constant voltage
of inverting input U(−) (Figure 2b), then Ush sharply changes from U(1) to U(2). The voltage
at the gate of the transistor T1 changes through the divider R3–R4 and T1 opens. Then, the
current Isw of the switch (through the resistance R1) will cause a surge of the transition OFF
to ON state, the capacitances C1 and C2 of the oscillator are discharged through the open
transistor and the voltage Usw(t) drops. When the voltage U(+)(t) = U2

(+)(t) reaches the value
Uref, the output voltage of the trigger Ush again switches to the value U(1) and the transistor
closes. From this moment, C1 and C2 are charged by the supply current Io, the voltage
Usw(t) increases, and the trigger switching process is repeated. Figure 2c demonstrates the
experimental S-IVC of the switch based on Schmitt trigger using circuit parameters from
Table 2, which give the following switching parameters: Uth~5.4 V, Uh~2.4 V, Ron~1 kΩ
and Roff~600 kΩ.

The second block (FILTER, Figure 2a) consists of the voltage follower A2 and active
second-order RC filter (Sullen-Kay filter) based on the amplifier A3 [32]. The follower A2 is
the first module of the model circuit (Figure 2a) with KF = 1, and it excludes the reverse
effect of the filter on the LIF neuron. The third block (Amp) of Figure 2a is a matching
inverting amplifier A4. It corresponds to the second module of the model circuit with
Kfb = −R17/R16 and is connected to the LIF neuron through a divider (R8–R9) at the gate of
the MOSFET T2. In addition to the model circuit (Figure 1b), there are isolation capacitors
C3 and C4 in the circuit of Figure 2a to cut off the constant components (DC voltage) of the
signals between the blocks.

The circuit on Figure 2a has two control resistances: Rv1 and Rv2. The first resistance
Rv1 changes the amplitude of the output voltage Ufb(t) of FILTER block, the RMS value
Ufbo of which varies from 0 to 10 V, or up to half the supply voltage, as R14 = R15 (see
Table 2)). The second resistance Rv2 on the non-inverting input of A4 (Amp) modifies the
DC component of the feedback signal and sets the MOSFET reference voltage T2.

The transition between different oscillation modes in the circuit Figure 2c can be
triggered by changing the DC voltage at the non-inverting input of the matching amplifier
A4, adjusting the resistance Rv2. For a sharp transition between two oscillation modes,
we add an additional branch (between nodes (1) and (2) Figure 2a) with resistance Rk
and electronic switch S. In the transient test series (see Section 3.2.2), the circuit was set
to regular mode when switch S is open. After the circuit reaches stationary periodic
oscillations, closing the switch S initiates a stepped voltage pulse and the transition of the
oscillations to the chaos mode.

2.3. LogNNet and Entropy NNetEN of Chaotic Time Series

Although LogNNet is a reservoir neural network, it differs from traditional RC in a
way the reservoir is formed. In traditional RC, the reservoir consists of a set of neurons
with sigmoid (echo state [22]) or threshold (liquid state machines [23]) activation functions
and connected by random connections. The matrix of connections between neurons and
the input layer is fixed, and the output signals of the reservoir are read from a certain set of
neurons (nodes). In LogNet [27,28], the hidden layer (reservoir) has a convolution (matrix)
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transformation to transfer input data vectors to the output layer (classifier) with a change
in the dimension of their representation space. The kernel of the transformation is formed
by setting the reservoir matrix through generating a discrete chaotic mapping with certain
initial data and parameters. As in traditional RC, only the weight matrix of the output
layer is trained in LogNNet, and the parameters of the reservoir are adjusted through the
selection of chaotic display parameters.

LogNNet is applied to calculate NNetEn entropy of time series [29]. The LogNNet
model [27] was originally designed for recognizing handwritten digits (28 × 28 = 784 pixels)
in the MNIST dataset [33]. Optimizing LogNNet for this task, it was found [30] that the
accuracy of digit recognition directly correlates with the values of the approximate entropy
(ApEN) [29] of the time series that is generated by the chaotic discrete reservoir mapping.
By tuning the network, it is possible to achieve a high degree of coincidence of the recogni-
tion accuracy and ApEN values in a certain parameter range. The method for estimating
the entropy of an arbitrary chaotic sequence using LogNNet is to set a reservoir matrix
based on this sequence and calculate the accuracy of recognition of handwritten letters
from the MNIST dataset. Therefore, classification accuracy (0 ÷ 100%) is considered to be
the entropy measure NNetEn (0÷1) as classification accuracy/100%.

The main advantage of this method for estimating the entropy of signals is the sim-
plicity and high sensitivity to the irregularity of short time series. Figure 3 reflects the
LogNNeT concept of NNetEN entropy calculation for time series xn, which has the fol-
lowing algorithm: (1) Loading the MNIST-10 database; (2) loading time series xn; (3) the
reservoir matrix W1 is constructed using the given time series (Method 3 [34]); (4) the
training process of the LogNNet 784:25:10 network is performed on a training set; (5) the
testing process of the LogNNet 784:25:10 network is performed on a test set, classification
accuracy and entropy NNetEn are calculated.
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Figure 3. The LogNNet structure [27].

In this algorithm, a data set from MNIST 10 is fed to the LogNNet (Input) as a
greyscaled and normalised input vector Y = {Y [0], Y [1], . . . , Y [784]}. The reservoir uses
the matrix W1 to transform the input vectors Y into output vectors Sh, which contains
N × P = 19,625 elements, where N = 785 is the number of components of input vectors
Y and P = 25 is the number of components of output vectors Sh. The vectors Sh with
the connection matrix W2 are fed to the output layer (Output), consisting of 10 neurons
Sout (digits 0 ÷ 9). Training the network to recognize digits from the MNIST 10 database
(with 100 training epochs), a linear classifier is used to tune only the weight matrix W2.
To calculate the non-stationary signal entropy, for example, its transient response, a data
window is extracted from the time series with the number of elements N = 100. As the
window slides over the time series, NNetEn values are calculated to find the dependence
of entropy on time.
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3. Results
3.1. Chaotic Oscillator Model

The simulation of model circuit on Figure 1b, performed by the MatLab software
(method ode23s, see the program in Supplementary Material) based on Equation (4),
demonstrates the existence of a chaotic mode of PPM for switch current pulses Isw(t) and
the chaotic oscillation of output voltage of the filter Ufb(t). Figure 4 presents oscillograms,
bifurcation diagrams and entropy calculation, where the coefficient K = |KF·Kfb| is the
variable parameter. The model circuit dynamics depends on the product of the coefficients
KF and Kfb of the amplifying modules, as the modules are connected in series and have
infinitely large input resistances. In addition, modules can invert the signal, i.e., KF and(or)
Kfb can be less than zero.
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Figure 4. Oscillograms and bifurcation diagrams of the model Figure 1b: (a,b) switch current
pulses Isw(t), pulses’ periods and entropy (NNetEnt); (c,d) LC filter output voltage Ufb(t), voltage’s
peaks and entropy (NNetEnt). Calculation parameters are listed in Table 1, expect for Kfb in (b,d):
Kfb = –10 ÷ 75 kΩ·V−1.

Bifurcation diagrams for periods between the switch current pulses (Figure 4a) show
that the transition to the dynamic chaos of PPM occurs according to the scenario of a period-
doubling bifurcation cascades. Chaos periods (completely filled periods of values) alternate
with periods where a finite number of pulses are observed, that is, regular dynamics. The
bifurcation diagram for output voltage of the filter Ufb(t) (Figure 4d), recalculated on its
peaks (Figure 4c), demonstrates the similar dynamics. The entropy value (NNetEn) for
both signals increases sharply upon transition to the dynamic chaos mode, and its changes
repeat the alternation of chaos periods (large entropy values) and regular dynamics (small
entropy values).
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3.2. Chaotic Oscillator Circuit
3.2.1. Steady State Analysis

Photos of voltage oscillograms in the stationary (steady) chaotic mode of the switch
(Usw(t)) and filter (Ufb(t)) of the circuit Figure 2 are presented in Figure 5. The sequences of
switch pulses (Usw(t), Figure 5a) have a chaotic burst form, in other words, they represent
packets (bursts) of rapidly oscillating spikes, randomly changing in duration and intervals
of low-frequency activity. This chaotic nature of the oscillations of the experimental circuit
is the result of its tuning, when the active filter is in a strong excitation mode with large
oscillation amplitudes, and the MOSFET T2 (Figure 2a) often switches between fully
open and closed states. The oscillations of Ufb(t) with small amplitudes are replaced by
oscillations with large amplitudes (Figure 5b).
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Figure 5. Photos of voltage oscillograms: (a) voltage Usw(t) of the S-switch; (b) output voltage Ufb(t)
of the Sullen-Kay filter. Circuit parameters are listed in Table 2.

Bifurcation diagrams of the switch pulses’ periods and entropy (NNetEn) with a
change in the RMS output voltage of the filter (Ufbo) are shown in Figure 6a. The values Ufbo
were changed by the variable resistance Rv1 (Figure 2a). The diagram has windows with a
finite number of pulses, which alternate with windows of completely filled periods. On the
initial small range of values Ufbo, the switch pulses have three periods, but only one period
has frequently repeated signal values. This is demonstrated by the histogram of the relative
frequency distribution of periods with the value Ufbo = 0.4 V (Figure 6b, upper left figure),
where one period has a frequency probability of ~99%. As Ufbo increases, regular single-
mode pulse sequences transform into two-mode sequences. For Ufbo = 0.9 V (Figure 6b,
upper right figure), out of six periods, two periods have the frequency probability ~50%,
and the remaining four periods have the frequency probability less than 1%. As in the
model (Figure 4b), we witness the period doubling scenario in the experimental circuit of
the LIF oscillator. However, there are periods of signals in the circuit, which are the result
of rare switching not predicted by the model. We suppose this switching is the result of the
noise of the circuit elements, primarily MOSFETs T1 and T2.

On the bifurcation diagram, where there is a continuous filling of the periods’ values
(the lower histograms on Figure 6b with Ufbo = 1.15 and 2.0 V), the distribution of distances
between pulses is highly nonuniform with a dip in the frequency probability between the
two dominant periods. This irregularity of PPM on the experimental setup is explained
by the burst nature of the oscillations (see Figure 5), when the spectrum is dominated by
two frequency components that are very different from each other. The entropy NNetEn
dependence on the values of Ufbo (Figure 6a, bottom) is similar to the alternation of
regularity and chaos of the bifurcation diagram of the circuit, however, its shape is smoother
than the dependence of the model (Figure 4b). This is a consequence of the limited data
on the pulse periods obtained in the experimental circuit in comparison with the model
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calculation. In addition, noise in the circuit leads to period fluctuations and blurring of the
fine bifurcation structure of entropy.
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Figure 6. (a) Bifurcation diagram of the pulse periods of the circuit (Figure 2a) and dependence of
pulses’ entropy NNetEn on the RMS (root mean square) output voltage of the Sallen-Key filter Ufbo;
(b) period distribution histograms for four Ufbo values.

3.2.2. Transient State Analysis

Transient mode “regular oscillations–chaos” of the experimental circuit, Figure 2a,
was generated by closing the switch S in a series of 10 tests. Figure 7a,b reflect the pulse
oscillograms of two tests of the Schmitt trigger Ush(t) and the Sallen-Key filter output
voltage Ufb(t), respectively. Oscillograms demonstrate the time (t = 0 s) of the switch
closing and the beginning of the “regular oscillations–chaos” transition in the time range
t = 0 ÷ 0.09 s. Before the transition, at t < 0, the regular oscillations Ufb(t) of the test
oscillograms have a constant phase shift. It is explained by the fact that the switch closure
for each test occurred at a random time and the oscillograms are independent of each other.

From the moment of transition (t = 0), the phase shift between any oscillograms Ufb(t)
from the test series almost disappears, and the oscillograms become similar to periodic
oscillations with regularity failures in intervals Trf, as shown in Figure 7b. These failures of
regularity increase with time, and later, the quasi-regular dynamics of the circuit disappears
completely: the oscillations Ufb(t) and pulse periods Ush(t) reach the chaotic mode.

Entropy NNetEn of oscillograms estimates the settling time of the chaotic dynamics
Tch as the time from the beginning of the transition (closing the switch) to the time of the
maximum signal entropy level. Figure 8a shows the transient response of the average signal
entropy Ush(t) over 10 tests. A small oscillating plateau on the NNetEn curve starts from
the time To~0.11 s. Before that time, the entropy has a low value around 0.25. From the
time t > 0.15 s, the entropy begins to increase sharply, and by the time t = Tch, the entropy
reaches its maximum level (~0.6), corresponding to stationary chaotic dynamics.
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Figure 7. Experimental voltage oscillograms of transient mode: (a) voltage Ush(t) of Schmitt trigger
of the S-switch (Figure 2b); (b) output voltage Ufb(t) of the Sullen-Kay filter. The red and black
oscillograms correspond to two different tests. Figure (b) shows the regularity failure intervals (Trf).
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Figure 8. (a) Transient characteristic of average entropy (NNetEn) for pulse periods Ush(t) in a series
of 10 tests; (b) Pearson correlation distributions for signals Ufb(t) in time intervals [0, Tch] (upper
histogram) and [0, To] (lower histogram).
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The entropy NNetEn of signals estimates the settling time of the chaotic dynamics Tch
in the circuit Figure 2a as the time from the beginning of the transition (closing the switch)
to the time of the maximum level of signal entropy. Figure 8a demonstrates the average
entropy over 10 tests of pulse period Ush(t). A small oscillating plateau on the NNetEn
curve starts from the time To~0.11 s, and before that time, the entropy has a low value~0.25.
From the time t > 0.15 s, the entropy increases sharply, and by the time t = Tch, the entropy
reaches its maximum level (~0.6), corresponding to the maximum chaotic dynamics.

For a quantitative analysis of the repeatability of signals from different tests, we
calculate the paired Pearson correlation coefficients (Pear) for the values of the oscillo-
grams Ufb(t). Figure 8b demonstrates the distributions of the coefficients Pear for 10 trials
(45 combinations in total) from the beginning of the transition (t = 0) to the times t = To
and t = Tch. Closer to the chaotic regime (t = Tch), the correlation between the test signals
decreases significantly. The Pearson coefficient does not exceed 0.5 and has a significant
proportion (>30%) of signal pairs, where Pear is less than 0.1. On the contrary, for the initial
transition interval [0, To], all coefficients Pear in the series exceed 0.2, and a significant
proportion (>45%) of signal pairs have a correlation value above 0.6.

The low correlation between the signals of different tests by the moment of transition
to the chaotic mode (t = Tch) indicates the accumulation of large fluctuations in the circuit.
As a result, the phase trajectories of the oscillations are significantly moving away from
each other. Such fluctuations can be stochastic switching of the oscillator, as a consequence
of the internal noise of the circuit elements, especially MOSFETs T1 and T2. Thus, the
signals generated by the chaotic LIF oscillator are not repeated from test to test at t > Tch,
and this part of the oscillograms cannot be used in RC.

4. Discussion

Our study shows that the calculation of the entropy of oscillations effectively comple-
ments the traditional bifurcation analysis to identify the features of nonlinear dynamics
and adjust the operating modes of chaotic circuits. For example, the chaos generator can
be tuned to various parameter ranges, including the edge of chaos, where there is a sharp
transition of entropy from a low level of the regular mode to high values corresponding to
strong chaotic dynamics. In addition, entropy analysis can be a simple and effective tool for
studying transient modes of nonlinear dynamics of chaotic circuits. This is demonstrated
by the example of the transition “regular oscillations-chaos”, where, using the calculation
of entropy, we estimate the average time for the transition to chaos and the degree of signal
correlation of the transition mode of different tests.

The combination of bifurcation analysis with the study of transient modes of non-
linear models is applied to construct the continuation of bifurcation diagrams. In this
case, the initial conditions are not fixed, but the analysis starts from the end point of the
trajectory calculated using previous bifurcation parameters. By comparing several con-
tinuation diagrams, possible areas of model multistability are estimated, in other words,
the coexistence of attractors with the same parameters but different initial conditions is
investigated [35,36]. Similar simulation studies were conducted for chaotic generators
based on memristors [37,38]. This analysis is highly relevant for the future research, as
reservoir-computing applications require repeatability and the absence of multistability of
chaotic signals.

The presented model circuit of the chaotic spike oscillator (Figure 1b) is a voltage-
controlled relaxation oscillator (VCO), where the feedback signal passes through a second-
order filter tuned to an oscillating (self-excited) mode. Unlike conventional VCOs, where
the frequency of the signal is controlled linearly by the input voltage, in the LIF oscillator,
the frequency control function (through a variable resistance) is not linear and has an
inflection point with a zero second derivative.

In addition, this model is an example of a neuromorphic chaotic circuit of a simple
spike LIF neuron. Previously, LIF neurons with chaotic dynamics were implemented either
using the time-varying injected current combined with a periodic modulation of param-
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eters [39] or using the quadratic resistance nonlinearity in the RC neuron integrator [10].
In our case, the nonlinearity is not created by external elements (with the exception of the
S-switch), but nonlinearity is inherent in the internal properties of the oscillator, namely, in
the high-speed coding of the output pulses.

Although the chaotic oscillator circuit is built on simple non-precise operational
amplifiers and transistors, it demonstrates high stability of regular mode oscillations.
However, the differences in the dynamics of an ideal model oscillator and its experimental
implementation exists in the chaotic regime. This is caused by, first, the use of a MOSFET
transistor in the experimental circuit Figure 2 as a controlled resistance. The MOSFET T2
has a narrow control range because it often has either fully open or closed state in the
active filter mode due to strong fluctuations in the amplitudes of the output signal. These
unstable (random) transistor switchings determine the chaotic oscillating dynamics of the
circuit, which, in contrast to the dynamics of the model, is close to the burst type. Second,
the internal noise of the circuit elements affect the chaotic dynamics. Compared to the
model calculation, the bifurcation diagram is blurred (Figure 6a) and fluctuations in the
circuit during “regular oscillations-chaos” transition are accumulated.

The neural network LogNNet uses a discrete chaotic mapping, which can be replaced
by any chaotic circuit, for example, an analog oscillator presented in this study. In the
LogNNet algorithm, a discrete mapping or time-sampled analog chaos generator generates
a matrix of input weights that forms the kernel to transform the input space to the higher-
dimensional feature space. First, this matrix can be set once and its copy can be used during
the entire execution of the neural network task. A second option is to start generating the
matrix for each input data vector. The first method requires the inclusion of memory cells in
the LogNNet hardware. For portable devices, used as ambient intelligence in the Internet of
Things environment, this can be a significant drawback, limiting the amount of data being
processed. In the second case, errors may occur in the repetition of the generator chaotic
signal from one start to another start. Nevertheless, in this study, we have demonstrated
that it is possible to use the transient mode in a short time range t < To, where a high
repeatability of the chaotic signal from start to start is observed. The study results can be
used to create a digital-to-analogue prototype of the LogNNet reservoir with the chaos
generator based on the presented circuit.

5. Conclusions

The proposed circuit of the spike LIF generator has a chaotic dynamic of the pulse
position modulation controlled by feedback with frequency coding of instability firing rate.
The model and the experimental circuit are compared using the one-parameter bifurcation
analysis together with the calculation of the entropy of oscillations. The new method
based on entropy calculation is developed for estimating the transition time from the initial
stationary regular regime to chaos for chaotic circuits. We hope the study results will
encourage the future research of the proposed chaotic model in terms of circuit design
and detailed mathematical analysis, as well as promote developing applications based on
findings, including neuromorphic computing.
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