
Citation: Zhan, W.; Wang, J.; Jiang, Y.;

Chen, Y.; Zheng, T.; Hong, Y. Infrared

and Visible Image Fusion for

Highlighting Salient Targets in the

Night Scene. Entropy 2022, 24, 1759.

https://doi.org/10.3390/e24121759

Academic Editor: Amelia Carolina

Sparavigna

Received: 23 October 2022

Accepted: 29 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Infrared and Visible Image Fusion for Highlighting Salient
Targets in the Night Scene
Weida Zhan *, Jiale Wang, Yichun Jiang, Yu Chen , Tingyuan Zheng and Yang Hong

National Demonstration Center for Experimental Electrical, School of Electronic and Information Engineering,
Changchun University of Science and Technology, Changchun 130022, China
* Correspondence: zhanweida@cust.edu.cn

Abstract: The goal of infrared and visible image fusion in the night scene is to generate a fused image
containing salient targets and rich textural details. However, the existing image fusion methods fail
to take the unevenness of nighttime luminance into account. To address the above issue, an infrared
and visible image fusion method for highlighting salient targets in the night scene is proposed. First
of all, a global attention module is designed, which rescales the weights of different channels after
capturing global contextual information. Second, the loss function is divided into the foreground loss
and the background loss, forcing the fused image to retain rich texture details while highlighting the
salient targets. Finally, a luminance estimation function is introduced to obtain the trade-off control
parameters of the foreground loss function based on the nighttime luminance. It can effectively
highlight salient targets by retaining the foreground information from the source images. Compared
with other advanced methods, the experimental results adequately demonstrate the excellent fusion
performance and generalization of the proposed method.

Keywords: image fusion; highlighting salient targets; infrared images; deep learning

1. Introduction

Image fusion fuses multimodal images of the same scene to produce a fused image
with richer information and clearer details [1,2]. Infrared and visible image fusion, as an
indispensable part in image fusion direction, has been applied in all walks of life [3–5]. The
fused image can be utilized as a preprocessing unit for subsequent high-level visual tasks
such as object detection, object tracking and semantic segmentation. As shown in Figure 1,
the salient target of a human is mainly concentrated in the thermal radiation information
of the infrared image in the night scene. In addition, the uneven luminance of the night
scene results in the uneven distribution of texture details in the infrared and visible images.
Therefore, the fused image can effectively retain texture details while highlighting salient
targets [6].

Entropy 2022, 24, 1759 2 of 21 
 

 

  

(a) (b) 

Figure 1. The infrared and visible images in the night scene. (a) Visible. (b) Infrared. 

To solve these problems, this paper proposes an infrared and visible image fusion 
method for highlighting salient targets in the night scene. The major contributions of this 
paper are as follows: 
1. To reduce the computational burden caused by stacking convolution layers, a global 

attention module is added to the image fusion network. This module rescales the 
weights of different channels after capturing global contextual information. 
Assigning higher weight for the important channels makes the salient targets more 
prominent; 

2. In order to improve the comprehensiveness of the loss function, the loss function of 
the proposed method is divided into the foreground loss and the background loss, 
forcing the fused image to contain more prominent salient targets and richer texture 
details; 

3. To address the problem of the uneven luminance in the night scene, a luminance 
estimation function is introduced into the training process. It outputs the trade-off 
control parameters of the foreground loss function based on the nighttime 
luminance, which helps to retain the foreground information from source images 
more reasonably. 
The remainder of this paper is arranged as follows. In Section 2, the reviews about 

infrared and visible image fusion methods and attention mechanism are presented. In 
Section 3, the loss function and structure of the proposed network are elaborated. The 
effectiveness and generalization of the proposed method are demonstrated in Section 4. 
Finally, the conclusion is expressed in Section 5. 

2. Related Work 
In this section, a literature review of infrared and visible image fusion methods and 

attention mechanisms are presented. 

2.1. Infrared and Visible Image Fusion 
Traditional image fusion methods usually use a fixed mathematical transformation 

to extract image features, possibly leading to a weak feature representation. Moreover, 
these methods do not take modal differences between multimodal images into account 
[12]. Deep learning-based image fusion methods, with a powerful representation 
capability, transform the fusion process into training different depths of neural networks. 

Over the last few years, convolutional neural network-based image fusion methods 
have gained notable success. Xu et al. [13] adopted a dense connection structure to extract 
image features and added multiple jump connections between the dense blocks to 
increase the information flow. Tang et al. [14] proposed an image fusion network based 
on illumination perception, which could adaptively maintain the intensity distribution of 
salient targets according to light distribution. 

Due to the capability of unsupervised distribution estimation, a GAN-based network 
is fit for image fusion tasks. Based on the former research [15], Ma et al. [16] proposed a 

Figure 1. The infrared and visible images in the night scene. (a) Visible. (b) Infrared.

Entropy 2022, 24, 1759. https://doi.org/10.3390/e24121759 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121759
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6670-9707
https://doi.org/10.3390/e24121759
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121759?type=check_update&version=2


Entropy 2022, 24, 1759 2 of 20

Constrained by the local receptive field of the single convolution layer, U2Fusion [7],
IFCNN [8] and RXDNFuse [9] capture global contextual information by stacking plenty
of convolution layers, resulting in a huge computation workload. GANMcC [10] uses the
infrared and visible images as the inputs of the discriminator. It can retain the information
in the source images but fails to highlight the salient targets. STDFusion [11] designs the loss
function by considering only the infrared foreground and the visible background, possibly
leading to the loss of some important information. Therefore, there are no comprehensive
loss functions to supervise the training of the network.

To solve these problems, this paper proposes an infrared and visible image fusion
method for highlighting salient targets in the night scene. The major contributions of this
paper are as follows:

1. To reduce the computational burden caused by stacking convolution layers, a global
attention module is added to the image fusion network. This module rescales the
weights of different channels after capturing global contextual information. Assigning
higher weight for the important channels makes the salient targets more prominent;

2. In order to improve the comprehensiveness of the loss function, the loss function
of the proposed method is divided into the foreground loss and the background
loss, forcing the fused image to contain more prominent salient targets and richer
texture details;

3. To address the problem of the uneven luminance in the night scene, a luminance
estimation function is introduced into the training process. It outputs the trade-off
control parameters of the foreground loss function based on the nighttime luminance,
which helps to retain the foreground information from source images more reasonably.

The remainder of this paper is arranged as follows. In Section 2, the reviews about
infrared and visible image fusion methods and attention mechanism are presented. In
Section 3, the loss function and structure of the proposed network are elaborated. The
effectiveness and generalization of the proposed method are demonstrated in Section 4.
Finally, the conclusion is expressed in Section 5.

2. Related Work

In this section, a literature review of infrared and visible image fusion methods and
attention mechanisms are presented.

2.1. Infrared and Visible Image Fusion

Traditional image fusion methods usually use a fixed mathematical transformation
to extract image features, possibly leading to a weak feature representation. Moreover,
these methods do not take modal differences between multimodal images into account [12].
Deep learning-based image fusion methods, with a powerful representation capability,
transform the fusion process into training different depths of neural networks.

Over the last few years, convolutional neural network-based image fusion methods
have gained notable success. Xu et al. [13] adopted a dense connection structure to extract
image features and added multiple jump connections between the dense blocks to increase
the information flow. Tang et al. [14] proposed an image fusion network based on illumi-
nation perception, which could adaptively maintain the intensity distribution of salient
targets according to light distribution.

Due to the capability of unsupervised distribution estimation, a GAN-based network
is fit for image fusion tasks. Based on the former research [15], Ma et al. [16] proposed
a GAN-based image fusion network with two discriminators. The infrared and visible
images were adopted as the inputs of two discriminators, respectively, forcing the fused
result to contain the information from both source images. Hou et al. [17] divided the input
of generators into a gradient path and a contrast path and designed an adjusted image as
the ground truth for the discriminator.

As the research progressed, a number of in-depth methods based on auto-encoder
were proposed. Li et al. [18] adopted an encoder with nest connection structure to fully
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exploit the deep features, and a hybrid attention module with channel and spatial attention
was added to the fusion layer. Li et al. [19] proposed a special fusion layer with four
modified residual fusion modules. The shallow and deep fusion modules were used to
extract texture details and retain the significant structure, respectively. Particularly, the
coding and fusion networks were trained in stages.

Although excellent fusion results can be obtained using the above methods, they still
fail to effectively highlight salient targets in the fused image. The loss function of the
proposed method is divided into the foreground loss and the background loss, which helps
to more effectively extract and retain texture details while highlighting the salient targets.

2.2. Attention Mechanism

The attention mechanism is of great significance in the human visual system. When
faced with a complex scene, the human eye tends to focus more on the important targets
and ignore the irrelevant information, which helps to analyze complex scenes quickly and
efficiently [20]. The attention mechanism enables selective focus on important parts by
reassigning weights to input sequences [21].

The attention mechanism has achieved great success in some fields, including target
detection [22], image enhancement [23], semantic segmentation [24] and emotion recogni-
tion [25]. Recently, many scholars have applied the attention mechanism to image fusion
tasks. For instance, Li et al. [26] introduced a multiscale channel attention network into the
generator and discriminator, respectively, to help the network focus more on salient regions
in the image. Li et al. [27] argued that both channel and spatial dimensions contain rich
attention information, therefore, the channel and spatial attention modules were combined
for further feature extraction.

To break through the limitation of the local receptive field of the single convolution
layer, Wang et al. [28] proposed a non-local attention module, which could model global
contextual relationships to capture feature dependencies over long distance. However,
multiple matrix multiplications were applied in this module, leading to inefficient learning
of the network. In order to reduce the computational complexity, many scholars have
proposed some variants based on the non-local attention module [29,30].

Despite the fact that the non-local attention module is effective in capturing global
contextual information, it is unable to model the correlations between channels. Therefore,
a global attention module was designed, which rescales the weights of different channels
after modeling global contextual relationships.

3. The Proposed Method

In this section, the problem formulation and the core ideas are discussed. Then, the
design of the loss function is presented. Finally, the structure of the image fusion network
is described in detail.

3.1. Problem Formulation

A fused image can compensate for the lack of information from a single sensor [31].
The ideal result of the fused image is to retain rich texture details while highlighting the
salient targets. As shown in Figure 2, in the training process, the source images were fed
into the image fusion network which output the fused image. The luminance estimation
function evaluated the luminance of all visible images in the training dataset and output
the trade-off control parameters of the foreground loss function. Under the surveillance of
the loss function, the fusion performance was improved.
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Figure 2. The entire procedure of the proposed method.

In the testing process, the final fused image was obtained by feeding the source images
into the image fusion network directly without any preprocessing. The design of the loss
function and the image fusion network are described in detail as follows.

3.2. Loss Function

To obtain the fused result with salient targets and rich texture details, the loss function
was divided into the foreground loss and the background loss. The foreground with salient
targets and the background containing rich texture details were split from the images [17].

As shown in Figure 3, humans were defined as the salient targets in this paper. First
of all, the semantic segmentation results of the infrared image were acquired using Mask
R-CNN [32]. The mask for humans was kept and then set as a binary image. As shown
in Figure 3c,d, the foreground mask and the background mask were obtained. The source
images were split into the foreground and background using the above masks [17]. It is
worth mentioning that IR-Fore, VI-Fore, IR-Back and VI-Back represent the foreground and
background of the infrared and visible image, respectively.
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In Figure 3, most of the salient target information is concentrated in the infrared
foreground in the night scene. However, the visible foreground also contained some salient
target information. The lower the nighttime luminance, the less salient target information
was contained in the visible foreground. Therefore, a luminance estimation function was
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introduced to evaluate the nighttime luminance. The luminance estimation function is
formulated in Equations (1) and (2).

β2 =
1
N

N

∑
n=1

(
1− log

(
1 + e−pn

))
(1)

β2 = 1− β1 (2)

where β1 and β2 represent the trade-off control parameters of the foreground loss function.
N denotes the number of visible images in the training dataset. pn denotes the normalized
average grey level value of the nth input image. According to the analysis of Equation (1),
the lower the nighttime luminance, the smaller the value of β2.

The foreground loss function contains the foreground pixel loss Lpixel− f ore and the
foreground gradient loss Lgrad− f ore, which are defined in Equations (3) and (4).

Lpixel− f ore =
β1

∣∣∣Im·(I f − Iir)
∣∣∣+ β2

∣∣∣Im·(I f − Ivi)
∣∣∣

HW
(3)

Lgrad− f ore =
β1

∣∣∣Im·(∇I f −∇Iir)
∣∣∣+ β2

∣∣∣Im·(∇I f −∇Ivi)
∣∣∣

HW
(4)

where Im, I f , Iir and Ivi represent the foreground mask, the fused image, the infrared and
the visible image, respectively. H and W denote the height and width of the image. |·|
indicates the mean absolute error. ∇ and · denote the gradient operator and element
multiplication operator, respectively. The fused results for different values of β1 and β2 are
analyzed in Section 4.

The background luminance was uneven in the night scene, which lead to an uneven
distribution of texture details in the source images as well. When the luminance was high,
most of the texture details were concentrated in the visible background. As the luminance
decreased, most of the texture details were concentrated in the infrared background. There-
fore, for the background loss function, the highest pixel and gradient intensity distribution
of the source images were chosen. Equations (5) and (6) for the background pixel loss
Lpixel−back and the background gradient loss Lgrad−back are shown as follows.

Lpixel−back =

∣∣∣(1− Im)·(I f −max(Iir, Ivi))
∣∣∣

HW
(5)

Lgrad−back =

∣∣∣(1− Im)·
(∣∣∣∇I f

∣∣∣−max(|∇Iir|, |∇Ivi|)
)∣∣∣

HW
(6)

where (1− Imask) represents the background mask and max (·) denotes the element of the
max selection. The total loss function L is defined in Equation (7).

L = α1(Lpixel− f ore + Lgrad− f ore) + α2(Lpixel−back + Lgrad−back) (7)

where α1 + α2 = 10. The fused results for different values of α1 and α2 are analyzed
specifically in Section 4.

3.3. Network Structure

As shown in Figure 4, the image fusion network consisted of three parts, including
the feature extraction module, global attention module and image reconstruction module.
First, the feature extraction module extracted the features of the source images. Then, the
global attention module aggregated the global contextual information and assigned higher
weight to the important channels. Finally, the image reconstruction module output the final
result by reconstructing all the feature maps concatenated in the channel dimension.



Entropy 2022, 24, 1759 6 of 20

Entropy 2022, 24, 1759 6 of 21 
 

 

3.3. Network Structure 
As shown in Figure 4, the image fusion network consisted of three parts, including 

the feature extraction module, global attention module and image reconstruction module. 
First, the feature extraction module extracted the features of the source images. Then, the 
global attention module aggregated the global contextual information and assigned 
higher weight to the important channels. Finally, the image reconstruction module output 
the final result by reconstructing all the feature maps concatenated in the channel 
dimension. 

Global 
Attention 
ModuleLR

eL
U

C
on

v 
La

ye
r

C
on

v 
La

ye
r

C
on

v 
B

lo
ck

Visible Image

Infrared Image

Fused Image

Shallow Feature 
Extraction Module

C
on

v 
B

lo
ck

Deep Feature 
Extraction Module

Image Reconstruction ModuleLR
eL

U

C
on

v 
La

ye
r

C
on

v 
La

ye
r

Global 
Attention 
Module

C
on

v 
B

lo
ck

Global 
Attention 
Module

C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

 
Figure 4. The structure of the image fusion network. 

3.3.1. Feature Extraction Module 
Since different types of source images had modal differences, the input was split into 

two paths. The feature extraction module for each path was designed with the same 
structure and respective parameters. 

The feature extraction module was composed of a shallow and deep feature 
extraction module. In particular, the shallow feature extraction module contained two 
convolution layers and an activation function layer. There were two convolution blocks 
in the deep feature extraction module which further extracted the image features 
adequately. Furthermore, each block contained a convolution layer and an activation 
function layer. A dense connection structure was applied between each block to ensure 
the full utilization of information. It is necessary to note that the padding of each 
convolution layer was set to SAME and the stride was set to one. The parameter settings 
of the feature extraction module are shown in Table 1. 

Table 1. Parameter settings of the feature extraction module. 

Module Layer Input Channel 
Output  

Channel 
Activation 

Shallow Feature 
Extraction Module 

1 1 16 None 
2 16 16 Leaky ReLU 

Deep Feature 
Extraction Module 

1 16 32 Leaky ReLU 
2 32 64 Leaky ReLU 

3.3.2. Global Attention Module 
Two global attention modules were introduced after the shallow and deep feature 

extraction modules. First, the global context was modeled to capture long-range feature 
dependencies. Later, the correlation between each channel was built through a fully 
connected layer. The structure of the global attention module is shown in Figure 5. 

Figure 4. The structure of the image fusion network.

3.3.1. Feature Extraction Module

Since different types of source images had modal differences, the input was split
into two paths. The feature extraction module for each path was designed with the same
structure and respective parameters.

The feature extraction module was composed of a shallow and deep feature extraction
module. In particular, the shallow feature extraction module contained two convolution
layers and an activation function layer. There were two convolution blocks in the deep
feature extraction module which further extracted the image features adequately. Fur-
thermore, each block contained a convolution layer and an activation function layer. A
dense connection structure was applied between each block to ensure the full utilization
of information. It is necessary to note that the padding of each convolution layer was set
to SAME and the stride was set to one. The parameter settings of the feature extraction
module are shown in Table 1.

Table 1. Parameter settings of the feature extraction module.

Module Layer Input Channel Output
Channel Activation

Shallow Feature
Extraction Module

1 1 16 None
2 16 16 Leaky ReLU

Deep Feature
Extraction Module

1 16 32 Leaky ReLU
2 32 64 Leaky ReLU

3.3.2. Global Attention Module

Two global attention modules were introduced after the shallow and deep feature
extraction modules. First, the global context was modeled to capture long-range feature
dependencies. Later, the correlation between each channel was built through a fully
connected layer. The structure of the global attention module is shown in Figure 5.

For the input feature ΦI ∈ RC×H×W , it was first reshaped and transposed to ΦX ∈ RC×HW .
Then, ΦI was reshaped to ΦY ∈ RHW×1×1 after a convolution layer. A softmax operation
was applied to calculate the attention map A ∈ RC×1×1, which is defined by:

A =
exp

(
ΦY

)
∑HW

i=1 exp
(

ΦY
) (8)

where i ∈ [1, HW]. Subsequently, a matrix multiplication operation between A and ΦX
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was performed, obtaining the global attention map ΦG ∈ RC×1×1, which is defined by:

ΦG = A×ΦX (9)

where × denotes the matrix multiplication operation. After obtaining the global context
dependencies, the channel relationship was modeled with a fully connected layer. Then, a
softmax operation was applied to obtain the global attention map G ∈ RC×1×1, which is
defined by:

G = σ( fc(W)) (10)

where fc(·) denotes the fully connected layer, W is the parameter of the fully connected
layer and σ (·) denotes the Sigmoid operation. Finally, the final output feature map
ΦO ∈ RC×H×W was obtained by applying the corresponding pixel multiplication operation
between G and ΦI . The final output feature map ΦO is formulated as follows.

ΦO = G×ΦI (11)

where × denotes a corresponding pixel multiplication operation.
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3.3.3. Image Reconstruction Module

The image reconstruction module reconstructed the whole feature maps concatenated
in the channel dimension and output the final result. There were four convolution blocks
in this module. In particular, each block contained a convolution layer and an activation
function layer. Moreover, the padding of each convolution layer was set to SAME and the
stride was set to one. The image fusion network did not change the size of the input. The
parameter settings of the image reconstruction module are shown in Table 2.
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Table 2. Parameter settings of the image reconstruction module.

Module Layer Input Channel Output
Channel Activation

Image
Reconstruction

Module

1 224 128 Leaky ReLU
2 128 64 Leaky ReLU
3 64 32 Leaky ReLU
4 32 1 Leaky ReLU

4. Experiments

The effectiveness and generalization of the proposed method are demonstrated in
this section. First of all, the experimental details are presented. Then, the experimental
results of two datasets are discussed in detail. Finally, ablation experiments concerning the
global attention module, the feature extraction module and the trade-off control parameter
are presented.

4.1. Experimental Details
4.1.1. Training Dataset

The MSRS dataset [14] was chosen to train the network model. This dataset was a
mixture of daytime and nighttime road-related scenes, containing various elements such as
pedestrians, vehicles, buildings, etc. One hundred and eighty-eight pairs of the nighttime
images were selected from the dataset. The foreground mask and the background mask
were obtained through the modified semantic segmentation network Mask R-CNN [32].
Each selected image was cropped into image patches with the size of 120 × 120 by setting
the stride to 64, resulting in 13,160 patch pairs for the network training. In the testing
process, 26 and 16 pairs of images were chosen from the MSRS dataset and the M3FD
dataset, respectively, for comparison experiments. Note that during the testing process, the
input did not require any preprocessing.

4.1.2. Training Details

The network model was implemented on the TensorFlow platform, and Adam was
used as the optimization solver. The batch size and epoch were set to 32 and 30, respectively.
In addition, the learning rate was set to 10 × 10−3. Particularly, we set α1 = 4, α2 = 6,
β1 = 0.66 and β2 = 0.34.

This paper evaluates the quality of fused results by two means containing qualita-
tive and quantitative comparisons. Six compared methods with the code and default
parameters were chosen, including GTF [33], DenseFuse [34], U2Fusion [7], GANMcC [10],
RFN-Nest [19] and STDFusion [11]. Six typical evaluation metrics were selected including
entropy (EN) [35], mutual information (MI) [36], standard deviation (SD) [37], spatial fre-
quency (SF) [38], visual information fidelity (VIF) [39] and quality of images (Qab/f) [40]. It
is worth mentioning that the larger the above evaluation metrics, the better the fused result.

4.2. Results of the MSRS Dataset

For assessing the fusion performance of the proposed method in a comprehensive
manner, the MSRS dataset was chosen for comparison with six state-of-the-art methods.

4.2.1. Qualitative Results

For visually comparing the fusion performance of different methods, four pairs of
images from the MSRS dataset were chosen for qualitative comparison. Notably, in
Figures 6–9, red and green boxes were used to mark the salient target and texture de-
tails, respectively. All methods achieved excellent performance in retaining both salient
targets and texture details. Specifically, as shown in Figure 6, DenseFuse [34], U2Fusion [7],
GANMcC [10] and STDFusion [11] were able to highlight the salient targets well, but the
texture details of the building’s windows in the background were not clear. GTF [33] and
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RFN-Nest [19] retained the thermal radiation information well, but the edges of the salient
targets were blurred.
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For the other three scenes, the proposed method effectively highlighted the salient tar-
gets. In addition, it also had some advantages in retaining texture details in the background.
To be specific, our fused result had the sharpest detail of the tree branches in Figure 7. As
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shown in Figure 8, the outline of the car wheels was clear. Moreover, the tree trunk could
be clearly distinguished from its surroundings in Figure 9. The above results indicated that
the proposed method had better capabilities in highlighting salient targets and preserving
rich texture details.

4.2.2. Quantitative Results

For further evaluating the effectiveness of different methods, 26 pairs of images from
the MSRS dataset were chosen for quantitative comparison. As shown in Figure 10 and
Table 3, the proposed method had a remarkable advantage in five metrics, including EN,
MI, SD, SF and Qab/f. The value of the VIF for the proposed method was second to the
value for RFN-Nest by a narrow margin. Specifically, the best results for EN and MI showed
that the fused results contained a whole wealth of information transferred from the source
images. The maximum values of the SD and SF suggested that our fused image had a
relatively high contrast ratio. Even if the value of the VIF was not the best, the fused result
still effectively highlighted the salient targets and preserved rich texture details.
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Table 3. The quantitative results of the MSRS dataset. Red and blue indicate the best and the
second-best results, respectively.

Metric GTF DenseFuse U2Fusion GANMcC RFN-Nest STDFusion Ours

EN 5.4836 5.4013 4.2694 4.3417 5.7275 5.6072 6.0108
MI 1.4152 2.3624 1.7075 1.7122 1.8086 3.5956 4.2372
SD 6.0832 6.1874 4.7325 4.7983 6.2975 6.7386 6.9495
SF 0.0231 0.0182 0.0239 0.0248 0.0334 0.0249 0.0350

VIF 0.5170 0.6963 0.4536 0.4887 0.9274 0.6236 0.8951
Qab/f 0.3361 0.3546 0.3220 0.5644 0.5874 0.4576 0.6250

4.3. Results of the M3FD Dataset

For further evaluating the generalization of the proposed method, the M3FD dataset
was used to test the network model trained using the MSRS dataset.
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4.3.1. Qualitative Results

A pair of images was chosen from the M3FD dataset for qualitative comparison. As
shown in Figure 11, all methods retained the infrared thermal radiation information as well
as the texture details. Specifically, the fused images of the proposed method were rich in
thermal radiation information. Both near and distant targets could be easily distinguished
from the background. Compared with other methods, the textural details of the proposed
method were much clearer and more suitable for visual observation, for instance the detail
of the building in Figure 11.
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Figure 11. The qualitative results of the M3FD dataset. (a) Visible. (b) Infrared. (c) GTF. (d) DenseFuse.
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The excellent results demonstrate the generalization of the proposed method. To sum
up, the fused results were effective in highlighting salient targets when applied in the night
scene, and the texture details were clearly visible.

4.3.2. Quantitative Results

Sixteen pairs of images from the M3FD dataset were chosen for quantitative com-
parison. As shown in Figure 12 and Table 4, the proposed method obtained the maxi-
mum mean values for four evaluation metrics including EN, MI, VIF and Qab/f. This
indicated that our fused images were rich in information and were more suitable for ob-
servation with the human visual system. Although our proposed method did not achieve
the best results for the SD and SF, the fused images still had a sufficiently high contrast.
The above experimental results adequately prove the excellent fusion performance and
outstanding generalization.
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Table 4. The quantitative results of the M3FD dataset. Red and blue indicate the best and the
second-best results, respectively.

Metric GTF DenseFuse U2Fusion GANMcC RFN-Nest STDFusion Ours

EN 6.5086 6.6316 7.0221 6.9833 6.7907 6.7776 7.1993
MI 3.0838 3.0782 3.0634 2.9526 2.6379 3.9293 4.4602
SD 9.9339 8.9730 9.3571 8.9571 8.9489 8.5261 9.0074
SF 0.0340 0.0204 0.0336 0.0362 0.0390 0.0298 0.0295

VIF 0.8978 0.8294 1.0279 1.0200 1.0047 1.0537 1.1064
Qab/f 0.5001 0.3739 0.5174 0.5095 0.5048 0.5132 0.5209

4.4. Ablation Experiments
4.4.1. Global Attention Module

The perceptual field of the single convolution layer is limited, so the contextual
information can only be captured by stacking plenty of convolution layers. To address
the huge computational effort, the global attention module was designed. This module
modeled the global contextual relationships and then rescaled the weights of different
channels to make salient targets more prominent. For confirming the usefulness of the
global attention module, three ablation experiments were designed, involving removing
the first and the second global attention module, respectively, and removing both global
attention modules.

One hundred pairs of images from the M3FD dataset were chosen for qualitative and
quantitative analyses. In Figure 13, for the fused result with the single global attention
module, the salient targets were relatively blurred. The fused result without the global
attention module performed the worst in highlighting salient targets. In Table 5, the
maximum values for five evaluation metrics were achieved when two global attention
modules were retained. Therefore, the global attention module assigned higher weights to
the significant channels, resulting in the effective highlighting of the salient targets.
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Table 5. The quantitative results of the effectiveness of the global attention module. Red and blue
indicate the best and the second-best results, respectively.

Metric Without the 1st
Attention Module

Without the 2nd
Attention Module

Without Both
Attention Modules Ours

EN 6.7450 6.7584 6.6899 6.7844
MI 4.4664 4.5162 4.4048 4.7104
SD 8.9386 8.9254 8.8987 8.9747
SF 0.0320 0.0271 0.0220 0.0294

VIF 0.9936 0.9921 0.9836 1.0026
Qab/f 0.5010 0.4927 0.4793 0.5199

In order to further verify its advancement, the global attention module was replaced
with SENet [41] and ECANet [42]. As shown in Figure 13, all global attention modules
effectively highlighted the salient targets. Therefore, it was difficult to judge the superiority
of these modules with human visual inspection. Therefore, 100 pairs of images from the
M3FD dataset were utilized for further quantitative comparison. In Table 6, all evaluation
metrics of the proposed module achieved maximum values. Therefore, all results confirmed
its advancement.

Table 6. The quantitative results of the advancement of the global attention module. Red and blue
indicate the best and the second-best results, respectively.

Metric Replacing Attention
Module with SENet

Replacing Attention
Module with ECANet Ours

EN 6.5809 6.6445 6.7844
MI 4.6827 4.6111 4.7104
SD 8.9298 8.9390 8.9747
SF 0.0277 0.0283 0.0294

VIF 0.9867 0.9370 1.0026
Qab/f 0.5170 0.5007 0.5199

4.4.2. Feature Extraction Module

The global attention module effectively avoided the problem of high computational
complexity caused by stacking convolution layers. To further verify the effect of the number
of convolution blocks in the deep feature extraction module, two ablation experiments were
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designed. Three or four convolution blocks were adopted in the deep feature extraction
module. The output channels of the third and fourth convolution layer were set up to 96
and 128, respectively. The other parameters were set up as before. One hundred pairs of
images from the M3FD dataset were chosen for quantitative analysis. As shown in Table 7,
the proposed method achieved the maximum values for four evaluation metrics including
EN, MI, SD and VIF. Note that the evaluation metrics did not rise with the increase in
convolution blocks, which meant that the network was possibly overfitted. Therefore, only
two convolution blocks were adopted in the deep feature extraction module.

Table 7. The quantitative results of the effect of the number of convolution blocks. Red and blue
indicate the best and the second-best results, respectively.

Metric 3-Conv-Block 4-Conv-Block Ours (2-Conv-Block)

EN 6.7299 6.3615 6.7844
MI 4.6058 3.0175 4.7104
SD 8.9157 8.7353 8.9747
SF 0.0293 0.0296 0.0294

VIF 0.9843 0.8739 1.0026
Qab/f 0.5310 0.4540 0.5199

4.4.3. Trade-Off Control Parameters

For retaining the salient targets and rich texture details at the same time, the loss
function was divided into the foreground loss and the background loss. The trade-off
control parameters of the foreground loss were α1 and α2, where α1 + α2 = 10. Fixing the
other parameters, we set α1 = 1, 2, . . . , 9. One hundred pairs of images from the M3FD
dataset were selected for analysis. The variation trends in the evaluation metrics under
different values of α1 can be observed in Figure 14. In Table 8, the best results were obtained
for all evaluation metrics except for Qab/f when α1 was set to four.
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Table 8. The ablation experimental results for the trade-off control parameter α. Red and blue indicate
the best and the second-best results, respectively.

Metric α1 = 1 α1 = 2 α1 = 3 α1 = 5 α1 = 6 α1 = 7 α1 = 8 α1 = 9 Ours
(α1 = 4)

EN 6.5890 6.6176 6.6162 6.6245 6.6959 6.6796 6.7081 6.6526 6.7844
MI 4.2757 4.4161 4.4141 4.4687 4.5292 4.5340 3.9771 3.6744 4.7104
SD 8.6407 8.6807 8.6769 8.6910 8.7493 8.5791 8.7539 8.7759 8.9747
SF 0.0289 0.0289 0.0293 0.0269 0.0271 0.0257 0.0218 0.0179 0.0294

VIF 0.9412 0.9467 0.9455 0.9462 0.9625 0.9423 0.9358 0.9341 1.0026
Qab/f 0.5290 0.5287 0.5240 0.5082 0.4921 0.4509 0.4201 0.3629 0.5199

By evaluating the luminance of all visible images in the training dataset, the luminance
estimation function output the trade-off control parameters β1 and β2, where β1 + β2 = 1.
Fixing the other parameters in the network, we set β1 = 0.1, 0.2, . . . , 0.9. One hundred pairs
of images from the M3FD dataset were selected for qualitative and quantitative analyses.
In Figure 15, the variation trends in the evaluation metrics under the different values of β1
are shown. As shown in Table 9, our proposed method acquired the best results for four
evaluation metrics including EN, MI, SD and VIF.
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In order to further verify the validity of the luminance estimation function, the experi-
ment was continued with a reduction in the step length. We set β1 = 0.61, 0.62, . . . , 0.69
and kept the other parameters in the network unchanged.

One hundred pairs of images from the M3FD dataset were chosen for quantitative
analysis using the above 10 sets of ablation experiments. In Figure 16, the variation trends
in the evaluation metrics under the different values of β1 are shown. As shown in Table 10,
our proposed method acquired the best results for four evaluation metrics including EN,
SD, SF and VIF. In summary, the luminance estimation function could effectively evaluate
the luminance of the night scene and output a reasonable value of β.
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Table 9. The ablation experimental results for the trade-off control parameter β. Red and blue indicate
the best and the second-best results, respectively.

Metric β1 = 0.1 β1 = 0.2 β1 = 0.3 β1 = 0.4 β1 = 0.5 β1 = 0.6 β1 = 0.7 β1 = 0.8 β1 = 0.9 Ours
(β1 = 0.66)

EN 6.2031 6.3875 6.5618 6.6762 6.7122 6.7530 6.7006 6.7238 6.7444 6.7844
MI 3.1523 3.5214 3.8086 4.7037 4.5235 4.6019 4.6483 4.4814 4.3923 4.7104
SD 8.3903 8.8980 8.8988 8.9110 8.9037 8.9236 8.9331 8.9339 8.9419 8.9747
SF 0.0296 0.0283 0.0292 0.0298 0.0286 0.0288 0.0284 0.0285 0.0263 0.0294

VIF 0.8754 0.8825 0.9089 0.9730 0.9754 0.9915 0.9735 0.9819 0.9807 1.0026
Qab/f 0.5133 0.5124 0.5275 0.5350 0.5308 0.5261 0.5187 0.5154 0.4890 0.5199
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Table 10. The ablation experimental results for the trade-off control parameter β. Red and blue
indicate the best and the second-best results, respectively.

Metric β1 = 0.61 β1 = 0.62 β1 = 0.63 β1 = 0.64 β1 = 0.65 β1 = 0.67 β1 = 0.68 β1 = 0.69 Ours
(β1 = 0.66)

EN 6.7816 6.7521 6.7838 6.7537 6.7061 6.7635 6.7244 6.7521 6.7844
MI 4.8015 4.5154 4.8101 4.6564 4.5619 4.5265 4.5265 4.7309 4.7104
SD 8.9698 8.9504 8.9545 8.9312 8.9061 8.9546 8.9399 8.9504 8.9747
SF 0.0282 0.0290 0.0283 0.0288 0.0291 0.0280 0.0288 0.0290 0.0294

VIF 1.0003 0.9940 0.9946 1.0012 0.9788 0.9944 0.9861 0.9940 1.0026
Qab/f 0.5170 0.5248 0.5235 0.5138 0.5264 0.5111 0.5250 0.5248 0.5199

As shown in Figure 17, the salient targets were very prominent and the details of the
building were very distinct when α1 and β1 were set to 4 and 0.66, respectively. All the
above experiments adequately prove the rationality of the parameter settings in this paper.
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(j) α1 = 9. (k) β1 = 0.1. (l) β1 = 0.2. (m) β1 = 0.3. (n) β1 = 0.4. (o) β1 = 0.5. (p) β1 = 0.6. (q) β1 = 0.7.
(r) β1 = 0.8. (s) β1 = 0.9. (t) Ours (α1 = 4, β1 = 0.66).

5. Conclusions

This paper proposed an infrared and visible image fusion method for highlighting
salient targets in the night scene. First, a global attention module was designed, which
rescaled the weights of different channels after capturing the global contextual information.
Second, the loss function was divided into the foreground loss and the background loss,
forcing the fused image to retain rich texture details while highlighting the salient targets.
Moreover, a luminance estimation function was introduced to obtain the trade-off control
parameters of the foreground loss function based on the nighttime luminance. It effectively
highlighted salient targets by retaining foreground information from the source images. In
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summary, the effectiveness and generalization of the proposed method was demonstrated
by comparing with other advanced methods.
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