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Abstract: Controlling the motional state of a particle in a multidimensional space is key for funda-
mental science and quantum technologies. Applying a recently found two-dimensional invariant
combined with linear invariants, we propose protocols to drive a particle in two dimensions so that
the final harmonic trap is translated and rotated with respect to the initial one. These protocols realize
a one-to-one mapping between initial and final eigenstates at some predetermined time and avoid
any final excitations.
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1. Introduction
Coupled harmonic oscillators are key models in physics as they describe many differ-

ent systems near equilibrium. In particular, they play a fundamental role in several quan-
tum technologies such as simulation, communication, and information processing [1–6].
Inverse engineering the dynamics of two coupled oscillators is thus a basic and important
operation for controlling quantum systems. In a previous publication [7] we demonstrated
that when the coupling is proportional to the product of oscillator coordinates xy, it is possi-
ble to inverse engineer the time dependence of the quadratic potential using a combination
of invariants to swap the quantum numbers of any eigenstate of the initial uncoupled
oscillators. The process may be faster than the adiabatic one and it is not state-specific, in
other words, the initial quantum numbers need not be known. In more detail, we identified
first a “family” of driving processes based on a quadratic invariant found by Simsek and
Mintert [8–10]. This invariant is degenerate except for the ground state, so the processes in
this family do not guarantee swapping in general. To remedy the “degeneracy problem”
we complemented the quadratic invariant with linear invariants and found an explicit
expression for the final states, which may become the desired swapped states by adjusting
the value of a single control parameter (once and for all for a predetermined process time,
i.e., for arbitrary quantum numbers). The adjustment was done with very little numerical
effort by running classical trajectories until a boundary condition is met.

The specific application we worked out in ref. [7] was the swapping of quantum
numbers describing a single particle state in a two-dimensional harmonic trap whose final
configuration is rotated by π/2 with respect to the initial configuration (The intermediate
driving though is not a pure trap rotation since the eigenfrequencies are also deformed
along the process). Up to a phase factor, which may be manipulated, the final state was
a replica, rotated by π/2, of the initial eigenstate. On a rotating basis, the protocol in [7]
facilitates a one-to-one mapping between initial and final eigenstates keeping at the final
time the same quantum numbers set initially. In other words, the “swapping” results
from defining the quantum numbers instead in non-rotating bases for the initial and final
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oscillators in x and y directions, which were the principal axes directions of the initial and
final trap configurations. We shall generalize these results to allow for more general trap
manipulations in 2D including arbitrary rotations and displacements. These extensions
provide a theoretical background for shuttling operations in 2D networks using trapped
ions in multisegmented Paul traps [11] or neutral atoms driven by optical tweezers [12],
but we shall leave aside, except for some comments in the final discussion, implementation
issues, which should be studied separately and vary largely with the setting and system.
The first generalization considered here is to allow for rotations by an arbitrary final angle
θ f (in the examples we use π/3). The particular, the π/2 angle treated in [7] is somewhat
simpler, because the directions of the initial and final principal axes coincide, and ref. [7]
only hinted at how to deal with other angles. Moreover, ref. [7] made use of a restricted
subset of the Hamiltonians allowed in ref. [8], whereas in this paper we shall make use of
the whole set to combine trap rotations and displacements of the eigenstates of the initially
uncoupled oscillator map, one to one, with the final eigenstates of the final oscillators.

The work in ref. [7], allowing for a fast, controlled rotation of the final trap with
respect to the initial trap, together with known shortcut-to-adiabaticity (STA) [13] protocols
for 1D displacements and trap expansions or compressions, form in principle a complete
toolbox of elementary motional drivings in 2D. These elementary processes could drive
sequentially (i.e. by means of a succession of translations and a rotation) an arbitrary 2D trap
on a plane to any other trap (with different locations, orientations, and eigenfrequencies),
implementing a one-to-one mapping from initial to final eigenstates. However, sequential
processes may be outperformed by combined ones in which the different operations are
done simultaneously [14], for example, to turn a corner. We shall design such combined
protocols here.

Figure 1 depicts an example of a designed state trajectory as well as the inverse
engineered trap trajectory found in this work to drive that desired state evolution. We also
depict schematic snapshots (ellipses) of the evolution of the trap at equal time intervals.

Figure 1. (Color online). Schematic representation of initial (long principal axis in x direction),
intermediate, and final configurations (long principal axes along the θ f radius) of a driving 2D
harmonic trap (red ellipses). The trap trajectory (the blue solid line is the trajectory of the trap center)
drives any initial eigenstate along the green dotted-dashed line to become a corresponding (rotated
and translated) final eigenstate. The ellipses are equipotential lines from the trap bottom drawn at
equal time intervals.

A clarification on notation and terminology: “trap rotation” is understood here as a
rotation of the principal axes of the trap with respect to fixed directions in the laboratory
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frame (the rotation may occur simultaneously with deformations of the principal frequen-
cies and translations). The rotation is characterized by an angle θ(t) that is also used to
define rotating coordinates q1, q2 parallel to the principal axes but having the same origin
as the x, y axes, see Figure 2. We also define a polar angle for the center of the trap θL(t)
in the (x, y) lab frame, see Figure 2. These two angles are, in general, different, but in
numerical examples below and in Figure 1, they are made equal at initial and final times,
θ(0) = θL(0) = 0, θ(t f ) = θL(t f ) = θ f . This coincidence at boundary times is a natural
choice for possible applications but it is not a necessary condition for the applicability of
the inverse method worked out in the following.

Θ

Θ

x

y

q2

q1

Figure 2. (Color online). Schematic representation of a harmonic trap (red ellipse) centered at some
point in the x, y plane. The principal axes of the trap are rotated with respect to the x and y directions
by an angle θ. This rotation angle defines the auxiliary rotating frame q1, q2 with the same origin
as the (fixed, or “laboratory”) x, y axes. The polar angle for the center of the trap is θL. In general,
θ 6= θL although they coincide at initial and final times (θ(0) = θL(0) = 0, θ(t f ) = θL(t f ) = θ f ) in the
process represented in Figure 1.

The paper is organized as follows: in Section 2, we describe the two-dimensional
invariant adapted from Simsek et al. [8]; in Section 3, we set the model and notation;
Section 4 gives the ansatzes for inverse engineering, and in Section 5 the degeneracy of the
invariant is discussed; in Section 6, auxiliary linear invariants are introduced to solve the
degeneracy problem. The article ends with a discussion and technical appendices.

2. A Quadratic Invariant for Two-Dimensional Harmonic Traps
Simsek and Mintert [8] consider Hermitian Hamiltonians with a 4× 4 matrix form

H =
1
2

X̂TΩX̂ + X̂TV,

Ω =

(
M 0
0 1

)
, V =

(
−F
0

)
, (1)

where X̂T = (x, y, px, py), with px and py being conjugate momenta for x and y, 1 represents
a 2× 2 unit matrix, and the superscript T means the transpose of the matrix. The formal
treatment is dimensionless here (see a discussion of the dimensionless units in ref. [7]) so
that no mass or h̄ appear explicitly in any equation. As a reminder, the unit of (angular) fre-
quency is one of the initial eigenfrequencies of the trap, and the unit of time its inverse. The
potential has a quadratic part with real coefficients in the time-dependent 2× 2 symmetric
matrix M, and a linear part characterized by the force vector F,

M =

(
Mxx Mxy
Myx Myy

)
, F =

(
Fx
Fy

)
. (2)
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Here M determines the eigenfrequencies and orientation of the “trap”, which may be
as well a saddle, or an antitrap if one or two eigenfrequencies become imaginary (When we
refer to a “trap” from now on, these possibilities—a saddle or an antitrap—should also be
included), whereas F determines its displacement from the origin (The exact displacement
is in Equation (19) below). Simsek and Mintert find quadratic invariants compatible with
this Hamiltonian of the form [8]

I0(t) =
1
2

X̂TΓX̂ + X̂TW + γ, (3)

where Γ (Γ−1/2 is the covariance matrix of the Gaussian ground state of the invariant) is
given by

Γ=

(
m(Ṙ2 + Re([Ṙ, R]A − RA2R)) J−{R,Ṙ}

2
−J−{R,Ṙ}

2
R2

m

)
, (4)

and the dots represent time derivatives. W and γ are given by

W = −Γ
(

L
L̇

)
, γ =

1
2

WTΓ−1W, (5)

where R is a real, Hermitian, positive semidefinite 2× 2 matrix, and L is a real vector, satisfying

{R̈, R}+ {R2, M} = 2[Ṙ, R]A − 2RA2R, (6)
L̈ + ML = F, (7)

with A and J determined from

A = iR−2 +
1
2
[R−1, Ṙ] +

1
2

R−1J R−1,

{J , R−2} = [Ṙ, R−1] + [R, R−2]Ṙ. (8)

Here [X, Y]Z = XZY−YZX and {X, Y} = XY + YX is the anti-commutator.
Equation (6) is a generalized (matrix) Ermakov equation. When inverse-engineering

the Hamiltonian, the designed R determines the form of the quadratic part M. R2/2 is
physically the spatial correlation matrix for the Gaussian ground state of the invariant.
In the (slow) adiabatic limit, R → M−1/4. Equation (7) has the form of a vector Newton
equation. L gives the trajectory of the center of the ground state of the invariant [8]. Using
this equation inversely, the designed (state) trajectory L together with M will determine the
homogeneous two-component force F.

R and L are designed by setting their boundary conditions and interpolating between
them. Analogously to one dimensional (1D) configurations [15,16], the boundary conditions
are chosen so that

[I0(0), H(0)] = [I0(t f ), H(t f )] = 0, (9)

which implies

R̈(tb) = Ṙ(tb) = 0, R(tb) = M(tb)
− 1

4 , (10)

L̈(tb) = L̇(tb) = 0, L(tb) = M(tb)
−1F(tb), (11)

with tb = 0, t f being the boundary times.

3. Model for Rotation and Transport
The Hamiltonian (1) takes the explicit form

H(t) =
p2

x
2

+
p2

y

2
+

1
2

Mxxx2 +
1
2

Myyy2 + Mxyxy− Fxx− Fyy. (12)
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It is useful to express M, and later the whole Hamiltonian, in terms of rotated coordi-
nates centered at the origin of the laboratory frame, see Figure 2,(

q1
q2

)
= U(t)

(
x
y

)
,
(

p1
p2

)
= U(t)

(
px
py

)
, (13)

where p1,2 are the corresponding momenta and

U(t) =
(

cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)
. (14)

The angle θ is chosen so that q1 and q2 become the natural coordinates along the
principal axes for the quadratic part, i.e.,

tan(2θ) =
2Mxy

Mxx −Myy
, (15)

with (squared) eigenfrequencies given by

ω2
1 =

cos2 θ

cos 2θ
Mxx −

sin2 θ

cos 2θ
Myy,

ω2
2 = − sin2 θ

cos 2θ
Mxx +

cos2 θ

cos 2θ
Myy. (16)

The inverse relations are

Mxx = ω2
1 cos2 θ + ω2

2 sin2 θ,

Myy = ω2
1 sin2 θ + ω2

2 cos2 θ,

Mxy = Mxy = (ω2
1 −ω2

2) sin θ cos θ.

In terms of these rotated coordinates and momenta (time-dependent functions of the
lab frame coordinates and momenta), the lab-frame Hamiltonian may be rewritten as

H(t) =
p2

x
2
+

p2
y

2
+

1
2

ω2
1q2

1+
1
2

ω2
2q2

2−F1q1−F2q2

=
p2

1
2

+
p2

2
2
+

ω2
1

2

(
q1 −

F1

ω2
1

)2

+
ω2

2
2

(
q2−

F2

ω2
2

)2

−
F2

1
2ω2

1
−

F2
2

2ω2
2

, (17)

where (
F1
F2

)
= U(t)

(
Fx
Fy

)
, (18)

and, to simplify notation, we have dropped the explicit dependences of q1(x, y; t), q2(x, y; t),
p1(px, py; t), p2(px, py; t), and the dependences on time of F1, F2, ω1, ω2. The trap-center
trajectory, in the lab frame, is given by(

x0(t)
y0(t)

)
= U−1(t)

(
F1/ω2

1
F2/ω2

2

)
. (19)
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4. Ansatzes for Inverse Engineering
We assume the following initial and final traps

Vi =
1
2

ω2
1(0)(q1 − r)2 +

1
2

ω2
2(0)q

2
2,

Vf =
1
2

ω2
1(t f )(q1 − r)2 +

1
2

ω2
2(t f )q2

2, (20)

which are depicted in Figure 1. Assuming w1 = ω1(0) = ω1(t f ) and w2 = ω2(0) = ω2(t f ),
the matrix M and F at initial and final time are

M(tb)=

(
w2

1 cos2 θb + w2
2 sin2 θb (w2

1 − w2
2) cos θb sin θb

(w2
1 − w2

2) cos θb sin θb w2
2 cos2 θb + w2

1 sin2 θb

)
,

F(tb)= rw2
1

(
cos θb
sin θb

)
, (21)

where θb = 0, θ f are the initial and final angles at the boundary times. At the initial time,
U(0) becomes the unit matrix. L is chosen as an arch with radius r. R(t) and the polar
angle θL(t) of the point L(t) are interpolated using polynomials that satisfy the boundary
conditions in Equations (10), (11) and (21),

R(t) = pr(t)R(t f )+[1− pr(t)]R(0) +
(

t
t f

)3(
1− t

t f

)3

Rc, (22)

L(t) = r
(

cos(θ f p(t))
sin(θ f p(t))

)
, (23)

where

p(t) = 10
(

t
t f

)3

− 15
(

t
t f

)4

+ 6
(

t
t f

)5

. (24)

p(t) is chosen to satisfy p(0) = 0, p(t f ) = 1, and ṗ(0) = p̈(0) = ṗ(t f ) = p̈(t f ) = 0,
whereas Rc is a constant matrix [7]

Rc = λ(w1w2)
− 1

4

(
0 1
1 0

)
. (25)

This choice of Rc is done for simplicity after some experimentation [7]. Note that Rc
is not positive semidefinite, so we numerically check our protocols to make sure that R(t)
is. pr(t) satisfies the same boundary conditions as p(t) but it is chosen as a higher order
polynomial in order to have some more freedom in the protocol design,

pr(t) = b6

(
t
t f

)6

+ (10− b6)

(
t
t f

)3

− (15− 3b6)

(
t
t f

)4

+ (6− 3b6)

(
t
t f

)5

. (26)

Without trap translation this additional freedom was not necessary [7], but with trap
translation, it will be needed later to solve the “degeneracy problem”. In summary, with the
described parameterizations the Hamiltonian is set by choosing the parameters λ and b6.

5. Degeneracy of the Invariant I0

In principle, the Hamiltonian can be inversely designed from the invariant I0 described
in Section 2 and the boundary conditions in Equations (10) and (11). However, this invariant
is degenerate except for the ground state. At the boundary times tb = 0, t f ,
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Γ(tb) =

(
M1/2(tb) 0

0 M−1/2(tb)

)
,

W(tb) = −Γ
(

L(tb)
0

)
, γ(tb) =

1
2

WT(tb)Γ
−1W(tb), (27)

and the invariant takes the form

I0(tb) =
1

ω1(tb)

[
p2

1
2

+
1
2

ω2
1(tb)

(
q1 −

F1(tb)

ω2
1(tb)

)2]
+

1
ω2(tb)

[
p2

2
2

+
1
2

ω2
2(tb)

(
q2 −

F2(tb)

ω2
2(tb)

)2]
. (28)

Using number operators n1,2 for the oscillators along q1 and q2, the invariant is at
boundary times I0(tb) = n1(tb) + n2(tb) + 1. We define for simplicity the shifted invariant
I+(t) = I0(t) − 1, which at boundary times is a pure sum of number operators. The
spectrum of I+(t) is constant and degenerate for all eigenvalues except zero (the ground
state of the invariant). This poses a “degeneracy problem” since inverse engineering of the
Hamiltonian based solely on I0(t) does not guarantee a one-to-one mapping between initial
and final eigenstates except for the ground state. Just as an example, let us take the initial
state |ψ(0)〉 = |1, 0〉i. The driving protocol corresponding to λ = 0, b6 = 0, and t f = 3,
gives the final linear combination |ψ(t f )〉 = 0.8238 e−0.0197i|0, 1〉 f + 0.5668 e1.531i|1, 0〉 f due
to the degeneracy of |0, 1〉 f and |1, 0〉 f . We solve this problem in the next section making
use of additional invariants to design the driving protocol. (Our notational convention
here for initial (subscript i) and final (subscript f ) eigenstates of the Hamiltonian is that the
quantum numbers in |n, k〉i, f refer to the oscillators along q1 and q2).

6. Linear Invariants
To solve the degeneracy problem and get a more explicit expression for the final state,

we need to introduce more invariants. The linear operators [17–19]

G(t) = ux(t)px − u̇x(t)x + uy(t)py − u̇y(t)y + f (t) (29)

are invariants for the Hamiltonian (12) provided

üx + Mxx(t)ux = −Mxy(t)uy,
üy + Myy(t)uy = −Mxy(t)ux, (30)

ḟ (t) = −Fx(t)ux − Fy(t)uy. (31)

In a “direct problem” (where M and F are given) the functions ux,y are classical
trajectories that depend on the quadratic part M, and f may be found from them and
the forces. Note that ux,y may be complex, with real and imaginary parts representing
independent trajectories.

The linear invariant can be written in terms of the rotation coordinates and momenta as

G(t)=u1(t)p1−u1r(t)q1+u2(t)p2−u2r(t)q2+ f (t), (32)

where (
u1
u2

)
= U(t)

(
ux
uy

)
,
(

u1r
u2r

)
= U(t)

(
u̇x
u̇y

)
. (33)



Entropy 2022, 24, 1694 8 of 14

Defining annihilation operators az(t) =
√

ωz(t)/2(qz− qz0(t))+ ipz/
√

2ωz(t), z = 1, 2,
with q10(t) = F1(t)/ω2

1(t), q20(t) = F2(t)/ω2
2(t), the linear invariant can be expressed in

terms of creation and annihilation operators, in particular, at boundary times

G(tb) = ∑
z=1,2

a†
z(tb)

[
i
√

wz

2
uz(tb)−

uzr(tb)√
2wz

]
−u1r(tb)q10(tb)

− ∑
z=1,2

az(tb)

[
i
√

wz

2
uz(tb)+

uzr(tb)√
2wz

]
−u2r(tb)q20(tb) + f (tb). (34)

Different linear invariants may be constructed by choosing specific boundary condi-
tions for u1,2 and u1r,2r. In particular, the initial conditions [19]

u1(0) = i/
√

2w1, u1r(0) = −
√

w1/2,
u2(0) = 0, u2r(0) = 0,

f (0) = −
√

w1/2 q10(0), (35)

define an invariant which is initially G(0) = a1(0).
Instead, the initial conditions (the prime distinguishes them from the ones in

Equation (35))

u′1(0) = 0, u′1r(0) = 0,

u′2(0) = i/
√

2w2, u′2r(0) = −
√

w2/2,

f ′(0) = −
√

w2/2 q20(0), (36)

define a different invariant which at time zero is G′(0) = a2(0).
Now we may construct corresponding quadratic invariants to form initial number

operators. In fact, I+(0) = G†(0)G(0) + G′†(0)G′(0) = a†
1(0)a1(0) + a†

2(0)a2(0). From
Equation (28), the corresponding final invariant is I+(t f ) = G†(t f )G(t f ) + G′†(t f )G′(t f ) =

a†
1(t f )a1(t f ) + a†

2(t f )a2(t f ), which means the “final” linear invariants G(t f ) and G′(t f )

have no independent terms, or terms that depend only on a†
1(t f ) or a†

2(t f ). A consequence
is, see Appendix A, that the linear invariants at t f are given by combinations of the form

G(t f ) = c1a1(t f ) + c2a2(t f ),

G′(t f ) = c′1a1(t f ) + c′2a2(t f ), (37)

where, using Equation (34),

c1 = −i
√

2w1u1(t f ), c2 = −i
√

2w2u2(t f ),

c′1 = −i
√

2w1u′1(t f ), c′2 = −i
√

2w2u′2(t f ). (38)

The coefficients satisfy the following relations, see Equation (A3),

c1c∗1 + c′1c′∗1 = 1, c2c∗2 + c′2c′∗2 = 1, c∗1c2 + c′∗1 c′2 = 0. (39)

Considering the normalization condition at the final time, we also have the additional
relations [7]

c1c∗1 + c2c∗2 = 1, c′1c′∗1 + c′2c′∗2 = 1. (40)

Finally, combining Equations (39) and (40), we have

c1c∗1 = c′2c′∗2 , c2c∗2 = c′1c′∗1 . (41)

It is useful to define
b = c2c∗2 = c′1c′∗1 , (42)
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since the zeros of b, which can be found for special λ and b6 values, see some examples in
Table 1, achieve a remarkable simplification, namely,

G(0) = a1(0)→ G(t f )|b=0 = eiφ1 a1(t f ),

G′(0) = a2(0)→ G′(t f )|b=0 = eiφ′2 a2(t f ), (43)

where the non-zero coefficients have unit modulus, according to Equation (40), and the
phases are found from the final conditions of the trajectories, see Equation (38). These
special values of λ and b6 are found here by running classical trajectories in the inertial (xy)
lab frame. The initial conditions are found from Equation (35). Fixing b6 and sweeping
on λ values, b = |c2|2 is calculated for a given {b6, λ} pair from the final conditions using
Equation (38). (Alternatively Equation (36) could also be used for the initial conditions
with b computed as |c′1|2 from the final conditions.) In Figure 3, corresponding to Figure 1,
the eigenfrequency ω1,2, the coordinate rotation angle θ, the polar angle for the center
of the trap θL, and the force Fx,y are plotted for the parameters θ f = π/3, b6 = 24.35,
and λ = 34.84, which make b = 0. As shown in Figure 4, for a chosen b6 there may be
several λ that make b = 0 or extremely small (say 10−9). In general, we pick up the smallest
λ as larger values imply tighter traps [7]. b6 may be as well optimized by looking for the
smallest b values found this way, for example, see Table 1. The search could be done using
different optimization subroutines but we are only interested in a proof of principle here.
Note also in Figure 4 that b flattens for larger and larger times, indeed, for very large t f
(∼ 30 or larger for the parameters in the examples) the process becomes adiabatic and b = 0
for any λ.
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Figure 3. (Color online). Driving protocol for θ f = π/3, b6 = 24.35, λ = 34.84, t f = 3, w1 = 1,
and w2 = 5. In (a), ω1 (blue solid line) and ω2 (red dashed line). In (b), θ (blue solid line) and θL

(green dashed line). In (c), Fx (blue solid line), and Fy (red dashed line).
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Figure 4. (Color online). b versus λ for different t f . Parameters: θ f = π/3, w1 = 1, and w2 = 5.
The values of b6 are in Table 1. They are chosen to minimize b.
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Table 1. Examples of parameters b6 and λ that realize b = 0 for θ f = π/3, w1 = 1, w2 = 5.

b6 λ t f

23.55 33.694 2
24.35 34.846 3
21.10 30.221 5

Since the ground state of the invariant is not degenerate, the initial state |0, 0〉i
will lead to |0, 0〉 f up to a phase factor. In a given basis the final state that dynami-
cally evolves from |0, 0〉i will generally be affected by a Lewis–Riesenfeld phase, i.e., it
will be eΦ00 |0, 0〉 f with a Φ00 that depends on the specific transient protocol, Φ00 =∫ t f

0 dt′〈Ψg(t′)|
[
i ∂

∂t′ − H(t′)
]
|Ψg(t′)〉, where Ψg(t) is the instantaneous ground state of the

invariant I0(t). For a given protocol this turns out to be a “global phase” common to all
states, see Equation (45) below, so we may ignore it, as in [7], which amounts to redefining
the final state basis absorbing the common phase. Such a phase would be relevant though
in interferometric processes with different time-dependent protocols applied to the wave-
function branches [20,21]. An arbitrary initial eigenstate of H(0) may be written from the
ground state as |ψ(0)〉 = |n, k〉i = In,k(0)|0, 0〉i, where

In,k(0) =
[G†(0)]n[G′†(0)]k√

n!k!
=

[a†
1(0)]

n[a†
2(0)]

k
√

n!k!
, (44)

where we have used the boundary conditions (35) and (36) of the auxiliary trajectories
to define G(0) and G′(0). An invariant In,k(t) is constructed with G(0) → G(t) and
G′(0)→ G′(t) using the corresponding trajectories. An invariant acting on a solution of the
Schrödinger equation is also a solution. In particular In,k(0)|0, 0〉i will evolve dynamically
to In,k(t f )|0, 0〉 f ,

|ψ(t f )〉= In,k(t f )|0, 0〉 f

=
[G†(t f )]

n[G′†(t f )]
k

√
n!k!

|0, 0〉 f

=
[c∗1 a†

1(t f )+c∗2 a†
2(t f )]

n[c′∗1 a†
1(t f )+c′∗2 a†

2(t f )]
k

√
n!k!

|0, 0〉 f . (45)

For the special parameters λ and b6 such that b = 0, c1 = eiφ1 , and c′2 = eiφ′2 while the
other coefficients vanish, c2 = c′1 = 0. Thus, Equation (45) can be simplified as

|ψ(t f )〉 =
[c∗1 a†

1(t f )]
n[c′∗2 a†

2(t f )]
k

√
n!k!

|0, 0〉 f

= e−i(nφ1+kφ′2)|n, k〉 f , (46)

which realizes a one-to-one mapping. These special parameters λ and b6 can be found in
Table 1 and Figure 4.

Finally, let us summarize the steps to design the protocol in practice: Boundary
conditions at initial and final times (tb = 0, t f ) are set first for the quadratic and linear parts
of the potential, M(tb), and F(tb). The auxiliary functions R(t) and L(t) are interpolated
according to expressions in Equations (22) and (23), see their physical meaning below
Equation (8). Using the form of R(t) in Equation (22), M(t) in Equation (6) can be solved
with two unknown parameters λ and b6. For given λ and b6, the system Equation (30)
can be solved with the initial conditions in Equations (35) and (36), and the coefficients
c1,2, c′1,2 are found from Equation (38). The final state for some initial eigenstate of the
Hamiltonian is given in Equation (45) in terms of these coefficients. To go from |ψn,k(0)〉
to |ψn,k(t f )〉 up to a phase, avoiding the degeneracy problem, b = 0 must be satisfied,
see Equation (42), so that λ and b6 cannot be arbitrary. They can be chosen with different
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optimization subroutines, in particular, we choose to minimize b and λ, to avoid traps
that are too tight. Once b6 and λ are fixed so that b = 0, the time-dependent potential
that defines the protocol is defined by the quadratic part M(t), and by the linear part F(t),
which is found using Equation (7).

7. Conclusions and Discussion
In this paper, we have designed time-dependent driving protocols to map the eigen-

states of an initial harmonic trap into corresponding eigenstates of a final trap, which is
translated and rotated with respect to the initial one. The processing time for the one-to-one
mapping can be chosen beforehand, in particular, the process may be faster than the adia-
batic one, and the eigenstates whose combination form the initial state need not be known,
in other words, the protocol is initial-state independent. Quadratic and linear invariants are
used for inverse engineering the driving harmonic potential. The linear ones are needed to
solve the “degeneracy problem” posed by the quadratic invariant proposed in [8].

Physical realizations may be performed for neutral atoms with optical traps or trapped
ions with 2D Paul traps. Shorter times may imply larger and possibly imaginary potential
eigenfrequencies, as well as trap trajectories that exceed a given spatial domain, see as an
illustration of this point trap-center trajectories found for t f = 2, t f = 3, and t f = 5 in
Figure 5. Note, in particular, that shorter times imply larger deviations of the wavepacket
trajectory (green-line arch) with respect to the trap trajectory (rest of lines) and, therefore,
larger potential energies. These aspects set in practice the limits for the applicability of the
approach, which will depend on each specific setting and its technical constraints regarding
allowed spatial domains, frequencies, energies, and time resolutions.

While our method uses invariant-based inverse engineering, this is just one among
other shortcut-to-adiabaticity approaches [16] that may be worth exploring, for example,
transitionless quantum driving [22], fast-forward approach [23], or time-rescaling meth-
ods [24,25]. We also note that trap rotations of charged particles have been studied with
shortcut methods [26–28]. However, the present approach is also applicable to neutral
particles. There are also many examples that show the usefulness of combining STA with
optimal control theory [16]. Such a combined approach would be interesting in particular
to find optimal b6 and λ parameters.

t f = 2

t f = 3

t f = 5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

x

y

Figure 5. (Color online). Trajectories of the trap center for different total times (t f = 2, 3, 5) to drive
the states along the arc. The values for b6 and λ that make b = 0, assuring a one-to-one dynamical
mapping between initial and final eigenstates are given in Table 1. Initial and final traps are set as in
Figure 1, with the long axis in radial directions from the origin. w1 = 1, w2 = 5.
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Finally, note that the Hamiltonian forms used are also valid for other systems such as
two coupled oscillators on a line, coupled superconducting qubits [29–33], and optome-
chanical oscillators [34–36].
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Appendix A. Final Invariant
For the invariant G(0) = a1(0) and G′(0) = a2(0), the final invariants may generally

be of the form

G(t f ) = c1a1(t f ) + c2a2(t f ) + c3a†
1(t f ) + c4a†

2(t f ) + A,

G′(t f ) = c′1a1(t f ) + c′2a2(t f ) + c′3a†
1(t f ) + c′4a†

2(t f ) + A′, (A1)

so

I+(t f ) = G†(t f )G(t f ) + G′†(t f )G′(t f )

= a†
1a1(c∗1c1 + c∗3c3 + c′∗1 c′1 + c′∗3 c′3) + a†

2a2(c∗2c2 + c∗4c4 + c′∗2 c′2 + c′∗4 c′4)

+ a†
1a2(c∗1c2 + c∗4c3 + c′∗1 c′2 + c′∗4 c′3) + a†

2a1(c∗2c1 + c∗3c4 + c′∗2 c′1 + c′∗3 c′4)

+ a†
1a†

2(c
∗
1c4 + c∗2c3 + c′∗1 c′4 + c′∗2 c′3) + a1a2(c∗4c1 + c∗3c2 + c′∗4 c′1 + c′∗3 c′2)

+ a†
1a†

1(c
∗
1c3 + c′∗1 c′3) + a†

2a†
2(c
∗
2c4 + c′∗2 c′4) + a1a1(c∗3c1 + c′∗3 c′1) + a2a2(c∗4c2 + c′∗4 c′2)

+ a†
1(c
∗
1 A + c3 A∗ + c′∗1 A′ + c′3 A′∗) + a†

2(c
∗
2 A + c4 A∗ + c′∗2 A′ + c′4 A′∗)

+ a1(c∗3 A + c1 A∗ + c′∗3 A′ + c′1 A′∗) + a2(c∗4 A + c2 A∗ + c′∗4 A′ + c′2 A′∗)
+ A∗A + A′∗A′ + c∗3c3 + c′∗3 c′3 + c∗4c4 + c′∗4 c′4, (A2)

From Equation (28), I+(t f ) = G†
1(t f )G1(t f ) + G†

2(t f )G2(t f ) = a†
1(t f )a1(t f ) + a†

2(t f )
a2(t f ). This imposes that all the coefficients in Equation (A2) for quadratic and linear terms
will be 0, except the coefficients of a†

1(t f )a1(t f ) and a†
2(t f )a2(t f ). As well, the independent

term should be zero,

A∗A + A′∗A′ + c∗3c3 + c′∗3 c′3 + c∗4c4 + c′∗4 c′4 = 0,

which means that
A = A′ = c3 = c′3 = c4 = c′4 = 0.

Using this result, we get from the quadratic terms the relations

c∗1c1 + c′∗1 c′1 = 1, c∗2c2 + c′∗2 c′2 = 1, c∗1c2 + c′∗1 c′2 = 0. (A3)

Thus the final invariants will have in principle the forms

G(t f ) = c1a1(t f ) + c2a2(t f ),

G′(t f ) = c′1a1(t f ) + c′2a2(t f ). (A4)

which are further simplified when b = 0, see Equation (43).
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