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Abstract: Object detection is challenging in large-scale images captured by unmanned aerial vehicles
(UAVs), especially when detecting small objects with significant scale variation. Most solutions
employ the fusion of different scale features by building multi-scale feature pyramids to ensure that
the detail and semantic information are abundant. Although feature fusion benefits object detection,
it still requires the long-range dependencies information necessary for small objects with significant
scale variation detection. We propose a simple yet effective scale enhancement pyramid network
(SEPNet) to address these problems. A SEPNet consists of a context enhancement module (CEM)
and feature alignment module (FAM). Technically, the CEM combines multi-scale atrous convolution
and multi-branch grouped convolution to model global relationships. Additionally, it enhances
object feature representation, preventing features with lost spatial information from flowing into
the feature pyramid network (FPN). The FAM adaptively learns offsets of pixels to preserve feature
consistency. The FAM aims to adjust the location of sampling points in the convolutional kernel,
effectively alleviating information conflict caused by the fusion of adjacent features. Results indicate
that the SEPNet achieves an AP score of 18.9% on VisDrone, which is 7.1% higher than the AP score
of state-of-the-art detectors RetinaNet achieves an AP score of 81.5% on PASCAL VOC.

Keywords: object detection; unmanned aerial vehicles; small objects; feature fusion

1. Introduction

UAVs have the advantages of low operational cost, high mobility, and multiple view-
points, thus promoting the application of drone object detection [1,2] in many fields, such
as power line detection [3], precision agriculture [4], and environmental monitoring [5,6].
Under the positive influence of maturity of hardware devices and the availability of training
datasets, deep learning has achieved unprecedented success because of its impressive ability
to learn representation from data. At present, UAV image detection algorithms are generally
based on convolutional neural networks (CNNs), such as ResNet [7], DenseNet [8], and
ConvNet [9]. Due to CNNs’ strong local perception and inductive biases, a series of break-
throughs have been made in computer vision tasks, such as object detection [10], semantic
segmentation [11,12], human–robot interaction [13], etc. Although deep learning has made
significant progress in natural image detection, aerial image detection of state-of-the-art
object detectors, such as YOLO [14] and RetinaNet [15], still needs to be more satisfactory
in terms of both accuracy and efficiency.

There exist some significant differences between nature images (e.g., PASCAL VOC [16])
and UAV images (e.g., VisDrone [17]), leading to two major challenges of object detec-
tion. The first challenge is that high-resolution UAV images tend to contain small objects
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(area < 322 pixels) and are generally sparsely distributed, as Figure 1a depicts. The features
of small objects are difficult to describe because the small scale of the target is featured
by fewer pixels, which is likely to cause information to gradually disperse or even vanish
when they pass through a deep network. Sparse objects in images with a wide field of view
are easier to be confused with complex backgrounds. Second, extreme object scale variation
and special UAV perspectives can be present, as Figure 1b depicts. The UAV images of
large-scale scenes are affected by the variety of altitudes and perspectives of UAVs. When
UAVs shoot at lower altitudes, objects become more negligible. Objects become smaller
when UAVs shoot at higher altitudes. Lengthening the perspectives also causes distant
objects to become smaller. Even objects of the same class may differ several times in scale.

Figure 1. Compared with natural scene images, UAV images from VisDrone show great challenges.
(a) Object with a small size and sparse distribution in a UAV image. (b) The particular perspective of
the UAV makes the aerial image come in extremely varying scales.

One way to address the challenges above is to use the cutting strategy [18,19]. The
high-resolution image is dealt with as small patches and then fed separately into the
network for prediction. However, such methods may require repeated computation of
features, resulting in higher computation and memory requirements. In addition, multi-
scale feature fusion [20,21] enriches difficulty discerning object feature representations by
integrating deep and shallow features while adding less computational cost. The other
line of effort aims to expand the receptive field using stacking atrous convolutions with
different atrous rates or convolutional filters with different sizes [22,23], which is also an
effective way to improve object detection performance. Some methods use an attention
mechanism [24,25] to highlight helpful information from small targets while suppressing
useless information. The attention mechanism can improve the detection performance of
most existing CNN-based methods while introducing very little computation.

This paper proposes a scale enhancement pyramid network, namely SEPNet, to
improve UAV image detection performance by mitigating the inconsistency in gradient
computation of the adjacent layers. Our algorithm mainly consists of two core modules.
We notice that the deep network is effective in detecting complex scenes. However, the
deep network loses essential details in forward propagation. Although the number of
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network layers deepens, the receptive field becomes more significant. The single receptive
field makes the detector suffer contextual limits. Based on this observation, we designed a
lightweight context enhancement module (CEM) core consisting of a multi-scale dilated
convolution branch and a pyramidal convolution branch. Unlike most existing methods, we
combined multi-scale dilated and pyramidal convolution to model the global relationships
for objects of various scales instead of artificially designed complicated decoder networks.
In addition, to enhance network performance, multi-scale features are generally used to
fuse information at different levels to obtain more powerful representations, and direct
fusion between different levels destroys feature consistency in gradient computation, which
makes features obtained after the CEM module weaken the expressive representation. We
used the feature alignment module (FAM) to automatically learn the correlation between
two feature layers and keep them aligned. Our SEPNet is based on one-stage detectors.

The main contributions of this paper are summarized as follows:

1. We propose a SEPNet to solve small object and multi-scale object detection difficulties
in UAV images.

2. We propose the CEM to produce more salient context information by combining
special groups of atrous convolutions and group convolutions and redistribution to the
top of FPN, thereby improving the feature representation of objects at different scales.

3. We add the FAM that learns transformation offsets of pixels to preserve the aggregate
feature space translation invariance and address the feature inconsistency issue for
FPN, avoiding small objects being drowned in feature conflicts. To continue improve-
ment, we introduce channel attention to refine pre-aggregated features while making
the network focus on the target area rather than the broad background.

4. We validate the proposed two components and SEPNet on two datasets. Compared to
the baseline model, RetinaNet, our component can significantly improve performance,
from 21.3% to 23.5% on the VisDrone dataset. Furthermore, our SEPNet outperforms
the popular detector CornerNet [26] by 1.5%.

2. Related Work

In this section, we briefly review the recent representative work on object detection,
feature fusion architecture design, and the attention mechanism of convolutional networks.

2.1. Object Detection

With the development of deep learning, remarkable progress has been achieved in
object detection. The mainstream object detectors based on deep learning can be divided
into one-stage detectors and two-stage detectors. The significant difference between the two
network architectures is that two-stage detectors first generate region proposals and then
apply a convolutional network to classify and regression each region proposal. In contrast,
one-stage detectors skip the proposal stage and manually set priority boxes. Two-stage
methods, such as Faster RCNN [27], maintain an advantage in precision, but the speed is not
satisfactory due to the need to obtain region proposals before detection. One-stage methods,
such as Single Shot MultiBox Detector (SSD) [28], improve detection speed at the cost of
accuracy drop. Recently, anchor-free methods were proposed. Compared to anchor-based
methods, anchor-free methods replace complex anchor designs by capturing features of
object centers or key points. CenterNet [29] generates heatmaps (distribution of important
information in the feature map) to obtain the target center coordinates and adjust the
center offset. Fully convolutional one-stage object detection (FCOS) [30], feature selective
anchor-free module (FSAF) [31], and FoveaBox [32] drop prior anchor settings and directly
encode and decode the bounding boxes as anchor points. This detects all positive sample
points, and the positive samples point to boundary distances of the bounding box. Anchor-
free methods are not constrained by predefined anchors and reduce hyperparameters
and forward inference time. However, these intensive prediction tasks are prone to noise
interference, resulting in many false positives.
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2.2. Feature Fusion

Object detection in UAV images is a challenging problem due to small objects [33,34]
and extreme scale variation. FPN [35] is an efficient way to alleviate the problem arising
from small objects and object scale variation. In the deep network, low-level features gen-
erally lack semantic information and are rich in geometric details. In contrast, high-level
features are the opposite of low-level features. FPN builds a feature pyramid to extract
and fuse multi-scale features through the top-down pathway and lateral connections. The
path aggregation network (PANet) [36] adds an extra bottom-up path on the top of FPN.
EfficientDet [37] proposes a bidirectional feature pyramid network (BiFPN), which is a
weighted bidirectional FPN used to perform fast feature fusion. Giraffedet [38] enriches
multi-level contextual information through bottom-up skip-layer connection and sufficient
cross-scale connection between different levels. Apart from network structure improve-
ment, some other works [39,40] are devoted to enhancing contextual information. They
generally combine multiple branches with different kernel sizes and dilated convolutions to
effectively capture long-range information without reducing spatial resolution. To solve the
problem of feature misalignment during high-level and low-level fusion, feature-aligned
pyramid networks (FaPN) [41] achieve implicit compensation with deformable revolution
to enhance feature consistency. The above methods effectively fuse different levels of
semantic and location information and achieve great success but ignore the problem of
feature inconsistency when dealing with different input features.

2.3. Attention Mechanism

The attention mechanism is recognized as a potential means to enhance deep CNNs
since it allows the network to selectively focus on the most important regions of an image
while ignoring the ones with irrelevant parts. Currently, attention mechanisms are prevalent
in various tasks, such as machine translation [42], object detection [43], and semantic
segmentation [44]. More recently, multiple attention mechanisms have provided benefits in
visual studies to improve convolutional network expression ability. Squeeze-and-excitation
networks (SENet) [45] are typical channel attention mechanisms. They can adaptively
recalibrate channel-wise response with global contextual information by signals aggregated
from feature maps. Efficient channel attention networks (ECANet) [46] employ the one-
dimensional convolution layer to determine channel interaction and reduce the attention
module parameters. Still, the information captured by the one-dimensional convolutional
is inefficient. Selective kernel networks (SKNet) [47] apply multiple branches with different
kernel sizes to adaptively adjust the receptive field, effectively increasing the flexibility of
the network. Beyond channel attention, non-local neural networks (non-local) [48] deploy
self-attention as a generalized global operator to capture the long-range dependencies.
Non-local can effectively capture global features of spatial sequences and are more friendly
for video detection. Convolutional block attention modules (CBAM) [49] and bottleneck
attention modules (BAM) [50] introduce channel and spatial attention to allow the network
to generate weights of different channels and spatial automatically, highlighting the location
and category information of the network. Furthermore, SANet [51] propose efficient shuffle
attention, which can effectively combine spatial and channel attention through shuffle
units to enrich the network with deep information. In contrast, our work focuses on the
correlation of channels between different levels of features to further integrate information
at different scales of the feature map.

3. Method

The overall architecture of SEPNet is shown in Figure 2. We first use ResNet to build
our backbone network as the feature extractor. Each pyramidal feature map (denoted
C2, C3, C4, C5) extracted by ResNet is followed by an additional 1 × 1 convolution to
compress channels. Then, these feature maps are used to build a feature pyramid for
multi-scale detection. We input C5 into a CEM module and concatenate it with P5 to
obtain rich semantic information. We also use the FAM module to learn the correlation of
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pre-fused features, preventing important information from being destroyed when features
are aggregated. It is worth noting that we use the concatenate operation instead of the sum
operation for bottom-to-top feature fusion. After addressing top-to-bottom (denoted P2,
P3, P4, P5) and bottom-to-top (denoted N2, N3, N4, N5) feature fusion, we will describe
the implementation details of the main modules in the following sections.

Figure 2. The overall architecture of the proposed SEPNet.

3.1. Context Enhancement Module

As we all know, with the deepening of the network layer, the features lose spatial
information, and the ability to express features is weakened. In addition, due to the fixed
convolution operation, the features lack the contextual information necessary for object de-
tection at different scales. To extract high-level information, atrous spatial pyramid pooling
(ASPP) [52] uses atrous convolutions of different dilation rates to capture the context at
multiple scales. Although ASPP can encode multi-scale information and proves effective in
semantic segmentation, we believe that the uniform resolution obtained by atrous convolu-
tion alone is not enough for UAV detection. For this reason, we are inspired by PyConv [53]
and propose a context enhancement module (CEM), which aims at optimizing the deeper
layer features to avoid the propagation of lost information features in FPN. CEM injects
rich context information into the top of the feature pyramid network to enhance object
feature representation, as shown in Figure 3.

The critical components in CEM include atrous spatial pyramid convolutions and
grouped pyramidal convolutions. To better explain our CEM, we use a graph to show
standard convolution, atrous convolution, and grouped convolution, as shown in Figure 4.
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Figure 3. The CEM structure consists of two branches. One branch is processed by dilated convolu-
tions with rates of 1, 3, and 5. The other is processed by grouped convolutions divided into groups 1,
4, and 8, respectively. Finally, two branches are processed by concatenating.

Figure 4. Different convolution visualization results. (a) is standard convolution, kernel size is 3 × 3
with padding 1, and the stride is 1. (b) represents atrous convolution, kernel size is 3× 3 with dilation
rates 3, padding is 3, and stride is 1. (c) is the standard convolution, and the kernel size is 1 × 1.
(d) shows the grouped convolution is split into four groups.

We use a one-dimensional expansion to demonstrate the different convolutions used
in our CEM components. The 3 × 3 convolution allows for the efficient extraction of
local features, and the underlying architecture is optimized for it. The 1 × 1 convolution
mainly serves to integrate information between feature channels. The advantage of atrous
convolution is that it can increase the receptive field without reducing the feature resolution.
The characteristic of grouped convolution is that the computational complexity decreases
with the number of groups increasing.

Having understood the purpose and core components of CEM, we describe it in a
more rigorous mathematical formulation and explain why it is beneficial for the network.
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Specifically, let us first consider an input feature X ∈ RC×H×W , where C, H, and W
indicate the channel number, spatial height, and width. CEM performs three parallel
convolutions with different atrous rates to enlarge the receptive field without adding extra
kernel parameters. The formula for the three parallel atrous convolutions with different
atrous rates is as follows:

Od = ∑N
k=1 ∑N

a=1 Dk,2a−1(X), (1)

In Equation (1), where X ∈ RC×H×W is the input feature, Od ∈ RC×H×W is the output
feature, where Dk,2a−1(·) means the atrous convolution, k, a denotes the filter size and the
dilation rates, respectively, and N represents the number of atrous convolutions. We add
three different sets of Dk,2a−1(·) to obtain the intermediate output Od.

Considering that the atrous convolution loses detailed information, we add different
groups of convolutions to supplement the different levels of detailed information. In
addition, we also apply different sizes of convolution kernels to obtain different spatial
resolutions, effectively alleviating object scale variation in UAV images. Grouped convolu-
tion is lightweight and efficient, adding a small amount of extra computation to improve
performance. We use three levels of different kernel sizes: 3 × 3, 5 × 5, and 7 × 7, and the
corresponding grouping depths are 1, 4, and 8, respectively. It can be formulated as follows:

Og = Concate
([

Gk,g(X), Gk,g(X), Gk,g(X)
])

, (2)

Gk,g(·) ∈ RC/3×H×W is grouped convolution, k and g correspondingly denote the filter size
and the split into different groups, and Concate(·) means the concatenation operation. Og
is the concatenation of grouped convolution operations of different groups.

Finally, we concatenate Od and Og to obtain semantically rich output features. The
CEM formula is defined as:

O = conv
(
Concate

([
Og, Od

]))
, (3)

conv(·) is 1 × 1 convolution. We apply a 1 × 1 convolution to reduce the feature maps to
the same as the X. Note that in this architecture, when we connect the input and output,
there are multiple branching paths to obtain different levels of receptive fields. Our CEM
uses a sizeable receptive field to capture semantic information and a small receptive field to
capture location information. Therefore, the CEM module can effectively deal with object
scale changes.

3.2. Feature Alignment Module

We noticed that the main reason for the poor detection of small objects in aerial image
detectors is that the location information obtained by the fusion of adjacent feature layers is
inaccurate, and small objects are susceptible to location deviation. To this end, we introduce
the FAM to add modulated deformable convolution and channel attention based on FPN.

First, let us review the FPN structure, as shown in Figure 5. In FPN, high-level features
use up-sampling operations and fuse with the feature maps at low-level features, enabling
the low-level feature to obtain high-level semantic information. The resulting features are
naturally endowed with different levels of contextual information. However, the significant
problem is that merging adjacent layer features without special processing destroys feature
consistency at scale and semantic levels. We introduce the FAM module to solve this
problem. The structure of FAM is shown in Figure 6.
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Figure 5. The structure of FPN.

Figure 6. The structure of FAM.

Next, we introduce the core parts of FAM in detail. Our survey found that traditional
convolution cannot make adaptive changes when adjacent features are fused due to fixed
operation rules. Deformable convolutions [54] learn offsets for the convolution sampling
points with freeform sampling grids, and the aim is to make the receptive field adaptively
zoomed. Due to this characteristic, it is widely used for feature alignment or dealing
with dense spatial transformations and can learn according to the actual scene of the data.
Formally, the deformable convolution operation is defined as follows:

Y(P) = ∑K
n=1 Wn × X(P + Pn + ∆Pn), (4)

where X ∈ RC×H×W is the input feature map, Y(P) ∈ RC×H×W is the out feature map, and
K and n refer to the size of the kernel and the index, respectively. Wn, P, and Pn are the
nth weight, indices of the center, and the nth prespecified offset, respectively. ∆Pn is the
additional learnable offset. Since the learnable offset ∆Pn is typically fractional, we use the
bilinear interpolation difference to obtain the position of the ∆Pn in the feature map.

To further enhance the feature alignment ability, modulated deformable convolu-
tion [55] adds an adjustment mechanism based on deformable convolution, which can
effectively adjust the offset of the perceptual input features. The modulated deformable
convolution is defined in Equation (5):

Y(P) = ∑K
n=1 Wn × X(P + Pn + ∆Pn) · ∆mn, (5)

where ∆mn is the modulation scalar for the nth location. FAM uses modulated deformable
convolution to learn offsets after the up-sampling of high-level features.

Furthermore, we pass the channel information of high-level features to low-level
features through channel attention to inject the low-level features with semantic information.
SENet pioneered channel attention, with consists of two parts: squeeze and excitation.
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SENet uses global average pooling to recalibrate the channel-wise relationship adaptively.
This operation can then be expressed as:

Yi =
(
sigmoid

(
W2 × ReLU

(
W1Favg(X)

)))
× X, (6)

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣, (7)

where W1 and W2 represent the fully connected layers, Yi ∈ RC×H×W is the result of
the channel attention output, Favg(·) is global average pooling, and sigmoid represents
activation function and aim to normalize the data. SENet uses two fully connected layers
to learn channel weights. In order to reduce the complexity of the model, dimensionality
reduction operations are performed, which bring some negative effects. We use one-
dimensional convolution of size k instead of full connection, and k represents the range
of channel learning. The size of k can be obtained by Formula (7), where C is the channel
number, and γ and b are the two adjustable variables in the non-linear mapping. We set γ
and b to 2 and 1, respectively.

Ci1 =
(
sigmoid

(
C1Dk

(
Favg (Pi+1) + Fmax (Pi+1)

)))
× Ci, (8)

where C1Dk(·) is the one-dimensional convolution of size k, Ci ∈ RC×2H×2W is a high-
level feature, Pi+1 ∈ RC×H×W is a low-level feature, and Fmax is global max pooling.
Ci1 ∈ RC×2H×2W is the result of the attention output. Different from FPN, our FAM uses
learnable deconvolution to enlarge feature map resolution instead of up-sampling and then
uses modulated deformable convolution adaptively learned feature offset to align spatial
features. FAM method can be written as:

Pi = Y(Deconv(Pi+1)) + conv(Ci1), (9)

where Ci and Pi+1 are the inputs of two adjacent feature layers, Y(·) represents the modu-
lated deformable convolution, Pi ∈ RC×H×W is the output of FEM, and Deconv(·) means
deconvolution. We perform the Deconv(·) operation on the low resolution Pi+1 to obtain
higher-resolution features. FAM suppresses inconsistencies in gradient computation by
modulating deformable convolution before feature aggregation. In addition, we obtain the
channel attention of high-level semantic features to low-level features.

4. Experiments

In this section, we first introduce the dataset and implementation details. Then, we
conduct ablation studies to prove the effectiveness of each model. In addition, we compare
the proposed SEPNet with other methods and provide detailed and abundant analyses
of the experiments provided to understand our framework better. Finally, we present a
visual analysis of the detection results, which shows that the problems of small objects and
significant scale changes in SEPNet are indeed alleviated.

4.1. The Dataset and Evaluation Metrics

To evaluate the proposed method, we conduct quantitative experiments on aerial
image datasets VisDrone 2019 and PASCAL VOC 2007/12, respectively.

VisDrone2019: The drone platform acquires the dataset and contains different weather
and light conditions representing common scenarios in our daily lives. The image scale of
the dataset is approximately 2000 × 1500 pixels. The VisDrone 2019 has 10 object classes
and consists of 6471 training images, 548 validation images, and 1610 testing images.

PASCAL VOC2007/12: The PASCAL VOC 2007/12 is the standard object detection
dataset with 20 object classes and includes 22,136 training images and 5000 validation
images. We train models on PASCAL VOC2007/12 train-val sets and report results on the
VOC2007 test set with a total of 4952 images.
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For VisDrone, we follow the standard MS COCO [56] protocol where average precision
(AP) is measured by averaging multiple intersection over union (IoU) [57] thresholds
to evaluate the performance. We use AP, AP50, AP75, APs (area < 322 pixels), APm
(322 < area < 962 pixels), and APl (area > 962 pixels) as the metrics to measure precision;
AP50 and AP75 are computed at the single complete intersection over union (CIoU) [58]
threshold 0.5 and 0.75 overall categories. For PASCAL VOC, we use mean of average
precision (mAP) to evaluate our model, and the CIoU threshold is set to 0.5.

4.2. Data Augmentation

Data augmentation only processes the input image without changing the network
structure or adding extra parameters. Therefore, it hardly adds extra computation and can
be applied to various computer vision tasks. In SEPNet, we use a combination of geometric
augmentations (such as horizontal flipping, random cropping of the images, resizing,
etc.) and photometric augmentations (such as brightness adjustment, contrast adjustment,
saturation adjustment, and adding noise to images) in data augmentation. In addition, we
follow the training practices below: Most images are large in VisDrone, resulting in the
disappearance of small target features after down-sampling by the deep network. Therefore,
input images are uniformly divided into four patches without overlapping during training
and inference. Each patch is fed into the network for further precise detection. Meanwhile,
the original images are also forwarded to the network to detect large objects and prevent
the clipped target from being undetectable. Finally, the detection results of each patch and
the original image are combined to obtain the final result. The image is divided into a four
patches strategy, as shown in Figure 7.

Figure 7. In the data augmentation method, input images are uniformly divided into 4 patches
without overlapping.

4.3. Implementation Details

For most experiments, we trained and evaluated the models on a machine with 1
NVIDIA RTX 3090 GPU, CUDA 11.1, and implemented the proposed SEPNet on Pytorch
1.70. Our experiments were conducted on VisDrone and PASCAL VOC datasets, respec-
tively. We selected object detectors RetinaNet as our baseline model, and ResNet pretrained
in ImageNet was used as the backbone.

In the training phase, we applied the stochastic gradient descent (SGD) optimizer with
a batch size of 32 images per GPU. Weight decay and momentum were set to 0.0005 and 0.9.
We trained our models for 150 epochs, with the initial learning rate set to 0.001, decaying
by 10 separately at epochs 90 and 120, and the resolution size of the input image was set to
800 × 800. On PASCAL VOC, the epochs were set to 200, and the learning rate was set to
0.005 and decreased 0.1 times after the 90th and 150th rounds.

The loss function for classification was the focal loss [15], and the smooth L1 [59] was
used for regression. The overall training objective was:

Loss =
1

NPOS
∑i Li

cls +
1

NPOS
∑j Lj

reg, (10)

where N is the number of matched positive samples, Li
cls and Lj

reg stand for the classification
loss and regression loss, respectively, NPOS is the number of positive samples, i are all
positive and negative samples, and j are all positive samples. For data augmentation, we
adopted the same method as that in Section 4.2. During the inference process, bounding
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box regression was the crucial step. IoU measures the positional relationship between
the predicted box and the ground-truth box. However, IoU has the problems of slow
convergence and inaccurate regression when detecting small objects. Therefore, IoU was
replaced by CIoU loss. Unlike IoU, CIoU considers bounding box overlap size, center point
distance, and aspect ratio. IoU is defined as shown in equation:

IoU =
|A ∩ B|
|A ∪ B| , (11)

where A and B are the ground-truth box and predicted box. Penalty term can be repre-
sented as:

RCIoU =
ρ2(b, bgt)

c2 + αυ, (12)

where b and bgt are the central points of the predicted box and ground-truth box, ρ(·)
denotes the Euclidean distance, and c is the diagonal length of the smallest enclosing box
covering the two boxes. v measures the consistency of the aspect ratio as follows:

ν =
4

π2

(
arc tan

wgt

hgt − arc tan
w
h

)2

, (13)

where wgt and hgt are the width and height of the ground-truth box, and w and h denote
the width and height of the predicted box. α is a positive trade-off parameter, as seen in
Equation (14):

α =
υ

(1− IoU) + υ
. (14)

The loss function can be defined as:

CIoU = 1− IoU + RCIoU . (15)

4.4. Ablation Study

In this section, we conducted ablation experiments to analyze the effectiveness of each
component and compared them with the baseline model RetinaNet on the VisDrone dataset.

We gradually applied data augmentation, CEM, and FAM to the baseline model to
verify its effectiveness and compare it with the baseline model. At the same time, we
analyzed why each component can improve network performance.

Ablation study results on the VisDrone test set are shown in Table 1, and the IoU
threshold for non-maximum suppression was set to 0.5. We can observe that our method
significantly improved object detection performance, especially for small objects. Specifi-
cally, data enhancement saw a 1.1% AP increase without introducing additional parameters;
CEM and FAM improved the baseline method by 0.6% AP and 0.5% AP and introduced
2.3M and 2.1M parameters, respectively. Combining three strategies improved baseline
model detection performance from 21.3% to 23.5% AP when using ResNet-50 as the back-
bone. In addition, our strategy significantly improved small object detection by 2.2% AP,
only adding 4.4M parameters. The above experimental results demonstrate that the CEM
component can effectively supplement contextual information of deep networks to improve
scale variation detection performance. It was also verified that the FAM embedded in the
baseline model is helpful for the fusion of adjacent features and effectively improves the
detection results of small objects. At the same time, our data augmentation strategy can
effectively avoid the problem of losing small object information during down-sampling, so
it can improve the detection accuracy of small objects.
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Table 1. Ablation study results on VisDrone. RetinaNet was selected as the baseline, and we gradually
added our components to the baseline to verify the effectiveness of each component. “DA” represents
the data augmentation.

Backbone DA CEM FAM AP APs APm APl Params

ResNet-50

Baseline 21.3 11.2 32.2 47.5 37.8 M√
22.4 12.3 32.9 48.1 37.8 M√
21.9 11.8 32.7 48.3 40.1 M√
21.8 11.9 32.5 47.7 39.9 M√ √ √
23.5 13.5 33.8 48.9 42.2 M

To verify the generalization ability of proposed method, two components were trained
and tested on the PASCAL VOC dataset. We gradually added each component to the
baseline model and analyzed the accuracy and number of parameter relationships using
ResNet-19, ResNet-50, ResNet-101, and ResNet-152 as the backbone network, respectively.
The experimental results are shown in Figure 8.

Figure 8. Analysis of the relationship between accuracy and number of parameters in the PASCAL
VOC test set.

In the PASCAL VOC test set, for ResNet-19 as the backbone network, the detection
accuracy was increased by 1.4% and 0.7% after adding CEM and FAM components, re-
spectively. Combining the use of CEM and FAM components, accuracy was increased by
3.3%, and the number of parameters was increased by 4.4M. For ResNet-50 as the backbone
network, combining two components improved baseline model detection performance
from 75.6% to 77.8%. For ResNet-101 as the backbone network, each component also
improved the model’s accuracy. It is worth noting that when the backbone network was
switched from ResNet-101 to ResNet-152, combining the two components into the baseline
model, the accuracy no longer increased.

These experiments prove that our two components achieve significant improvements
by introducing fewer additional parameters and can adapt to different datasets, indicating
their effectiveness and generality.
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4.5. Comparisons with Other Methods

Regarding VisDrone and PASCAL VOC, we compared the performance of our SEPNet
with other popular one-stage detectors and two-stage detectors. The experimental results
are shown in Table 2.

Table 2. Comparison of our method with other state-of-the-art methods for object detection on the
VisDrone test set.

Method Backbone AP AP50 AP75

One-stage:

RetinaNet [15] Res101 11.8 21.4 11.6
CenterNet [29] ResNext-101-64x4d 14.2 19.3 15.5

RefineDet512 [60] VGG-16 14.9 28.8 14.1
FPN [35] VGG-16 16.5 32.2 14.9

CornerNet [26] Hourglass-104 17.4 34.1 15.8

Two-stage:

Cascade R-CNN [61] ResNet101 16.1 31.9 15.0
Light-RCNN [62] ResNet101 16.5 32.8 15.1

Ours:

SEPNet ResNext-101 18.9 34.8 16.7

In this experiment, we used the training set of VisDrone for training and the test
set for validation. Table 2 shows the comparison of our proposed method with some
current popular methods. Our SEPNet outperformed Cascade R-CNN and Light-RCNN
by 2.8% and 2.4%, respectively. Compared with existing one-stage methods, our SEPNet
outperformed CornerNet by 1.5%, 0.7%, and 0.9% on AP, AP50, and AP75, respectively.

In addition to the contrast experiments on VisDrone2019, we also conducted experi-
ments on PASCAL VOC to verify the generalization of SEPNet. We reported results on the
PASCAL VOC test set. The experimental results are shown in Table 3.

Table 3. Results on the PASCAL VOC test set. Comparison with the other state-of-the-art methods,
ours is better.

Method Backbone Train Test mAP/%

One-stage:

RFBNet [63] VGG16 VOC2007 + 2012 VOC2007 76.8
SSD300 [28] VGG16 VOC2007 + 2012 VOC2007 77.1
SSD512 [28] VGG16 VOC2007 + 2012 VOC2007 78.5
DSSD [64] ResNet-101 VOC2007 + 2012 VOC2007 78.6

CenterNet [29] ResNet-101 VOC2007 + 2012 VOC2007 78.7
YOLO v3 [65] Darknet-53 VOC2007 + 2012 VOC2007 79.4

FCOS [30] ResNet-101 VOC2007 + 2012 VOC2007 80.1
CenterNet [29] DLA VOC2007 + 2012 VOC2007 80.7

Two-stage:

Fast R-CNN [59] VGG16 VOC2007 + 2012 VOC2007 70.0
Faster R-CNN [27] ResNet-101 VOC2007 + 2012 VOC2007 76.4

R-FCN [66] ResNet-101 VOC2007 + 2012 VOC2007 80.5

Ours:

SEPNet ResNet-101 VOC2007 + 2012 VOC2007 81.5

We compared our SEPNet with popular detectors in the PASCAL VOC test set. The
experimental results show that our SEPNet outperforms the advanced one-stage detection
algorithms DSSD and CenterNet by 2.9% and 0.8%, respectively. Compared to the two-
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stage algorithms Faster R-CNN and R-FCN, our SEPNet also increased by 5.1% and 1%,
respectively. The experimental observations on the PASCAL VOC test dataset maintained
a consistent improvement with the experimental results on the VisDrone dataset, which
demonstrates that our method has similar generalization ability to other datasets and can
be applied to different scenes.

To further demonstrate the effectiveness of the proposed SEPNet more intuitively, we
present some visualization results in Figures 9 and 10. We compared our methods with
RetinaNet. RetinaNet can only detect large objects close to the camera and misses small
objects far away. Compared with RetinaNet, we proposed that SEPNet could detect not
only large objects in the image but also small objects far from the camera. This indicates
that our SEPNet can capture objects of different scales more accurately while paying more
attention to the small object region rather than the surrounding background. It can be seen
from the visualization results that SEPNet can solve the problem of missed detection of
small objects well. It can also be seen that SEPNet can adapt well to object scale changes
and improve detection accuracy.

Figure 9. Visualization of detection results on VisDrone. Our SEPNet predicts more refined bound-
aries and learns more detailed information.
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Figure 10. Continuation. Other visualization examples of detection results on PASCAL VOC.

5. Conclusions

This paper proposes a one-stage scale enhancement pyramid network (SEPNet) to
solve small object and extreme scale variation problems in UAV images. The proposed
method consists of two main core components: CEM maintains deep features with rich
contextual information, avoiding the loss of small target information and FAM addresses
the lack of effective communication between adjacent features. Our results show that the
proposed components offer significant improvements. Furthermore, our SEPNet exhibits
good generalization in different datasets. In future work, we will focus on designing
lightweight structures for models to be deployed into embedded devices.
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