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Abstract: Existing missile defense target threat assessment methods ignore the target timing and
battlefield changes, leading to low assessment accuracy. In order to overcome this problem, a dy‑
namicmulti‑time fusion target threat assessmentmethod is proposed. In this method, a new interval
valued intuitionistic fuzzy weighted averaging operator is proposed to effectively aggregate multi‑
source uncertain information; an interval‑valued intuitionistic fuzzy entropy based on a cosine func‑
tion (IVIFECF) is designed to determine the target attribute weight; an improved interval‑valued
intuitionistic fuzzy number distance measurement model is constructed to improve the discrimina‑
tion of assessment results. Specifically, first of all, we define new interval‑valued intuitionistic fuzzy
operation rules based on algebraic operations. We use these rules to provide a newmodel of interval‑
valued intuitionistic fuzzy weighted arithmetic averaging (IVIFWAA) and geometric averaging (IV‑
IFWGA) operators, and prove a number of algebraic properties of these operators. Then, considering
the subjective and objective weights of the incoming target, a comprehensive weight model of target
attributes based on IVIFECF is proposed, and the Poisson distribution method is used to solve the
time series weights to process multi‑time situation information. On this basis, the IVIFWAA and IV‑
IFWGA operators are used to aggregate the decision information from multiple times and multiple
decision makers. Finally, based on the improved TOPSIS method, the interval‑valued intuitionistic
fuzzy numbers are ordered, and the weighted multi‑time fusion target threat assessment result is
obtained. Simulation results of comparison show that the proposed method can effectively improve
the reliability and accuracy of target threat assessment in missile defense.

Keywords: interval‑valued intuitionistic fuzzy aggregation operator; threat assessment; multi‑time
fusion; interval‑valued intuitionistic fuzzy entropy; interval‑valued intuitionistic fuzzy number
distance measurement

1. Introduction
Target threat assessment is the third level of the JDL information fusion model, and

is a core issue of missile defense command decision‑making. Methods to quickly and ac‑
curately evaluate the threat level of an incoming target represent a difficult technical prob‑
lem that restricts the improvement of the combat effectiveness of missile defense weapon
systems. Due to numerous characteristic attributes of ballistic targets and missile defense
warfare being a continuous and dynamic process, the threat assessment of a target requires
comprehensive consideration of multiple factors, which can be formulated as a type of un‑
certain dynamic multi‑attribute group decision‑making problem [1,2].

Commonly used threat assessment methods include Bayesian networks [3], rough
set theory [4], D‑S evidence theory [5], fuzzy reasoning [6], and multi‑attribute decision‑
making [7]. Although the Bayesian networks can effectively handle uncertain information,
the selection of transition probability depends on expert experience, the reliability is poor
and it is only applicable to situations where there is a large amount of sample data, and the
solution accuracy for small sample data is poor. Thus, it is not suitable for missile defense
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warfare with a lack of warfare sample data. Although rough set theory does not require
prior information outside the data set, it needs to build a large knowledge base to support
the construction of relevant rules, and it’s difficult to adapt to the high requirements of
missile defense warfare for decision‑making timeliness. The D‑S evidence theory is weak
in processing conflicting information, and when the problem space is large the problem of
the combinatorial explosion will occur. Considering the large threat of ballistic missiles,
onemissed interceptionwill cause great damage to surface defense assets and require high
threat assessment accuracy. Therefore, a variety of factors need to be considered. Fuzzy
set theory combined with dynamic multi‑attribute group decision theory can be used to
solve this problem.

Fuzzy sets have been widely used to describe and process fuzzy uncertain decision
information since Zadeh [8] proposed it. Atanassov [9] extended the fuzzy set to the intu‑
itionistic fuzzy set by removing the constraint condition that the sum of membership and
non‑membership is one. Intuitionistic fuzzy sets can describe the uncertainty of decision‑
making information in more detail, so they have been widely used in intelligence reason‑
ing, decision‑making, and other fields. In recent years, a large number of multi‑attribute
group decision‑making methods based on intuitionistic fuzzy sets have been proposed.
Pamucar [10] provided multi‑criteria decision‑making that combines interval grey num‑
bers andnormalizedweighted geometricDombi‑Bonferronimean operator. Shen et al. [11]
proposed an extended intuitionistic fuzzy TOPSIS method. In et al. builds an intuitionis‑
tic fuzzy multi‑attribute group decision‑making model based on the consistency method.
Jin et al. [12] proposed an intuitionistic fuzzy preference relation group decision‑making
method based on multiplicative consistency. Wu et al. [13] used a multi‑criteria decision‑
making model of triangular intuitionistic fuzzy number correlation. Based on this,
Kong et al. [14] proposed a quantification method of multi‑attribute threat indicators that
addresses the issue of threat assessment indicators of ground combat targets being diverse
and difficult to quantify, and unified the quantitative results of indicators in the form of
intuitionistic fuzzy sets. Wang et al. [15] considered the preferences of decision makers
and studied threat assessment methods with unknown target attribute weights.

In order to overcome the problem of threat assessment methods relying too much on
expert knowledge, Xiao et al. [16] proposed an air target threat assessment method based
on intuitionistic fuzzy hierarchical analytic processes. In [17], Zhang et al. used intuitionis‑
tic fuzzy entropy to calculate attribute weights and constructed a target threat assessment
model. In the context of intuitionistic fuzzymulti‑attribute decision‑making, [18] proposed
a target threat assessment method based on tripartite decision‑making.

The above methods are all useful attempts to combine fuzzy set theory with multi‑
attribute decision‑making theory. However, for missile defense warfare with dynamic,
time‑sensitive, and strong antagonism, the existing threat assessment methods still have
a number of shortcomings. First, due to the missile defense combat environment, the
high complexity, and the limitations of sensor detection performance, the battlefield infor‑
mation present is incomplete and uncertain. The multi‑attribute group decision‑making
method based on intuitionistic fuzzy sets uses a certain “point value” to represent the as‑
sessment data, which will lead to the excessive deviation between the assessment result
and objective reality. Therefore, in the threat assessment of ballistic targets, it is necessary
to expand the point value data into interval‑valued intuitionistic fuzzy numbers, and to
smooth the detection data parameters to control the error within a certain range in order
to improve the accuracy and reliability of the threat assessment. Second, although a large
number of interval‑valued intuitionistic fuzzy operators [19] have been proposed in recent
years, and most of them are defined in the traditional interval‑valued intuitionistic fuzzy
operation rules, they ignore the relationship between aggregated data when performing
information fusion. Because of this, there will be results contrary to intuitive analysis and
the ambiguous nature of the complex battlefield will not be meticulously and flexibly re‑
flected. Third, most of the literature [1–7,14–16] only focuses on the information in the
current moment when conducting the threat assessment, ignoring the timing of target in‑
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formation, making it difficult to obtain objective and comprehensive threat assessment
results. Fourth, although the existing interval‑valued intuitionistic fuzzy entropy has var‑
ious forms [20–22], when the deviation of the degree of membership and the degree of
non‑membership is equal there is inconsistency with the intuitive facts.

Based on the above analysis, the contributions of the work in this paper are as fol‑
lows: (1) Based on a new interval‑valued intuitionistic fuzzy operation rules that retain
the properties of classical algebra, the new interval‑valued intuitionistic fuzzy arithmetic
weighted average (IVIFWAA) operator and the interval‑valued intuitionistic fuzzy geomet‑
ric weighted average (IVIFWGA) operator are proposed to perform nonlinear aggregation
operation on interval intuitionistic fuzzy numbers. (2) The threat assessment index system
for typical missile defense combat elements is constructed, and the interval‑valued intu‑
itionistic fuzzy entropy based on cosine function (IVIFECF) is proposed to solve the prob‑
lem of inconsistencywith intuitive facts when the deviation betweenmembership and non‑
membership are equal. (3) Considering the objective, subjective and time series weights,
a comprehensive weight model of target attributes based on IVIFECF is constructed to
process multi‑time situation information. (4) An ordering method of interval‑valued intu‑
itionistic fuzzy numbers based on improved TOPSIS is proposed to improve the discrimi‑
nation ability between decision‑making results. (5) The evaluationmodel based on IVIFEC‑
IVIFWA‑TOPSIS is constructed by aggregating themulti‑target attributes andmulti‑expert
decision‑making information multiple times, which improves the reliability and accuracy
of missile defense target threat evaluation.

We conclude this section by outlining the remainder of the article. Section 2 intro‑
duces the related concepts of interval‑valued intuitionistic fuzzy sets(IVIFSs). Section 3
defines new interval‑valued intuitionistic fuzzy operation rules. Section 4 defines new
interval‑valued intuitionistic fuzzy weighted average operators and proves their algebraic
properties. In Section 5, we present a missile defense dynamic multi‑time fusion target
threat assessment method based on IVIFECF‑IVIFWA‑TOPSIS. Numerical examples and
an analysis of the performance of the proposed algorithm are given in Section 6. We sum‑
marize the results and provide conclusions in the seventh part.

2. Preliminaries
2.1. Interval‑Valued Intuitionistic Fuzzy Sets

Definition 1. [23]. Let X = {x1, x2, · · · , xn} be a non‑empty set. Given X, the interval‑valued
intuitionistic fuzzy setÃcan be represented as

Ã =
{
< x, µ̃Ã(x), ṽÃ(x) > |x ∈ X

}
where µ̃Ã(x) ⊂ [0, 1] and ṽÃ(x) ⊂ [0, 1] are the Ã membership and non‑membership intervals,
respectively associated with x in X, Further, for any x ∈ X, the condition 0 ≤ supµ̃Ã(x) +
supṽÃ(x) ≤ 1 is satisfied. For ease of explanation, the interval‑valued intuitionistic fuzzy set can
be written as:

Ã =
{
< x, [µL

Ã
(x), µU

Ã
(x)], [vL

Ã
(x), vU

Ã
(x)] > |x ∈ X

}
where µU

Ã
(x) + vU

Ã
(x) ≤ 1, µL

Ã
(x) ≥ 0, vL

Ã
(x) ≥ 0.

The intuitionistic fuzzy interval can be expressed as

π̃Ã(x) = 1 − µ̃Ã(x)− ṽÃ(x) = [1 − µU
Ã
(x)− vU

Ã
(x), 1 − µL

Ã
(x)− vL

Ã
(x)]

Generally, the ordered pair ([µL
Ã
(x), µU

Ã
(x)], [vL

Ã
(x), vU

Ã
(x)]) formed by the degree of

membership interval [µL
Ã
(x), µU

Ã
(x)] and non‑membership interval [vL

Ã
(x), vU

Ã
(x)] for x in X

of Ã is called an interval‑valued intuitionistic fuzzy number. For convenience, let IVIFS(X)
be the interval‑valued intuitionistic fuzzy set on the domain, X; ([a, b], [c, d]) is the interval‑
valued intuitionistic fuzzy number, where [a, b] ⊂ [0, 1], [c, d] ⊂ [0, 1] and b + d ≤ 1.
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Definition 2. [24]. Let Ã, B̃ ∈ IVIFS(X), then
(1) Ã ⊆ B̃ if and only if µL

Ã
(x) ≤ µL

B̃
(x), µU

Ã
(x) ≤ µU

B̃
(x), vL

Ã
(x) ≥ vL

B̃
(x), vU

Ã
(x) ≥

vU
B̃
(x), ∀x ∈ X

(2) Ã = B̃ if and only if Ã ⊆ B̃ and, B̃ ⊆ Ã, ∀x ∈ X

(3) ÃC =
{
< x, [vL

Ã
(x), vU

Ã
(x)], [µL

Ã
(x), µU

Ã
(x)] > |x ∈ X

}
Definition 3. [24]. Let α̃i = ([ai, bi], [ci, di]) (i = 1, 2, · · · n) be a set of interval‑valued intu‑

itionistic fuzzy numbers, ωi be the weight of α̃i, with ωi ∈ [0, 1] and
n
∑

i=1
ωi = 1. Then, the

interval‑valued intuitionistic fuzzy weighted average operator IFWAA: Θ̃n → Θ̃ and the interval‑
valued intuitionistic fuzzy weighted geometric operator IIFWG: Θ̃n → Θ̃ are respectively:

IIFWA(α̃1, α̃2, · · · , α̃n) =

([
1 −

n

∏
i=1

(1 − ai)
ωi , 1 −

n

∏
i=1

(1 − bi)
ωi

]
,

[
n

∏
i=1

ci
ωi ,

n

∏
i=1

di
ωi

])

IIFWG(α̃1, α̃2, · · · , α̃n) =

([
n

∏
i=1

ai
ωi ,

n

∏
i=1

bi
ωi

]
,

[
1 −

n

∏
i=1

(1 − ci)
ωi , 1 −

n

∏
i=1

(1 − di)
ωi

])

2.2. The Order of Interval‑Valued Intuitionistic Fuzzy Numbers
The aggregated result of interval‑valued intuitionistic fuzzy information is still an

interval‑valued intuitionistic fuzzy number, so the ordering of interval‑valued intuition‑
istic fuzzy numbers is of great significance to fuzzy decision‑making. The score function
and the exact function are classic methods to realize the ordering of interval‑valued intu‑
itionistic fuzzy numbers.

Definition 4. [24]. Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be any two interval‑
valued intuitionistic fuzzy numbers. The score functions of α̃1, α̃2 are expressed as s(α̃1) =
(a1 − c1 + b1 − d1)/2 and s(α̃2) = (a2 − c2 + b2 − d2)/2, respectively; the exact functions of α̃1,
α̃2 are expressed as h(α̃1) h(α̃1) = (a1 + c1 + b1 + d1)/2 and h(α̃2) = (a2 + c2 + b2 + d2)/2,
respectively, then:
(1) If s(α̃1) < s(α̃2), then α̃1 < α̃2;
(2) If s(α̃1) = s(α̃2), then 1⃝ If h(α̃1) < h(α̃2), then α̃1 < α̃2; 2⃝ If h(α̃1) = h(α̃2), then

α̃1 ∼ α̃2.

3. New Operations of Interval‑Valued Intuitionistic Fuzzy Numbers

Definition 5. [23]. Let α̃ = ([a, b], [c, d]), α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be
interval‑valued intuitionistic fuzzy numbers, then
(1) α̃1 + α̃2 = ([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2, d1d2])
(2) α̃1α̃2 = ([a1a2, b1b2], [c1 + c2 − c1c2, d1 + d2 − d1d2])

(3) λα̃ = ([1 − (1 − a)λ, 1 − (1 − b)λ], [cλ, dλ])

(4) α̃λ = ([aλ, bλ], [1 − (1 − c)λ, 1 − (1 − d)λ])

Definition 5 gives the basic rules of interval‑valued intuitionistic fuzzy operations.
Based on these operating rules, a large number of interval‑valued intuitionistic fuzzy aggre‑
gation operations can be defined. It should be noted though that the rules for aggregation
of interval‑valued intuitionistic fuzzy information are not unique. At present, the oper‑
ation rules based on the Einstein t‑norm and the interactive operation rules based on the
degree of membership and non‑membership have been successively proposed [25–27] and
used to solve the problem of interval‑valued intuitionistic fuzzy multi‑attribute decision‑
making. However, the relationship between new operations and classic operations is not
clear. Some interactive operations lack the algebraic properties of classic operations, which
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has an impact on decision analysis. Therefore, this paper proposes a new interval‑valued
intuitionistic fuzzy operation rule based on algebraic operations and analyzes its opera‑
tional characteristics in depth.

Definition 6. Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c2, d2]) be any two interval‑valued
intuitionistic fuzzy numbers and respectively define the addition operation “⊕” and multiplication
operation “⊗ ” as

α̃1 ⊕ α̃2 =

([
a1 + a2 − 2a1a2

1 − a1a2
,

b1 + b2 − 2b1b2

1 − b1b2

]
,
[

c1c2

c1 + c2 − c1c2
,

d1d2

d1 + d2 − d1d2

])

α̃1 ⊗ α̃2 =

([
a1a2

a1 + a2 − a1a2
,

b1b2

b1 + b2 − b1b2

]
,

[
c1 + c2 − 2c1c2

1 − c1c2
,

d1 + d2 − 2d1d2

1 − d1d2

])

Explanation 1. For functions f (x, y) = x+y−2xy
1−xy and g(x, y) = xy

x+y−xy , we can obtain{
g(x, y) = 1 − f (1 − x, 1 − y)
f (x, y) = 1 − g(1 − x, 1 − y)

Therefore, Definition 6 can be expressed as

α̃1 ⊕ α̃2 = ([ f (a1, a2), f (b1, b2)], [1 − f (1 − c1, 1 − c2), 1 − f (1 − d1, 1 − d2)])

α̃1 ⊗ α̃2 = ([g(a1, a2), g(b1, b2)], [1 − g(1 − c1, 1 − c2), 1 − g(1 − d1, 1 − d2)])

Explanation 2. The behavior of the functions f (x, y) = x+y−2xy
1−xy and g(x, y) = xy

x+y−xy
where x = y = 1 and x = y = 0, respectively are not significant. Because lim

(x,y)→(1,1)
f (x, y) =

1, lim
(x,y)→(0,0)

g(x, y) = 0, we can define{
([0, 0], [1, 1])⊕ ([0, 0], [1, 1]) = ([0, 0], [1, 1])
([1, 1], [0, 0])⊕ ([1, 1], [0, 0]) = ([1, 1], [0, 0])

Theorem 1. Given the interval‑valued intuitionistic fuzzy numbers α̃1 = ([a1, b1], [c1, d1]) and
α̃2 = ([a2, b2], [c2, d2]), we can obtain

α̃1 ⊗ α̃2 =
(

α̃1
C ⊕ α̃2

C
)C

, α̃1 ⊕ α̃2 =
(

α̃1
C ⊗ α̃2

C
)C

where α̃1
C = ([c1, d1], [a1, b1]), α̃2

C = ([c2, d2], [a2, b2]).

Proof of Theorem 1:
By Definition 6 we obtain:

α̃1
C ⊕ α̃2

C =

([
c1 + c2 − 2c1c2

1 − c1c2
,

d1 + d2 − 2d1d2

1 − d1d2

]
,
[

a1a2

a1 + a2 − a1a2
,

b1b2

b1 + b2 − b1b2

])
Then, it follows that:(

α̃1
C ⊕ α̃2

C
)C

=

([
a1a2

a1 + a2 − a1a2
,

b1b2

b1 + b2 − b1b2

]
,
[

c1 + c2 − 2c1c2

1 − c1c2
,

d1 + d2 − 2d1d2

1 − d1d2

])
= α̃1 ⊗ α̃2

Therefore: α̃1 ⊗ α̃2 =
(
α̃1

C ⊕ α̃2
C)C.

By the same logic: α̃1 ⊕ α̃2 =
(
α̃1

C ⊗ α̃2
C)C, which completes the proof. □
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Theorem 2. For the interval‑valued intuitionistic fuzzy number α̃ = ([a, b], [c, d]), we can obtain

n ⊙ α̃ = α̃ ⊕ α̃ ⊕ · · · ⊕ α̃︸ ︷︷ ︸
n

=

([
na

1 + (n − 1)a
,

nb
1 + (n − 1)b

]
,
[

c
n − (n − 1)c

,
d

n − (n − 1)d

])

Proof of Theorem 2:
We employ mathematical induction to prove the result as follows:

(1) When n = 2

α̃ ⊕ α̃ =
([

2a(1−a)
1−a2 , 2b(1−b)

1−b2

]
,
[

c2

c(2−c) , d2

d(2−d)

])
=
([

2a
1+(2−1)a , 2b

1+(2−1)b

]
,
[

c
2−(2−1)c , d

2−(2−1)d

])
Hence, when n = 2 the result holds.

(2) Let n = m, and assume

m ⊙ α̃ = α̃ ⊕ α̃ ⊕ . . . ⊕ α̃︸ ︷︷ ︸
m

=

([
ma

1 + (m − 1)a
,

mb
1 + (m − 1)b

]
,
[

c
m − (m − 1)c

,
d

m − (m − 1)d

])

Then, it follows that

(m + 1)⊙ α̃ = mα̃ ⊕ α̃ =
([

(m+1)a
1+ma , (m+1)b

1+mb

]
,
[

c
m+1−mc , d

m+1−md

])
=
([

(m+1)a
1+(m+1−1)a , (m+1)b

1+(m+1−1)b

]
,
[

c
m+1−(m+1−1)c , d

m+1−(m+1−1)

])
Letting n = m + 1, we obtain:

n ⊙ α̃ = α̃ ⊕ α̃ ⊕ · · · ⊕ α̃︸ ︷︷ ︸
n

=

([
na

1 + (n − 1)a
,

nb
1 + (n − 1)b

]
,
[

c
n − (n − 1)c

,
d

n − (n − 1)d

])

This completes the proof. □

Theorem 3. For the interval‑valued intuitionistic fuzzy number α̃ = ([a, b], [c, d]).
α̃⊗n = α̃ ⊗ α̃ ⊗ . . . ⊗ α̃︸ ︷︷ ︸

n

=
([

a
n−(n−1)a , b

n−(n−1)b

]
,
[

nc
1+(n−1)c , nd

1+(n−1)d

])
.

Proof of Theorem 3:
By Theorems 1 and 2 we obtain

α̃α = α̃ ⊗ α̃ ⊗ . . . ⊗ α̃︸ ︷︷ ︸
n

= (α̃c ⊗ α̃c ⊗ . . . ⊗ α̃c︸ ︷︷ ︸
n

)c

=

([
nc

1 + (n − 1)c
,

nd
1 + (n − 1)d

]
,
[

a
n − (n − 1)a

,
b

n − (n − 1)b

])c

=

([
a

n − (n − 1)a
,

b
n − (n − 1)b

]
,
[

nc
1 + (n − 1)c

,
nd

1 + (n − 1)d

])
This completes the proof. □

By extendingTheorems 2 and 3 to any non‑negative real number λ ≥ 0, a new interval‑
valued intuitionistic fuzzy operation rule can be obtained, as shown in Definition 7.
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Definition 7. For interval‑valued intuitionistic fuzzy numbers α̃ = ([a, b], [c, d]) and real num‑
bers λ ≥ 0, we can define the following operations:

λ ⊙ α̃ =

([
λa

1 + (λ − 1)a
,

λb
1 + (λ − 1)b

]
,
[

c
λ − (λ − 1)c

,
d

λ − (λ − 1)d

])

α̃⊙λ =

([
a

λ − (λ − 1)a
,

a
λ − (λ − 1)a

]
,
[

λc
1 + (λ − 1)c

,
λd

1 + (λ − 1)d

])
Explanation 3. When λ > 1, the denominators are not equal to 0, so the case where
0 ≤ λ ≤ 1 needs to be focused on. Define the two functions p(x, y) = xy

1+(x−1)y ,
q(x, y) = y

x−(x−1)y where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. We note that p(x, y) is undefined at
(0,1) and q(x, y) is undefined at (0,0).

Theorem 4. Let α̃ = ([a, b], [c, d]) be an interval‑valued intuitionistic fuzzy number and λ be a
non‑negative real number. Then

α̃⊙λ =
(

λ ⊙ α̃C
)C

, λ ⊙ α̃ =

((
α̃C
)⊙λ

)C

Proof of Theorem 4:
Since α̃C = ([c, d], [a, b]), we obtain

(
λ ⊙ α̃C)C

=
([

λc
1+(λ−1)c , λd

1+(λ−1)d

]
,
[

a
λ−(λ−1)a , b

λ−(λ−1)b

])C

=
(

a
λ−(λ−1)a , b

λ−(λ−1)b ,
[

λc
1+(λ−1)c , λd

1+(λ−1)d

])
= α̃⊙λ

Therefore, α̃⊙λ =
(
λ ⊙ α̃C)C

By the same logic, λ ⊙ α̃ =
((

α̃C)⊙λ
)C

This completes the proof. □

Theorem 5. Let α̃1 = ([a1, b1], [c1, d1]) and α̃2 = ([a2, b2], [c1, d1] be interval‑valued intuition‑
istic fuzzy numbers, with λ, λ1, and λ2 being non‑negative real numbers. Then, the following
properties hold:
(1) (λ1 ⊙ α̃1)⊕ (λ2 ⊙ α̃1) = (λ1 + λ2)⊙ α̃1
(2) (λ ⊙ α̃1)⊕ (λ ⊙ α̃2) = λ ⊙ (α̃1 ⊕ α̃2)

(3) α̃1
⊙λ1 ⊗ α̃1

⊙λ2 = α̃1
⊙(λ1+λ2)

(4) α̃1
⊙λ ⊗ α̃2

⊙λ = (α̃1 ⊗ α̃2)
⊙λ

(5) λ1 ⊙ (λ2 ⊙ α̃1) = (λ1λ2)⊙ α̃1

(6)
(
α̃1

⊙λ1
)⊙λ2 = α̃1

⊙(λ1λ2)

Proof of Theorem 5:
Theorem 5 follows trivially form Theorems 1–4.
Based on Theorem 5 we obtain

(λ1 ⊙ α̃1)⊕ · · · ⊕ (λn ⊙ α̃1) =
n
⊕

i=1
(λiα̃1) =

n

∑
i=1

λi⊙α̃1 and

(
α̃1

⊙λ1
)
⊗ · · · ⊗

(
α̃1

⊙λn
)
=

n
⊗

i=1

(
α̃1

⊙λi
)
= α̃1

⊙
n
∑

i=1
λi

In particular, if
n
∑

i=1
λi = 1, we obtain

(λ1 ⊙ α̃1)⊕ (λ2 ⊙ α̃1)⊕ · · · ⊕ (λn ⊙ α̃1) = α̃1 and



Entropy 2022, 24, 1825 8 of 31

(
α̃1

⊙λ1
)
⊗
(

α̃1
⊙λ2
)
⊗ · · · ⊗

(
α̃1

⊙λn
)
= α̃1

It can be seen from Theorems 1–5 that the new interval‑valued intuitionistic fuzzy
operation satisfies idempotence, which is essential for the fusion of interval‑valued intu‑
itionistic fuzzy information. □

4. New Interval‑Valued Intuitionistic Fuzzy Weighted Average Operator Model
Based on Theorems 1–5, new interval‑valued intuitionistic fuzzy aggregation opera‑

tions can be defined, and newmodels of interval‑valued intuitionistic fuzzyweighted arith‑
metic averaging (IVIFWAA) operators and interval‑valued intuitionistic fuzzy weighted
geometric averaging (IVIFWGA) operators can be proposed.

4.1. Interval‑Valued Intuitionistic Fuzzy Arithmetic Weighted Average Operator

Definition 8. Let α̃i = ([ai, bi], [ci, di]) (i = 1, 2, · · · n) be a set of interval‑valued intuitionistic

fuzzy numbers, and ωi be the weight of α̃i, with ωi ∈ [0, 1], and
n
∑

i=1
ωi = 1. If the map IVIFWAA:

Θ̃n → Θ̃ satisfies

IVIFWAA(α̃1, α̃2, · · · , α̃n) = (ω1 ⊙ α̃1)⊕ (ω2 ⊙ α̃2)⊕ · · · ⊕ (ωn ⊙ α̃n)

Then, IVIFWAA is an interval‑valued intuitionistic fuzzy arithmetic weighted
average operator.

In particular, when ω = (1/n, 1/n, · · · , 1/n)T , then we obtain

IVIFWAA(α̃1, α̃2, · · · , α̃n) =

(
1
n
⊙ α̃1

)
⊕
(

1
n
⊙ α̃2

)
⊕ · · · ⊕

(
1
n
⊙ α̃n

)
By Theorem 5 we obtain

IVIFWAA(α̃1, α̃2, · · · , α̃n) =
1
n
⊙ (α̃1 ⊕ α̃2 ⊕ · · · ⊕ α̃n)

Theorem 6. Let α̃i = ([ai, bi], [ci, di]) (i = 1, 2, · · · n) be a set of interval‑valued intuitionistic

fuzzy numbers, and ωi be the weight of α̃i, with ωi ∈ [0, 1], and
n
∑

i=1
ωi = 1. Then

IVIFWAA(α̃1, α̃2, · · · , α̃n) =
([

an
A, bn

A
]
,
[
cn

A, dn
A
])

is an interval‑valued intuitionistic fuzzy num‑
ber, where

an
A = 1 −

n
∏
i=1

(1 − ai)

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

(1 − ai)

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

(1 − ai)

) (1)

bn
A = 1 −

n
∏
i=1

(1 − bi)

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

(1 − bi)

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

(1 − bi)

) (2)
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cn
A =

n
∏
i=1

ci

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

ci

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

ci

) (3)

dn
A =

n
∏
i=1

di

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

di

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

di

) (4)

Proof of Theorem 6:
The result follows from Definition 6 and 7. □

4.2. Interval‑Valued Intuitionistic Fuzzy Geometric Weighted Average Operator

Definition 9. Let α̃i = ([ai, bi], [ci, di]) (i = 1, 2, · · · n) be a set of interval‑valued intuitionistic

fuzzy numbers, and ωi be the weight of α̃i, with ωi ∈ [0, 1], and
n
∑

i=1
ωi = 1. If the map IVIFWGA:

Θ̃n → Θ̃ satisfies

IVIFWGA(α̃1, α̃2, · · · , α̃n) = α̃1
⊙ω1 ⊗ α̃2

⊙ω2 ⊗ · · · ⊗ α̃n
⊙ωn

Then, IVIFWGA is an interval‑valued intuitionistic fuzzy geometric weighted
average operator.

In particular, when ω = (1/n, 1/n, · · · , 1/n)T , we obtain

IVIFWGA(α̃1, α̃2, · · · , α̃n) = α̃1
⊙ 1

n ⊗ α̃2
⊙ 1

n ⊗ · · · ⊗ α̃n
⊙ 1

n

By Theorem 5 we obtain

IVIFWGA(α̃1, α̃2, · · · , α̃n) = (α̃1 ⊗ α̃2 ⊗ · · · ⊗ α̃n)
⊙ 1

n

Theorem 7. Let α̃i = ([ai, bi], [ci, di]) (i = 1, 2, · · · n) be a set of interval‑valued intuition‑

istic fuzzy numbers, and ωi be the weights of α̃i, with ωi ∈ [0, 1], and
n
∑

i=1
ωi = 1. Then,

IVIFWGA(α̃1, α̃2, · · · , α̃n) =
([

an
G, bn

G
]
,
[
cn

G, dn
G
])

is an interval‑valued intuitionistic fuzzy
number, where

an
G =

n
∏
i=1

ai

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

ai

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

ai

) (5)



Entropy 2022, 24, 1825 10 of 31

bn
G =

n
∏
i=1

bi

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

bi

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

bi

) (6)

cn
G = 1 −

n
∏
i=1

(1 − ci)

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

(1 − ci)

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

(1 − ci)

) (7)

dn
G = 1 −

n
∏
i=1

(1 − di)

n
∑

j=1

ωj
n
∏

i = 1
i ̸= j

(1 − di)

−
n
∑

j=1

((
ωj − 1

) n
∏
i=1

(1 − di)

) (8)

Proof of Theorem 7:
The result follows directly from Theorem 6.
Based on the new interval‑valued intuitionistic fuzzy operation properties defined in

this document, it can be deduced that IVIFWAA and IVIFWGA operators have the follow‑
ing properties:

(1) Idempotence
If the interval‑valued intuitionistic fuzzy numbers are all α̃ = ([a, b], [c, d]), then

IVIFWAA(α̃, α̃, · · · , α̃) = (ω1 ⊙ α̃)⊕ (ω2 ⊙ α̃)⊕ · · · ⊕ (ωn ⊙ α̃) =

(
n

∑
i=1

ωi

)
⊙ α̃ = α̃;

IVIFWGA(α̃, α̃, · · · , α̃) =
(
α̃⊙ω1

)
⊕
(
α̃⊙ω2

)
⊕ · · · ⊕

(
α̃⊙ωn

)
= α̃

⊙
n
∑

i=1
ωi

= α̃

(2) Boundedness

Let α̃min =

([
min

i=1,2,··· ,n
{a}, min

i=1,2,··· ,n
{b}
]

,
[

max
i=1,2,··· ,n

{c}, max
i=1,2,··· ,n

{d}
])

,

α̃max =

([
max

i=1,2,··· ,n
{a}, max

i=1,2,··· ,n
{b}
]

,
[

min
i=1,2,··· ,n

{c}, min
i=1,2,··· ,n

{d}
])

Based on basic operations of monotonicity we obtain:

α̃min ≤ IVIFWAA(α̃, α̃, · · · , α̃) ≤ α̃max

α̃min ≤ IVIFWGA(α̃, α̃, · · · , α̃n) ≤ α̃max

(3) Monotonicity
For the two sets of interval‑valued intuitionistic fuzzy numbers α̃1, α̃2, · · · , α̃n and

β̃1, β̃2, · · · , β̃n, if α̃i ≤ β̃i, ∀i ∈ {1, 2, · · · , n}, then by the basic operations of monotonic‑
ity we obtain

IVIFWAA(α̃1, α̃2, · · · , α̃n) ≤ IVIFWAA
(

β̃1, β̃2, · · · , β̃n

)
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IVIFWGA(α̃1, α̃2, · · · , α̃n) ≤ IVIFWGA
(

β̃1, β̃2, · · · , β̃n

)
(4) Commutativity
Since the new interval‑valued intuitionistic fuzzy operation defined in this paper satis‑

fies commutativity and associativity, IVIFWAA and IVIFWGA also satisfy commutativity.
□

5. Missile Defense Dynamic Multi‑Time Fusion Target Threat Assessment Method
Based on IVIFECF‑IVIFWA‑TOPSIS
5.1. IVIFECF‑IVIFWA‑TOPSIS Assessment Model

The IVIFEC‑IVIFWA‑TOPSIS assessment model is an effective combination of
interval‑valued intuitionistic fuzzy set theory and dynamic multiple attribute group
decision‑making theory. First, the factors that affect the threat assessment of missile de‑
fense targets are broken down at multiple levels to establish a threat assessment index
system. Then, considering the subjective and objective weights, a comprehensive weight
model of target attributes based on IVIFECF is proposed, and the Poisson distribution
method is used to solve the weights of the time series to process multi‑time situation infor‑
mation. Furthermore, in order to reflect the ambiguity of complex decision‑making prob‑
lems, the decision information is described by interval‑valued intuitionistic fuzzy numbers,
and a weighted interval‑valued intuitionistic fuzzy (WIVIF) decisionmatrix is constructed.
Next, the IVIFWAA/IVIFWGA operator is used to aggregate the decision information of
multiple times andmultiple decisionmakers, and theweight of the time series is combined
to determine the dynamicmultiple time fusionWIVIF decisionmatrix. Finally, the interval‑
valued intuitionistic fuzzy numbers are sorted based on the improved TOPSISmethod and
the threat assessment results are obtained. The flowchart of the IVIFECF‑IVIFWA‑TOPSIS
assessment model is shown in Figure 1.
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Figure 1. Flow chart of the IVIFECF‑IVIFWA‑TOPSIS assessment model.
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5.2. Description of the Problem
The missile defense dynamic fusion target threat assessment is based on multiple ex‑

perts quantifying, evaluating, and sorting the attribute values of each incoming target at
multiple moments to provide a basis for firepower allocation; that is, a typical dynamic
multi‑attribute group decision‑making problem. Each threat target can be regarded as an
alternative plan. Suppose m incoming targets form a solution set X = { xi|i = 1, 2, · · · , m}.
Target information selects p time points to collect data, and we denote the time series by
T = {tk|k = 1, 2, · · · , p}. Each target has n attributes, and the attribute set is denoted by
C =

{
cj|j = 1, 2, · · · , n

}
. The set of decision makers is D = {Ds|s = 1, 2, · · · , q}, and the

weight of each decision maker is λs, where
q
∑

s=1
λs = 1. The IVIF decision matrix of the

decision maker Ds at the moment tk is recorded as Fs(tk) = ( f s
ij(tk))m×n

. That is,

Fs(tk) =
(

f s
ij(tk)

)
m×n

=

c1 c2 · · · n
x1
x2
...

xm


f s
11(tk) f s

12(tk) · · · f s
1n(tk)

f s
21(tk) f s

22(tk) · · · f s
1n(tk)

...
...

. . .
...

f s
m1(tk) f s

m2(tk) · · · f s
mn(tk)


Here, f s

ij(tk) = (
[
µ

L(s)
ij (tk), µ

U(s)
ij (tk)

]
,
[
vL(s)

ij (tk), vU(s)
ij (tk)

]
) is the assessment infor‑

mation of the decision maker Ds on the target xi at the moment tk based on the attribute
cj. The condition

[
µ

L(s)
ij (tk), µ

U(s)
ij (tk)

]
⊂ [0, 1] indicates that the decision maker Ds deter‑

mines that the target xi satisfies the membership interval of the attribute cj at the moment
tk;
[
vL(s)

ij (tk) , vU(s)
ij (tk)

]
⊂ [0, 1], which indicates that the decision maker Ds determines

that the target xi satisfies the non‑membership interval of the attribute cj at the moment tk.
Lastly, we note that µU

ij (tk) + vU
ij (tk) ≤ 1.

5.3. Threat Assessment Index System for Missile Defense Combat Targets
5.3.1. Construction of Threat Assessment Index System

The target characteristics of ballistic missiles can be described by a variety of indi‑
cators. Based on the detection information of the incoming ballistic target by the missile
defense system sensors, this article starts with target status, target characteristics, and key
characteristics, then considers the five aspects of target speed, distance, Radar Cross Sec‑
tion (RCS), interference intensity, and the defense capability of key areas, as secondary
index threat factors to construct a missile defense combat target threat assessment index
system, as shown in Figure 2.
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5.3.2. Quantification of Threat Assessment Indicators
With the attribute characteristics of the target group of ballistic missiles and the

types of assessment indicators in mind, this paper uses a semi‑S‑shaped distribution, a
semi‑Z‑shaped distribution and the G. A. Miller 9‑level theory to quantify the threat
assessment indicators.

(1) Target distance, RCS attributes
The closer the distance between the target and our defense point, the shorter the time

to reach the axis of the route shortcut of our position, and, therefore, the greater the threat
of the target. RCS is used as an indicator of stealth performance, the smaller the target
RCS, the more likely the radar will find the target, and the greater the threat of the tar‑
get. Therefore, the target distance and RCS attributes obey the semi‑S‑shaped distribution.
The solutionmethods of membership and non‑membership are shown in Equation (9) and
Equation (10), respectively.

µ(x) =


1, x ≤ a

b−x
b−a , a < x ≤ b

0, b < x
(9)

v(x) =



0, x ≤ a

2
[

x−a
b−a

]2
, a < x ≤ a+b

2

1 − 2
[

x−a
b−a

]2
, a+b

2 < x ≤ b

1, b < x

(10)

(2) Target speed attribute
Flight speed is an important attribute of the target. The faster the flight speed,

the smaller the interception time window, and the greater the threat to our strategic lo‑
cation. Thus, the target speed obeys the semi‑Z‑shaped distribution. Its membership
and non‑membership degree solution methods are shown in Equation (11) and
Equation (12), respectively.

µ(x) =


0, x ≤ a

x−a
b−a , a < x ≤ b

1, b < x

(11)

v(x) =



1, x ≤ a

1 − 2
[

x−a
b−a

]2
, a < x ≤ a+b

2

2
[

x−a
b−a

]2
, a+b

2 < x ≤ b

0, b < x

(12)

(3) Target interference intensity, key defensive ability attributes
The stronger the target interference intensity is, the stronger its penetration capabil‑

ity is, the more difficult it is for the missile defense system to intercept, and the greater
the threat of the target. The critical defense capability is closely related to our weapon
system combat capability and operational deployment. The stronger the critical defense
capability, the smaller the target threat. The above two indicators are qualitative indicators,
which can be described quantitatively using G. A. Miller 9‑level quantification theory [13].
The corresponding relationship between the quantification results and the interval‑valued
intuitionistic fuzzy number is shown in Table 1.
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Table 1. Correspondence between 9‑level quantification results and interval‑valued intuitionistic
fuzzy numbers.

Threat Level Symbol Interval‑Valued Intuitionistic Fuzzy Numbers

Extremely big EB ([0.9, 0.9], [0.1, 0.1])
Very big VB ([0.8, 0.9], [0.1, 0.1])

Big B ([0.7, 0.8], [0.2, 0.2])
Medium big MB ([0.6, 0.7], [0.2, 0.3])
Medium M ([0.5, 0.5], [0.3, 0.4])

Medium small MS ([0.4, 0.5], [0.3, 0.4])
Small S ([0.3, 0.4], [0.4, 0.5])

Very small VS ([0.2, 0.3], [0.5, 0.6])
Extremely small ES ([0.1, 0.2], [0.6, 0.7])

5.4. Integrated Weight Model of Target Attributes Based on IVIFECF
In the multi‑attribute group decision‑making process of dynamic multi‑time fusion

target threat assessment involving multiple decision makers, it is necessary to compre‑
hensively consider the objective weights caused by the differences in the attributes of the
targets and the subjective weights caused by the decision maker’s subjective experience
and knowledge structure to determine the comprehensive weight of target attributes.

The decision entropy method is a typical objective weight determination method,
which can indicate the relative importance of target attributes. The smaller the interval‑
valued intuitionistic fuzzy entropy, the greater the uncertainty of the information, and
the larger the weight of the corresponding solution should be. For existing methods for
measuring interval‑valued intuitionistic fuzzy entropy when the deviation of the degree
of membership and the degree of non‑membership are equal, there is inconsistency with
the intuitive facts [20,21]. To overcome this problem, this paper proposes an integrated
weight model of target attributes based on IVIFECF. We define IVIFECF and verify its ef‑
fectiveness below.

Definition 10. Let Ã ∈ IVIFS(X), then the interval‑valued intuitionistic fuzzy entropy E
(

Ã
)

based on the cosine function can be defined as:

E
(

Ã
)
=

1
m

m

∑
i=1

cos

 1
2

∣∣∣µL
Ã
(xi)− vL

Ã
(xi) + µU

Ã
(xi)− vU

Ã
(xi)

∣∣∣
2
(

1 + 1
2

(
πL

Ã
(xi) + πU

Ã
(xi)

)) π

 (13)

Theorem 8. Interval‑valued intuitionistic fuzzy entropy E
(

Ã
)
based on the cosine function has

the following properties:

(1) E
(

Ã
)
= 0, if and only if Ã is a typical set.

(2) If ∀xi ∈ X, µ̃A(xi) = ṽA(xi), then E
(

Ã
)
= 1.

(3) ∀xi ∈ IVIFS(X), E
(

Ã
)
= E

(
ÃC
)
.

Proof of Theorem 8:
(1) If Ã is a typical set, then µL

Ã
(xi) = µU

Ã
(xi) = 1, vL

Ã
(xi) = vU

Ã
(xi) = 0 and πL

Ã
(xi) =

πU
Ã
(xi) = 0; or µL

Ã
(xi) = µU

Ã
(xi) = 0, vL

Ã
(xi) = vU

Ã
(xi) = 1 and πL

Ã
(xi) = πU

Ã
(xi) = 0.

Therefore, E
(

Ã
)
= 0.

(2) When µL
Ã
(xi) = vL

Ã
(xi) and µU

Ã
(xi) = vU

Ã
(xi), E

(
Ã
)
= 1

n

n
∑

i=1
cos 0◦ = 1.

(3) ÃC =
([

vL
Ã
(xi), vU

Ã
(xi)

]
,
[
µL

Ã
(xi), µU

Ã
(xi)

])
, which implies that E

(
Ã
)
= E

(
ÃC
)
. □
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Example 1. Let Ã = ([0.5, 0.5], [0.3, 0.3]), B̃ = ([0.6, 0.6] , [0.4, 0.4]) be two IVIFSs in the
universe X. The degree of ambiguity of Ã is greater than that of B̃, which follows from
Equation (13):

E
(

Ã
)
= cos

 |0.5 − 0.3 + 0.5 − 0.3|
4
(

1 + 1
2 (1 − 0.5 − 0.3 + 1 − 0.5 − 0.3)

)π

 = 0.966

E
(

B̃
)
= cos

 |0.6 − 0.4 + 0.6 − 0.4|
4
(

1 + 1
2 (1 − 0.6 − 0.4 + 1 − 0.6 − 0.4)

)π

 = 0.951

Thus, E
(

Ã
)
> E

(
B̃
)
, which is consistent with intuition.

Table 2 shows the calculation results of Example 1 with entropy of IVIFSs in
reference [20] and entropy measures of IVIFSs in reference [21]. It can be seen that the
interval‑valued intuitionistic fuzzy entropy based on the cosine function proposed in this
paper can effectively describe the uncertainty of the fuzzy set, and overcome the problem
of the existing entropy method being inconsistent with intuition when the deviation of
membership degree and non‑membership degree is equal.

Table 2. Calculation results of Example 1 with different entropy power methods.

Method Entropy Comparison Results

Entropy of IVIFSs E1

(
Ã
)
= 0.800, E1

(
B̃
)
= 0.800 E

(
Ã
)
= E

(
B̃
)

Entropy measures of IVIFSs E2

(
Ã
)
= 0.958, E2

(
B̃
)
= 0.958 E

(
Ã
)
= E

(
B̃
)

This paper’s method E2

(
Ã
)
= 0.966, E2

(
B̃
)
= 0.951 E

(
Ã
)
> E

(
B̃
)

On this basis, a nonlinear programming model based on minimizing IVIFECF is es‑
tablished to solve the objective weights of target attributes. The steps are as follows:

Step 1: Determine the IVIF decision matrix at the moment tk:

R(tk) =
([

µL
ij(tk), µU

ij (tk)
]
,
[
vL

ij(tk), vU
ij (tk)

])
m×n

Step 2: Using Equation (13), calculate the target attribute interval‑valued intuitionistic
fuzzy entropy Ej(tk) at the moment tk:

Ej(tk) =
1
n

m

∑
i=1

cos

 1
2

∣∣∣µL
ij(tk)− vL

ij(tk) + µU
ij (tk)− vU

ij (tk)
∣∣∣

2
(

1 + 1
2

(
πL

ij(tk) + πU
ij (tk)

)) π


Step 3: Establish a nonlinear programming model based on minimizing IVIFECF, as

in Equation (14):

min
n
∑

j=1
(ω

(1)
j (tk))

2
Ej(tk)

s.t.


n
∑

j=1
ω
(1)
j (tk) = 1

ω
(1)
j (tk) ≥ 0

(14)

where ω
(1)
j (tk) is the weight value of the objective attribute of the target at the moment tk.

Step 4: Solve the objective attribute weight of the target ω(1)(tk) = (ω
(1)
1 (tk), ω

(1)
2 (tk),

· · · , ω
(1)
n (tk)).
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To perform this, establish a Lagrange function for Equation (14),

L(ω, λ) =
n

∑
j=1

(ω
(1)
j (tk))

2
Ej(tk) + 2λ(

n

∑
j=1

ω
(1)
j (tk)− 1)

Take the derivative with respect to ω
(1)
j (tk) and λ respectively, and set them equal to

0 to obtain 
∂L(ω,λ)

∂ω
(1)
j (tk)

= 2ω
(1)
j (tk)·Ej(tk) + 2λ = 0

∂L(ω,λ)
∂λ = 2(

n
∑

j=1
ω
(1)
j (tk)− 1) = 0

(15)

Solve Equation (15) to obtain the objective attributeweight of the target at themoment
tk to obtain

ω
(1)
j (tk) =

(Ej(tk))
−1

n
∑

j=1
(Ej(tk))

−1
(16)

Step 5: Suppose the subjective attributeweight vector provided by the decision‑maker

Ds is Ω =
{

ω
s(2)
j |j = 1, 2, · · · , n , s = 1, 2, · · · , q

}
, where ω

s(2)
j ∈ [0, 1] and

n
∑

j=1
ω

s(2)
j = 1.

We use the product rule to obtain the comprehensive weight of the target attribute of the
decision‑maker Ds at the moment tk, as shown in Equation (17)

ωs
j (tk) =

ω
(1)
j (tk)ω

s(2)
j (tk)

m
∑

j=1
ω
(1)
j (tk)ω

s(2)
j (tk)

(17)

5.5. Time Series Weight Model Based on Poisson Distribution Method
In missile defense operations, the threat level of the target will dynamically change

with time and the battlefield situation. In order to improve the accuracy of target threat as‑
sessment, it is not only necessary to consider the target information at the current moment,
but also to take into account different points in a time series. In actual missile defense
combat, the closer to the current moment, the greater the impact of target information ac‑
quisition on the results of the threat assessment. Therefore, this paper selects the target
information collected at the current time p and the previous time p − 1, and uses the Pois‑
son distribution method to solve the time series weight η = (η1, η2, · · · , ηp) in the inverse
form, as shown in Equation (18):

ηk =
k!/φk

m
∑

j=1
(k!/φk)

(18)

where ηk ≥ 0 satisfies
p
∑

k=1
ηk = 0 and 0 < φ < 2.

5.6. Multi‑Source Information Aggregation Based on IVIFWAA/IVIFWGA Operators
The missile defense dynamic target threat assessment in an uncertain environment

needs to be based on a comprehensive weight calculation result of the target attribute.
Starting with the WIVIF decision matrix Rs(tk) of the decision maker Ds at the moment tk,
we perform interval‑valued intuitionistic fuzzy information aggregations on the decision
information of multiple target attributes, multiple moments, and multiple experts. The
IVIFWAA and IVIFWGA operators proposed in this paper have algebraic characteristics,
such as idempotence, boundedness, monotonicity, and commutativity, and they have im‑
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portant advantages in information fusion. Therefore, this article uses IVIFWAA/IVIFWGA
operators to aggregate multi‑source information.

Suppose the WIVIF decision matrix of the decision maker Ds at time tk is recorded as
Rs(tk) = (rs

ij(tk))m×n
. That is,

Rs(tk) =
(

rs
ij(tk)

)
m×n

=

c1 c2 · · · cn
x1
x2
...

xm


rs

11(tk) rs
12(tk) · · · rs

1n(tk)
rs

21(tk) rs
22(tk) · · · rs

1n(tk)
...

...
. . .

...
rs

m1(tk) rs
m2(tk) · · · rs

mn(tk)


where

rs
ij(tk) = ([1 − (1 − µ

L(s)
ij (tk))

ωs
j (tk)

, 1 − (1 − µ
U(s)
ij (tk))

ωs
j (tk)

], [vL(s)
ij (tk)

ωs
j (tk), vU(s)

ij (tk)
ωs

j (tk)]) (19)

After determining the WIVIF decision matrix, use the IVIFWAA/IVIFWGA opera‑
tor for each decision maker to aggregate the assessment results of each solution on all
attributes, and then the assessment results of each decision maker for all solutions can
be obtained:

R(tk) = (rs
i (tk))m×q =

D1 D2 · · · DQ
x1
x2
...

xm


r1

1(tk) r2
1(tk) · · · rq

1(tk)
r1

2(tk) r2
2(tk) · · · rq

2(tk)
...

...
. . .

...
r1

m(tk) r2
m(tk) · · · rq

m(tk)


If we use the IVIFWAA operator for aggregation, we obtain

rs
i (tk) = (

[
µ

L(s)
i (tk), µ

U(s)
i (tk)

]
,
[
vL(s)

i (tk), vU(s)
i (tk)

]
) = IVIFWAA(rs

i1(tk), rs
i2(tk), · · · , rs

in(tk))

where

µ
L(s)
i (tk) = 1 −

n
∏
j=1

(
1 − µ

L(s)
ij (tk)

)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

(
1 − µ

L(s)
ij (tk)

)
−

n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

(
1 − µ

L(s)
ij (tk)

))
(20)

µ
U(s)
i (tk) = 1 −

n
∏
j=1

(
1 − µ

U(s)
ij (tk)

)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

(
1 − µ

U(s)
ij (tk)

)
−

n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

(
1 − µ

U(s)
ij (tk)

))
(21)
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vL(s)
i (tk) =

n
∏
j=1

vL(s)
ij (tk)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

vL(s)
ij (tk)

−
n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

vL(s)
ij (tk)

) (22)

vU(s)
i (tk) =

n
∏
j=1

vU(s)
ij (tk)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

vU(s)
ij (tk)

−
n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

vU(s)
ij (tk)

) (23)

If we use the IVIFWGA operator for aggregation, we obtain:

rs
i (tk) = (

[
µ

L(s)
i (tk), µ

U(s)
i (tk)

]
,
[
vL(s)

i (tk), vU(s)
i (tk)

]
) = IVIFWGA(rs

i1(tk), rs
i2(tk), · · · , rs

in(tk))

where

µ
L(s)
i (tk) =

n
∏
j=1

µ
L(s)
ij (tk)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

µ
L(s)
ij (tk)

−
n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

µ
L(s)
ij (tk)

) (24)

µ
U(s)
i (tk) =

n
∏
j=1

µ
U(s)
ij (tk)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

µ
U(s)
ij (tk)

−
n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

µ
U(s)
ij (tk)

) (25)

vL(s)
i (tk) = 1 −

n
∏
j=1

(
1 − vL(s)

ij (tk)
)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

(
1 − vL(s)

ij (tk)
)
−

n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

(
1 − vL(s)

ij (tk)
))

(26)

vU(s)
i (tk) = 1 −

n
∏
j=1

(
1 − vU(s)

ij (tk)
)

n
∑

j=1

ωs
j (tk)

n
∏

i = 1
i ̸= j

(
1 − vU(s)

ij (tk)
)
−

n
∑

j=1

((
ωs

j (tk)− 1
) n

∏
j=1

(
1 − vU(s)

ij (tk)
))

(27)
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Furthermore, the IVIFWAA/IVIFWGA operator is used to aggregate the assessment
results of all decision makers in the same solution, and Zi(i = 1, 2, · · · , m) is used to rep‑
resent the final assessment result of the solution Xi.

If we use the IVIFWAA operator for aggregation, we obtain

Zi(tk) = (
[
µL

i (tk), µU
i (tk)

]
,
[
vL

i (tk), vU
i (tk)

]
) = IVIFWAA

(
r1

i (tk), r2
i (tk), · · · , rq

i (tk)
)

where

µL
i (tk) = 1 −

q
∏

s=1

(
1 − µ

L(s)
i (tk)

)
q
∑

j=1

λj

q
∏

s = 1
j ̸= s

(
1 − µ

L(s)
i (tk)

)
−

q
∑

s=1

(
(λs − 1)

q
∏

s=1

(
1 − µ

L(s)
i (tk)

))
(28)

µU
i (tk) = 1 −

q
∏

s=1

(
1 − µ

U(s)
i (tk)

)
q
∑

j=1

λj

q
∏

s = 1
j ̸= s

(
1 − µ

U(s)
i (tk)

)
−

q
∑

s=1

(
(λs − 1)

q
∏

s=1

(
1 − µ

U(s)
i (tk)

))
(29)

vL
i (tk) =

q
∏

s=1
vL(s)

i (tk)

q
∑

j=1

λj

q
∏

s = 1
s ̸= j

vL(s)
i (tk)

−
q
∑

s=1

(
(λs − 1)

q
∏

s=1
vL(s)

i (tk)

) (30)

vU
i (tk) =

q
∏

s=1
vU(s)

i (tk)

q
∑

j=1

λj

q
∏

s = 1
s ̸= j

vU(s)
i (tk)

−
q
∑

s=1

(
(λs − 1)

q
∏

s=1
vU(s)

i (tk)

) (31)

If we use the IVIFWGA operator for aggregation, we obtain

Zi(tk) = (
[
µL

i (tk), µU
i (tk)

]
,
[
vL

i (tk), vU
i (tk)

]
) = IVIFWGA

(
r1

i (tk), r2
i (tk), · · · , rq

i (tk)
)

where

µL
i (tk) =

q
∏

s=1
µ

L(s)
i (tk)

q
∑

j=1

λj

q
∏

s = 1
s ̸= j

µ
L(s)
i (tk)

−
q
∑

s=1

(
(λs − 1)

q
∏

s=1
µ

L(s)
i (tk)

) (32)
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µU
i (tk) =

q
∏

s=1
µ

U(s)
i (tk)

q
∑

j=1

λj

q
∏

s = 1
s ̸= j

µ
U(s)
i (tk)

−
q
∑

s=1

(
(λs − 1)

q
∏

s=1
µ

U(s)
i (tk)

) (33)

vL
i (tk) = 1 −

q
∏

s=1

(
1 − vL(s)

i (tk)
)

q
∑

j=1

λj

q
∏

s = 1
j ̸= s

(
1 − vL(s)

i (tk)
)
−

q
∑

s=1

(
(λs − 1)

q
∏

s=1

(
1 − vL(s)

i (tk)
))

(34)

vU
i (tk) = 1 −

q
∏

s=1

(
1 − vU(s)

i (tk)
)

q
∑

j=1

λj

q
∏

s = 1
j ̸= s

(
1 − vU(s)

i (tk)
)
−

q
∑

s=1

(
(λs − 1)

q
∏

s=1

(
1 − vU(s)

i (tk)
))

(35)

Using Equations (20)–(35), multi‑target attributes, multi‑decision makers, and multi‑
time interval‑valued intuitionistic fuzzy information aggregation can be realized, laying
the foundation for dynamic fusion target threat assessment.

5.7. Ordering Method of Interval‑Valued Intuitionistic Fuzzy Numbers Based on
Improved TOPSIS

The data obtained from aggregation using the IVIFWAA/IVIFWGA operator are still
interval‑valued intuitionistic fuzzy numbers. Thus, to obtain the threat ordering of the
incoming target, it is necessary to compare the magnitudes of the interval‑valued intu‑
itionistic fuzzy numbers. Tan et al. [28] verifies that the interval‑valued intuitionistic fuzzy
number ordering method based on TOPSIS is highly useful for classification. In order
to improve the ability to distinguish and differentiate between decision‑making results,
this paper, based on results in [28], considers the influence of hesitation on distance mea‑
surement and proposes an improved interval‑valued intuitionistic fuzzy number distance
measurement model.

Definition 11. Let α̃ = ([a1, b1], [c1, d1]) ,β̃ = ([a2, b2], [c2, d2]) be two interval‑valued in‑
tuitionistic fuzzy numbers. The improved interval‑valued intuitionistic fuzzy number distance
measurement model can be defined as

d(α̃, β̃) =

√
1
4
[(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2 + (d1 − d2)
2 + (a1 + c1 − a2 − c2)

2 + (b1 + d1 − b2 − d2)
2]

In the dynamicmulti‑time fusionWIVIFdecisionmatrixH = (
[
µL

ik, µU
ik
]
,
[
vL

ik, vU
ik
]
)m×p,

the positive ideal solution is the solution with the greatest threat degree among all targets,
and the negative ideal solution is the solution with the least threat degree.

The positive ideal solution of H is

h+ =
(
([µL+

1 , µU+
1 ], [vL+

1 , vU+
1 ] ), ([µL+

2 , µU+
2 ], [vL+

2 , vU+
2

]
), · · · , ([µL+

p , µU+
p ], [vL+

p , vU+
p ] )

)
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where

µL+
k = max

1≤i≤m

{
µL

ik

}
, µU+

k = max
1≤i≤m

{
µU

ik

}
, vL+

k = min
1≤i≤m

{
vL

ik

}
, vU+

k = min
1≤i≤m

{
vU

ik

}
The negative ideal solution of H is

h− =
(
([µL−

1 , µU−
1 ], [vL−

1 , vU−
1 ] ), ([µL−

2 , µU−
2 ], [vL−

2 , vU−
2

]
), · · · , ([µL−

p , µU−
p ], [vL−

p , vU−
p ] )

)
where

µL−
k = min

1≤i≤m

{
µL

ik

}
, µU−

k = min
1≤i≤m

{
µU

ik

}
, vL−

k = max
1≤i≤m

{
vL

ik

}
, vU−

k = max
1≤i≤m

{
vU

ik

}
According to Definition (11), the respective distances between each target xi and the

positive and negative ideal solutions of the dynamic multi‑time fusion WIVIF decision
matrix are d+i = d(h̃i, h+) and d−i = d(h̃i, h−), as shown below:

d+i =

√√√√ p

∑
k=1

[
1
4
[(µL

ik − µL+
k )

2
+ (µU

ik − µU+
k )

2
+ (vL

ik − vL+
k )

2
+ (vU

ik − vU+
k )

2
+ (µL

ik + vL
ik − µL+

k − vL+
k )

2
+ (µU

ik + vU
ik − µU+

k − vU+
k )

2
]

]
(36)

d−i =

√√√√ p

∑
k=1

[
1
4
[(µL

ik − µL−
k )

2
+ (µU

ik − µU−
k )

2
+ (vL

ik − vL−
k )

2
+ (vU

ik − vU−
k )

2
+ (µL

ik + vL
ik − µL−

k − vL−
k )

2
+ (µU

ik + vU
ik − µU−

k − vU−
k )

2
]

]
(37)

Based on the TOPSIS principle, the relative closeness of the target xi is the threat of
the target, as shown below:

ζi =
d−i

d−i + d+i
(38)

5.8. Algorithm Flow
The specific steps of the missile defense dynamic fusion target threat assessment

method based on IVIFECF‑IVIFWA‑TOPSIS are as follows:
Step 1: Construct a threat assessment index systemanduse Equations (9)–(12) to quan‑

tify each threat assessment index.
Step 2: Calculate the comprehensive weight ωs(tk) = (ωs

1(tk), ωs
2(tk), · · · , ωs

n(tk))
of the target attribute of the decision maker Ds at the moment tk according to
Equations (13)–(17).

Step 3: Calculate the WIVIF decision matrix Rs(tk) = (rs
ij(tk))m×n

of the decision
maker Ds at the moment tk according to Equation (19).

Step 4: Use the IVIFWAA/IVIFWGA operator to aggregate the assessment results of
each solution for each attribute and calculate theWIVIFdecisionmatrixR(tk) = (rs

i (tk))m×q
of all decision makers at the moment tk according to Equations (20)–(27).

Step 5: Use the IVIFWAA/IVIFWGA operator to aggregate the decision information
of q decision makers and obtain the intuitionistic fuzzy value Zi(tk) of the target interval
at a single moment according to Equations (28)–(35).

Step 6: Determine the weight η = (η1, η2, · · · , ηp) of the time series according to
Equation (18) and construct a dynamic multi‑time fusionWIVIF matrixH = [hik]m×p from
time t1 to tp, where hik = ηk ⊙ Zi(tk).

Step 7: Obtain H = [hik]m×p positive and negative ideal solutions, and calculate the
distances d+i and d−i between the target xi and the H positive and negative ideal solutions,
as well as the degree of threat ζi according to Equations (36)–(38), to obtain the final threat
assessment result of the target.
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6. Simulation and Result Analysis
Suppose that in a certain missile defense exercise, the sensors of the missile defense

system observed four batches of incoming targets xi(i = 1, 2, 3, 4). After obtaining the
attribute data in the form of the interval values of the target at three consecutive times
tk(k = 1, 2, 3), three experts Ds(s = 1, 2, 3) are assigned to determine the five attributes
cj = (j = 1, 2, 3, 4, 5) of speed, distance, RCS, interference strength, and defense capability
so that the target threat degree can be evaluated.

6.1. Algorithm Feasibility Test and Analysis
Step 1: Use Equations (9)–(12) to quantify each threat assessment index, and apply the

method proposed in [29] to convert the interval value into an interval‑valued intuitionistic
fuzzy value, as shown in Table 3.

Table 3. Target attribute data at t1 − t3.

Time Target Speed Distance RCS Interference Defense

t1

x1
([0.52,0.55],
[0.37,0.41])

([0.65,0.69],
[0.24,0.28])

([0.70,0.72],
[0.24,0.27])

([0.7,0.8],
[0.2,0.2])

([0.4,0.5],
[0.3,0.4])

x2
([0.44,0.49],
[0.48,0.50])

([0.61,0.66],
[0.30,0.32])

([0.71,0.74],
[0.20,0.25])

([0.5,0.5],
[0.3,0.4])

[0.6,0.7],
[0.2,0.3])

x3
([0.47,0.53],
[0.36,0.42])

([0.59,0.63],
[0.34,0.37])

([0.74,0.78],
[0.18,0.21])

([0.6,0.7],
[0.2,0.3])

[0.2,0.3],
[0.5,0.6])

x4
([0.56,0.62],
[0.27,0.38])

([0.64,0.68],
[0.27,0.31])

([0.73,0.79],
[0.16,0.19])

([0.4,0.5],
[0.3,0.4])

[0.3,0.4],
[0.4,0.5])

t2

x1
([0.53,0.56],
[0.39,0.43])

([0.66,0.70],
[0.28,0.30])

([0.72,0.74],
[0.22,0.25])

([0.8,0.9],
[0.1,0.1])

([0.5,0.5],
[0.3,0.4])

x2
([0.47,0.51],
[0.45,0.48])

([0.65,0.67],
[0.26,0.29])

([0.75,0.79],
[0.17,0.20])

([0.5,0.5],
[0.3,0.4])

([0.7,0.8],
[0.2,0.2])

x3
([0.45,0.54],
[0.39,0.44])

([0.62,0.68],
[0.27,0.29])

([0.81,0.83],
[0.14,0.16])

([0.7,0.8],
[0.2,0.2])

[0.3,0.4],
[0.4,0.5])

x4
([0.53,0.57],
[0.31,0.36])

([0.63,0.66],
[0.25,0.32])

([0.79,0.82],
[0.12,0.15])

([0.5,0.5],
[0.3,0.4])

([0.4,0.5],
[0.3,0.4]

t3

x1
([0.55,0.59],
[0.38,0.40])

([0.70,0.74],
[0.20,0.24])

([0.78,0.81],
[0.15,0.18])

([0.9,0.9],
[0.1,0.1])

([0.6,0.7],
[0.2,0.3])

x2
([0.46,0.50],
[0.42,0.47])

([0.71,0.73],
[0.23,0.25])

([0.77,0.79],
[0.17,0.20])

([0.4,0.5],
[0.3,0.4])

([0.8,0.9],
[0.1,0.1])

x3
([0.49,0.53],
[0.43,0.46])

([0.73,0.76],
[0.20,0.23])

([0.76,0.82],
[0.13,0.17])

([0.8,0.9],
[0.1,0.1])

([0.4,0.5],
[0.3,0.4])

x4
([0.57,0.61],
[0.35,0.38])

([0.71,0.75],
[0.22,0.24])

([0.80,0.83],
[0.12,0.16])

([0.6,0.7],
[0.2,0.3])

([0.5,0.5],
[0.3,0.4])

Step 2: Solve the comprehensiveweight of the target attribute based on IVIFECF. First,
the interval intuitionistic fuzzy entropy of each target speed attributes at t1 is calculated
according to Equation (13).

E1(t1) = cos

 1
2 |0.52 − 0.37 + 0.55 − 0.41|

2
(

1 + 1
2 (1 − 0.52 − 0.37 + 1 − 0.55 − 0.41)

)π

 = 0.9776

E2(t1) = cos

 1
2 |0.44 − 0.48 + 0.49 − 0.5|

2
(

1 + 1
2 (1 − 0.44 − 0.48 + 1 − 0.49 − 0.5)

)π

 = 0.9992

E3(t1) = cos

 1
2 |0.47 − 0.36 + 0.53 − 0.42|

2
(

1 + 1
2 (1 − 0.47 − 0.36 + 1 − 0.53 − 0.42)

)π

 = 0.9879
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E4(t1) = cos

 1
2 |0.56 − 0.27 + 0.62 − 0.38|

2
(

1 + 1
2 (1 − 0.56 − 0.27 + 1 − 0.62 − 0.38)

)π

 = 0.9273

E(t1) =
1
4

4

∑
i=1

(0.9776 + 0.9992 + 0.9879 + 0.9273) = 0.9730

Then, the interval intuitionistic fuzzy entropy of each attribute of the target at t1 − t3
is shown in Table 4.

Table 4. Interval‑valued intuitionistic fuzzy entropy of target attributes at different moments.

Time
IVIFECF Value

Speed Distance RCS Interference
Intensity

Defense
Capability

t1 0.9730 0.8716 0.7037 0.9101 0.9370
t2 0.9817 0.8478 0.6092 0.7807 0.9232
t3 0.9752 0.7277 0.5776 0.6439 0.8114

By Equation (16), the objective weights of the target attributes at t1 − t3 are:

ω(1)(t1) = (0.1784, 0.1991, 0.2466, 0.1907, 0.1852)

ω(1)(t2) = (0.1642, 0.1901, 0.2646, 0.2065, 0.1746)

ω(1)(t3) = (0.1483, 0.1987, 0.2503, 0.2245, 0.1782)

Suppose the weights of the three experts participating in decision‑making D1, D2, D3
are respectively λ = (0.33, 0.34, 0.33), and the subjective weights of the target attributes
given by the decision‑makers D1, D2, D3 are, respectively:

ω
(2)
1 = [0.26, 0.28, 0.16, 0.20, 0.10]

ω2
(2) = [0.23, 0.30, 0.12, 0.17, 0.08]

ω3
(2) = [0.31, 0.20, 0.17, 0.18, 0.14]

After obtaining the objective and subjective weights of the target attributes from
t1 − t3, the comprehensive weights of the target attributes of experts D1, D2, D3 at t1 − t3
can be obtained by Equation (17):

ω1(t1) = (0.2340, 0.2812, 0.1990, 0.1924, 0.0934)

ω2(t1) = (0.2311, 0.3363, 0.1666, 0.1826, 0.0834)

ω3(t1) = (0.2803, 0.2018, 0.2125, 0.1740, 0.1314)

ω1(t2) = (0.2167, 0.2702, 0.2149, 0.2096, 0.0886)

ω2(t2) = (0.2151, 0.3247, 0.1808, 0.1999, 0.0795)

ω3(t2) = (0.2603, 0.1945, 0.2301, 0.1901, 0.1250)

ω1(t3) = (0.1958, 0.2825, 0.2033, 0.2280, 0.0904)

ω2(t3) = (0.1936, 0.3384, 0.1705, 0.2166, 0.0809)

ω3(t3) = (0.2375, 0.2052, 0.2198, 0.2087, 0.1288)
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Step 3: Using Equation (19), we obtain the WIVIF decision matrix Rs(tk) of experts
D1, D2, D3 at t1 − t3.

R1(t1) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.16, 0.17], [0.79, 0.81]) ([0.26, 0.28], [0.67, 0.70]) ([0.21, 0.22], [0.75, 0.77]) ([0.21, 0.27], [0.73, 0.73]) ([0.05, 0.06], [0.89, 0.92])

([0.13, 0.15], [0.84, 0.85]) ([0.23, 0.26], [0.71, 0.73]) ([0.22, 0.24], [0.73, 0.76]) ([0.12, 0.12], [0.79, 0.84]) ([0.08, 0.11], [0.86, 0.89])

([0.14, 0.16], [0.79, 0.82]) ([0.22, 0.24], [0.74, 0.76]) ([0.24, 0.26], [0.71, 0.73]) ([0.16, 0.21], [0.73, 0.79]) ([0.02, 0.03], [0.94, 0.95])

([0.17, 0.20], [0.74, 0.80]) ([0.25, 0.27], [0.69, 0.72]) ([0.23, 0.27], [0.69, 0.72]) ([0.09, 0.12], [0.79, 0.84]) ([0.03, 0.05], [0.92, 0.94])



R2(t1) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.16, 0.17], [0.79, 0.81]) ([0.30, 0.33], [0.62, 0.65]) ([0.18, 0.19], [0.79, 0.80]) ([0.20, 0.25], [0.75, 0.75]) ([0.04, 0.06], [0.90, 0.93])

([0.13, 0.14], [0.84, 0.85]) ([0.27, 0.30], [0.67, 0.68]) ([0.19, 0.20], [0.76, 0.79]) ([0.12, 0.12], [0.80, 0.85]) ([0.07, 0.10], [0.87, 0.90])

([0.14, 0.16], [0.79, 0.82]) ([0.26, 0.28], [0.70, 0.72]) ([0.20, 0.22], [0.75, 0.77]) ([0.15, 0.20], [0.75, 0.80]) ([0.02, 0.03], [0.94, 0.96])

([0.17, 0.20], [0.74, 0.80]) ([0.29, 0.32], [0.64, 0.67]) ([0.20, 0.23], [0.74, 0.76]) ([0.09, 0.12], [0.80, 0.85]) ([0.03, 0.04], [0.93, 0.94])



R3(t1) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.19, 0.20], [0.76, 0.78]) ([0.19, 0.21], [0.75, 0.77]) ([0.23, 0.24], [0.74, 0.76]) ([0.19, 0.24], [0.76, 0.76]) ([0.06, 0.09], [0.85, 0.87])

([0.15, 0.17], [0.81, 0.82]) ([0.17, 0.20], [0.78, 0.79]) ([0.23, 0.25], [0.71, 0.74]) ([0.11, 0.11], [0.81, 0.85]) ([0.11, 0.15], [0.81, 0.85])

([0.16, 0.19], [0.75, 0.78]) ([0.16, 0.18], [0.80, 0.82]) ([0.25, 0.28], [0.69, 0.72]) ([0.15, 0.19], [0.76, 0.81]) ([0.03, 0.05], [0.91, 0.94])

([0.21, 0.24], [0.69, 0.76]) ([0.19, 0.21], [0.77, 0.79]) ([0.24, 0.28], [0.68, 0.70]) ([0.09, 0.11], [0.81, 0.85]) ([0.05, 0.09], [0.89, 0.91])



R1(t2) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.15, 0.16], [0.82, 0.83]) ([0.25, 0.28], [0.71, 0.72]) ([0.24, 0.25], [0.72, 0.74]) ([0.29, 0.38], [0.62, 0.62]) ([0.06, 0.06], [0.90, 0.92])

([0.13, 0.14], [0.84, 0.85]) ([0.25, 0.26], [0.69, 0.72]) ([0.26, 0.28], [0.68, 0.71]) ([0.14, 0.14], [0.78, 0.83]) ([0.10, 0.13], [0.87, 0.87])

([0.12, 0.15], [0.82, 0.84]) ([0.23, 0.26], [0.70, 0.72]) ([0.30, 0.32], [0.66, 0.77]) ([0.22, 0.29], [0.71, 0.71]) ([0.03, 0.04], [0.92, 0.94])

([0.15, 0.17], [0.78, 0.80]) ([0.24, 0.25], [0.69, 0.74]) ([0.28, 0.31], [0.63, 0.67]) ([0.14, 0.14], [0.77, 0.83]) ([0.04, 0.06], [0.90, 0.92])



R2(t2) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.15, 0.16], [0.82, 0.83]) ([0.30, 0.32], [0.66, 0.68]) ([0.21, 0.22], [0.76, 0.78]) ([0.28, 0.31], [0.63, 0.63]) ([0.05, 0.05], [0.91, 0.93])

([0.13, 0.14], [0.77, 0.79]) ([0.29, 0.30], [0.65, 0.67]) ([0.22, 0.25], [0.73, 0.75]) ([0.13, 0.13], [0.79, 0.83]) ([0.09, 0.12], [0.88, 0.88])

([0.12, 0.15], [0.82, 0.84]) ([0.27, 0.31], [0.65, 0.67]) ([0.26, 0.27], [0.70, 0.72]) ([0.21, 0.28], [0.72, 0.72]) ([0.03, 0.04], [0.93, 0.95])

([0.15, 0.17], [0.78, 0.80]) ([0.28, 0.30], [0.64, 0.69]) ([0.25, 0.27], [0.68, 0.71]) ([0.13, 0.13], [0.79, 0.83]) ([0.04, 0.06], [0.91, 0.93])



R3(t2) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.18, 0.19], [0.78, 0.80]) ([0.19, 0.21], [0.78, 0.79]) ([0.25, 0.27], [0.71, 0.73]) ([0.26, 0.35], [0.65, 0.65]) ([0.08, 0.08], [0.86, 0.89])

([0.15, 0.17], [0.81, 0.83]) ([0.18, 0.19], [0.73, 0.79]) ([0.27, 0.30], [0.67, 0.69]) ([0.12, 0.12], [0.80, 0.84]) ([0.14, 0.18], [0.82, 0.82])

([0.14, 0.18], [0.78, 0.81]) ([0.17, 0.20], [0.78, 0.79]) ([0.32, 0.33], [0.64, 0.66]) ([0.20, 0.26], [0.74, 0.74]) ([0.04, 0.06], [0.89, 0.92])

([0.18, 0.20], [0.74, 0.77]) ([0.18, 0.19], [0.76, 0.80]) ([0.30, 0.33], [0.61, 0.65]) ([0.12, 0.12], [0.80, 0.84]) ([0.06, 0.08], [0.86, 0.89])



R1(t3) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.14, 0.16], [0.83, 0.84]) ([0.29, 0.32], [0.63, 0.67]) ([0.26, 0.29], [0.68, 0.71]) ([0.41, 0.41], [0.59, 0.59]) ([0.08, 0.09], [0.86, 0.90])

([0.11, 0.13], [0.84, 0.86]) ([0.30, 0.31], [0.66, 0.68]) ([0.26, 0.27], [0.70, 0.72]) ([0.11, 0.15], [0.76, 0.81]) ([0.14, 0.19], [0.81, 0.81])

([0.12, 0.14], [0.85, 0.86]) ([0.31, 0.33], [0.63, 0.66]) ([0.25, 0.29], [0.66, 0.70]) ([0.31, 0.41], [0.59, 0.59]) ([0.05, 0.06], [0.90, 0.92])

([0.15, 0.17], [0.81, 0.83]) ([0.30, 0.32], [0.65, 0.67]) ([0.28, 0.30], [0.65, 0.69]) ([0.19, 0.24], [0.69, 0.76]) ([0.06, 0.06], [0.90, 0.92])



R2(t3) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.14, 0.16], [0.83, 0.84]) ([0.33, 0.37], [0.58, 0.62]) ([0.23, 0.25], [0.72, 0.75]) ([0.39, 0.39], [0.61, 0.61]) ([0.07, 0.09], [0.88, 0.91])

([0.11, 0.13], [0.85, 0.86]) ([0.34, 0.36], [0.61, 0.63]) ([0.22, 0.23], [0.74, 0.76]) ([0.10, 0.14], [0.77, 0.82]) ([0.12, 0.17], [0.83, 0.83])

([0.12, 0.14], [0.85, 0.86]) ([0.36, 0.38], [0.58, 0.61]) ([0.17, 0.25], [0.71, 0.74]) ([0.29, 0.39], [0.61, 0.61]) ([0.04, 0.05], [0.91, 0.93])

([0.15, 0.17], [0.82, 0.83]) ([0.34, 0.37], [0.60, 0.62]) ([0.23, 0.26], [0.70, 0.73]) ([0.18, 0.23], [0.71, 0.77]) ([0.05, 0.05], [0.91, 0.93])



R3(t3) =

c1 c2 c3 c4 c5

x1

x2

x3

x4


([0.17, 0.19], [0.79, 0.80]) ([0.22, 0.24], [0.72, 0.75]) ([0.28, 0.31], [0.66, 0.69]) ([0.38, 0.38], [0.62, 0.62]) ([0.11, 0.14], [0.81, 0.86])

([0.14, 0.15], [0.81, 0.84]) ([0.22, 0.24], [0.74, 0.75]) ([0.28, 0.29], [0.68, 0.70]) ([0.10, 0.13], [0.78, 0.83]) ([0.19, 0.26], [0.74, 0.74])

([0.15, 0.16], [0.82, 0.83]) ([0.24, 0.25], [0.72, 0.74]) ([0.27, 0.31], [0.64, 0.68]) ([0.29, 0.38], [0.62, 0.62]) ([0.06, 0.09], [0.86, 0.89])

([0.18, 0.20], [0.78, 0.79]) ([0.22, 0.25], [0.73, 0.75]) ([0.30, 0.32], [0.63, 0.67]) ([0.17, 0.22], [0.71, 0.78]) ([0.09, 0.09], [0.86, 0.89])





Entropy 2022, 24, 1825 25 of 31

Step 4: Use Rs(tk) and the IVIFWAA operator to aggregate the assessment results of
each solution for each attribute, and calculate the WIVIF decision matrix R(tk) of three
experts at t1 − t3 using Equations (20)–(23).

R(t1) =

D1 D2 D3

x1

x2

x3

x4


([0.2015, 0.2250], [0.7409, 0.7610]) ([0.2150, 0.2413], [0.7237, 0.7440]) ([0.1843, 0.2057], [0.7642, 0.7807])
([0.1732, 0.1988], [0.7697, 0.7960]) ([0.1865, 0.2049], [0.7573, 0.7783]) ([0.1610, 0.1827], [0.7806, 0.8039])
([0.1795, 0.2045], [0.7579, 0.7874]) ([0.1879, 0.2126], [0.7536, 0.7788]) ([0.1650, 0.1939], [0.7649, 0.7966])
([0.1824, 0.2110], [0.7407, 0.7765]) ([0.1980, 0.2274], [0.7243, 0.7614]) ([0.1757, 0.2059], [0.7442, 0.7832])



R(t2) =

D1 D2 D3

x1

x2

x3

x4


([0.2323, 0.2603], [0.7248, 0.7348]) ([0.2349, 0.2531], [0.7159, 0.7292]) ([0.2045, 0.2372], [0.7434, 0.7578])
([0.1780, 0.2071], [0.7485, 0.7768]) ([0.2022, 0.2158], [0.7299, 0.7523]) ([0.1804, 0.2006], [0.7568, 0.7862])
([0.2090, 0.2415], [0.7313, 0.7582]) ([0.2117, 0.2173], [0.7229, 0.7457]) ([0.1956, 0.2272], [0.7463, 0.7639])
([0.1919, 0.2130], [0.7241, 0.7660]) ([0.2048, 0.2218], [0.6115, 0.7573]) ([0.1885, 0.2067], [0.7310, 0.7681])



R(t3) =

D1 D2 D3

x1

x2

x3

x4


([0.2780, 0.2960], [0.6783, 0.7003]) ([0.2825, 0.3050], [0.6664, 0.6907]) ([0.2514, 0.2692], [0.7072, 0.7271])
([0.2062, 0.2266], [0.7335, 0.7583]) ([0.2196, 0.2436], [0.7185, 0.7418]) ([0.1906, 0.2145], [0.7488, 0.7717])
([0.2473, 0.2949], [0.6760, 0.6989]) ([0.2557, 0.3049], [0.6689, 0.6886]) ([0.2196, 0.2608], [0.7119, 0.7309])
([0.2272, 0.2525], [0.7042, 0.7405]) ([0.2373, 0.2686], [0.6956, 0.7241]) ([0.2062, 0.2324], [0.7255, 0.7606])


Step 5: Use the IVIFWAAand IVIFWGAoperators to aggregate the assessment results

of the three experts to obtain the target interval‑valued intuitionistic fuzzy value at a single
time from t1 − t3, as shown in Tables 5 and 6.

Table 5. IVIFWAA operator aggregation assessment results of all decision makers.

Target
IVIFWAA Operator Aggregation

t1 t2 t3
x1 ([0.2006, 0.2244], [0.7423, 0.7614]) ([0.2242, 0.2504], [0.7277, 0.7403]) ([0.2711, 0.2905], [0.6833, 0.7055])
x2 ([0.1738, 0.1957], [0.7690, 0.7924]) ([0.1872, 0.2080], [0.7447, 0.7713]) ([0.2058, 0.2286], [0.7332, 0.7569])
x3 ([0.1777, 0.2038], [0.7587, 0.7874]) ([0.2056, 0.2287], [0.7332, 0.7557]) ([0.2414, 0.2875], [0.6923, 0.7055])
x4 ([0.1856, 0.2149], [0.7362, 0.7734]) ([0.1953, 0.2140], [0.6834, 0.7637]) ([0.2240, 0.2517], [0.7081, 0.7412])

Table 6. IVIFWGA operator aggregation assessment results of all decision makers.

Target
IVIFWGA Operator Aggregation

t1 t2 t3
x1 ([0.1996, 0.2234], [0.7438, 0.7625]) ([0.2232, 0.2500], [0.7285, 0.7412]) ([0.2701, 0.2893], [0.6848, 0.7069])
x2 ([0.1734, 0.1953], [0.7695, 0.7933]) ([0.1866, 0.2075], [0.7454, 0.7722]) ([0.2050, 0.2277], [0.7342, 0.7577])
x3 ([0.1772, 0.2036], [0.7590, 0.7879]) ([0.2051, 0.2280], [0.7336, 0.7560]) ([0.2398, 0.2856], [0.6865, 0.7070])
x4 ([0.1850, 0.2143], [0.7365, 0.7738]) ([0.1950, 0.2137], [0.6968, 0.7640]) ([0.2228, 0.2506], [0.7089, 0.7423])

Step 6: Using Equation (18), take φ = 1.5 and obtain the time series weight
ηk = [0.2000, 0.2667, 0.5333]. Further, using the new interval‑valued intuitionistic fuzzy
budget rule (Definition 7), dynamic multi‑time fusion WIVIF decision matrices HIVIFWAA
and HIVIFWGA based on the IVIFWAA and IVIFWGA operators are constructed.

HIVIFWAA =

t1 t2 t3

x1

x2

x3

x4


([0.0478, 0.0547], [0.9351, 0.9410]) ([0.0716, 0.0818], [0.9093, 0.9144]) ([0.1655, 0.1792], [0.8018, 0.8179])
([0.0404, 0.0464], [0.9433, 0.9502]) ([0.0579, 0.0655], [0.9162, 0.9207]) ([0.1214, 0.1365], [0.8375, 0.8538])
([0.0414, 0.0487], [0.9402, 0.9488]) ([0.0646, 0.0733], [0.9115, 0.9266]) ([0.1451, 0.1771], [0.8084, 0.8179])
([0.0436, 0.0519], [0.9331, 0.9446]) ([0.0608, 0.0677], [0.8901, 0.9238]) ([0.1334, 0.1521], [0.8197, 0.8430])


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HIVIFWGA =

t1 t2 t3

x1

x2

x3

x4


([0.0475, 0.0544], [0.9356, 0.9444]) ([0.0712, 0.0816], [0.9096, 0.9148]) ([0.1648, 0.1784], [0.8029, 0.8189])
([0.0413, 0.0463], [0.9435, 0.9505]) ([0.0577, 0.0653], [0.9165, 0.9271]) ([0.1209, 0.1359], [0.8382, 0.8543])
([0.0403, 0.0486], [0.9403, 0.9489]) ([0.0644, 0.0730], [0.9117, 0.9207]) ([0.1440, 0.1757], [0.8042, 0.8190])
([0.0434, 0.0517], [0.9332, 0.9448]) ([0.0607, 0.0676], [0.8960, 0.9239]) ([0.1326, 0.1513], [0.8203, 0.8438])


Step 7: The positive ideal solutions and negative ideal solutions of HIVIFWAA and

HIVIFWGA are shown in Table 7. Using Equations (36)–(38), the positive and negative ideal
solutions HIVIFWAA, HIVIFWGA, distances d+i , d−i of each target xi, and the target threat de‑
gree ζi are calculated, respectively. The calculation results are shown in Table 8.

Table 7. Positive and negative ideal solutions of HIVIFWAA and HIVIFWGA.

HIVIFWAA
Positive ([0.0478, 0.0547], [0.9331, 0.9410]) ([0.0716, 0.0818], [0.8901, 0.9144]) ([0.1655, 0.1792], [0.8018, 0.8179])

Negative ([0.0404, 0.0464], [0.9433, 0.9502]) ([0.0579, 0.0655], [0.9162, 0.9266]) ([0.1214, 0.1365], [0.8375, 0.8538])

HIVIFWGA
Positive ([0.0475, 0.0544], [0.9332, 0.9444]) ([0.0712, 0.0816], [0.8960, 0.9148]) ([0.1648, 0.1784], [0.8029, 0.8189])

Negative ([0.0403, 0.0463], [0.9435, 0.9505]) ([0.0577, 0.0653], [0.9165, 0.9271]) ([0.1209, 0.1359], [0.8382, 0.8543])

Table 8. The positive and negative ideal solution distance and threat degree of HNIIFWA

and HNIIFGA.

Result
HIVIFWAA HIVIFWGA

x1 x2 x3 x4 x1 x2 x3 x4
d+i 0.0136 0.0453 0.0227 0.0297 0.0098 0.0439 0.0192 0.0295
d−i 0.0431 0.0042 0.0393 0.0242 0.0427 0.0007 0.0349 0.0215
ζi 0.7601 0.0848 0.6339 0.4490 0.8133 0.0157 0.6451 0.4216

Specifically, according to Equation (36), the positive ideal distance between target x1
and HIVIFWAA is calculated as follows:

d+i =

√
3
∑

k=1

[
1
4

[(
µL

ik − µL+
k

)2
+
(

µU
ik − µU+

k

)2
+
(

vL
ik − vL+

k

)2
+
(

vU
ik − vU+

k

)2
+
(

µL
ik + vL

ik − µL+
k − vL+

k

)2
+
(

µU
ik + vU

ik − µU+
k − vU+

k

)2
]]

=

√√√√√√√√√√

[
1
4
(0.0478 − 0.0478)2 + (0.0547 − 0.0547)2 + (0.9351 − 0.9331)2 + (0.9410 − 0.9410)2 + (0.0478 + 0.9351 − 0.0478 − 0.9331)2

+(0.0547 + 0.9410 − 0.0547 − 0.9410)2] + [
1
4
(0.0716 − 0.0716)2 + (0.0818 − 0.0818)2 + (0.9093 − 0.8901)2 + (0.9144 − 0.9144)2

+(0.0716 + 0.9093 − 0.0716 − 0.8901)2 + (0.0818 + 0.9144 − 0.0818 − 0.9144)2] + 0

= 0.0136

It can be seen from Table 8 that the target multi‑time fusion threat ordering obtained
by the IVIFWAA operator and the IVIFWGA operator is Target 1 > Target 3 > Target 4 >
Target 2, which verifies the feasibility of this algorithm.

6.2. Algorithm Superiority Test and Analysis
In the missile defense dynamic fusion target threat assessment, time is an important

factor that affects the decision result. Table 9 and Figure 3 show the target threat degree and
ordering results of the single times t1 − t3 and dynamic multi‑time fusion. We see that the
target threat ordering results at different moments are roughly the same, and the targets
with the largest and smallest threat levels are consistent. However, even if the target threat
degree order is the same, the threat degree of each target is different at different times, and
Target 4 and Target 3 are more sensitive to changes in time. At t1 and t2, the threat of
Target 4 is higher than that of Target 3 and the opposite is true at t3. It can be seen that the
static threat assessment method at a single moment cannot reflect the timing of the target
and the dynamic changes of the battlefield. The method proposed in this paper not only
considers the tendency of Target 4 to decrease in speed, distance, and RCS threat degree
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during the entire assessment process, but also considers the threat of a sudden increase in
speed, RCS, interference intensity, and defense capability of Target 3 at t3. Therefore, we
can obtain more reliable threat assessment results.

Table 9. Target threat degree and ordering results at different moments.

Time x1 x2 x3 x4
Ordering
Results

t1 0.8549 0.0787 0.3006 0.6909 1 > 4 > 3 > 2
t2 0.5804 0.0000 0.3750 0.5458 1 > 4 > 3 > 2
t3 1.0000 0.0000 0.7031 0.3525 1 > 3 > 4 > 2

This paper’s method(based on IVIFWAA) 0.7601 0.0848 0.6339 0.4490 1 > 3 > 4 > 2
This paper’s method(based on IVIFWGA) 0.8133 0.0157 0.6451 0.4216 1 > 3 > 4 > 2
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Additionally, in the ever‑changing missile defense combat of the battlefield, the ac‑
curacy of the dynamic fusion target threat assessment method mainly depends on the dif‑
ference between target threat degrees in the same assessment method. The more obvious
the difference, the better one is able to select the optimal solution, that is, the stronger the
superiority of the method. Therefore, the superior degree (SD) of target i over target j can
be defined as:

SDij(%) = (
ζi − ζ j

ζi
)× 100%

where ζi and ζ j are the threat degree {i = 1, 2, · · · , m; j = 1, 2, · · · , m; i ̸= j} of
different targets.

In order to verify the effectiveness of themethod proposed in this paper, themethod is
compared with UDIFWA operator, DINFWAA operator, CIIFA operator, IVIFPWA opera‑
tor, and D‑S‑P operator proposed in [30–34]. The target threat degree ordering results and
superiority of different methods are shown in Figure 4 and Table 10. The target multi‑time
fusion threat ordering result obtained by using the IVIFWAA operator and the IVIFWGA
operator in this paper is the same as in references [30–33], which shows the effectiveness of
the method proposed in this paper. The ordering results are slightly different from those
in reference [34] but the final decision of the optimal solution is the same.
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Table 10. Target threat ordering and superiority of different methods.

Method x1 x2 x3 x4
Ordering
Results SDij(%)

UDIFWA operator 0.8014 0.1729 0.7026 0.5451 1 > 3 > 4 > 2 SD13 = 0.1233 SD34 = 0.2270 SD42 = 0.6828
DINFWAA operator 0.6452 0.1982 0.5659 0.4438 1 > 3 > 4 > 2 SD13 = 0.1229 SD34 = 0.2158 SD42 = 0.5534

CIIFA operator 0.9203 0.2489 0.8215 0.6734 1 > 3 > 4 > 2 SD13 = 0.1074 SD34 = 0.1803 SD42 = 0.6304
IVIFPWA operator 0.7329 0.2406 0.6437 0.5513 1 > 3 > 4 > 2 SD13 = 0.1217 SD34 = 0.1435 SD42 = 0.5636
D‑S‑P operator 0.9047 0.3138 0.6492 0.8020 1 > 4 > 3 > 2 SD14 = 0.1135 SD43 = 0.1905 SD32 = 0.5166

IVIFWAA operator 0.7601 0.0848 0.6339 0.4490 1 > 3 > 4 > 2 SD13 = 0.1660 SD34 = 0.2917 SD42 = 0.8111
IVIFWGA operator 0.8133 0.0157 0.6451 0.4216 1 > 3 > 4 > 2 SD13 = 0.2068 SD34 = 0.3465 SD42 = 0.9627

Note that in the method proposed in this article, the superiority gap between the tar‑
gets is the largest. When comparing the superiority of Target 1 and Target 3, the superior‑
ity of the algorithm in this paper (IVIFWGA) is 1.67, 1.68, 1.92, and 1.69 times that of the
methods proposed in [30–33], respectively. In the superiority comparison of Target 3 and
Target 4, the superiority of the algorithm in this paper (IVIFWGA) is 1.53, 1.61, 1.92, and
2.41 times that of the methods proposed in [30–33], respectively. In the superiority com‑
parison of Target 4 and Target 2, the superiority of the algorithm in this paper (IVIFWGA)
is 1.41, 1.74, 1.53, and 1.71 times that of the methods proposed in [30–33], respectively. The
greater the superiority gap, the easier it is for the commander to make decisions. This
demonstrates that the method in this paper, by integrating the subjective and objective
weights of each attribute of the target and the weight of the time series, considers the de‑
gree of change in the relative difference of each attribute and uses the IVIFWAA/IVIFWGA
operator to combine decision‑making information of multiple target attributes, multiple
moments, and multiple experts. This effectively avoids the problem of decision‑making
errors due to unclear superiority under the influence of subjective factors.

7. Conclusions
This paper combines interval‑valued intuitionistic fuzzy set theory with dynamic

multi‑attribute groupdecision‑making theory, the dynamic fusion target threat assessment
method for missile defense is proposed. By comparison with static threat assessment and
existing dynamic threat assessment methods, the feasibility and superiority of the method
in this paper is verified. The main contributions of the proposed model are as follows:
(1) The new interval‑valued intuitionistic fuzzy weighted average operator based on the
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definition of new interval‑valued intuitionistic fuzzy operation rules are proposed. (2) An
integrated weight model of target attributes based on IVIFECF is proposed to solve the
problem of inconsistencywith intuitive factswhen the deviation betweenmembership and
non‑membership are equal. (3) Ordering method of interval‑valued intuitionistic fuzzy
numbers based on improved TOPSIS is proposed to improve the ability to distinguish
and differentiate between decision‑making results. (4) In order to improve the reliability
and accuracy of missile defense target threat assessment, an assessment model based on
IVIFEC‑IVIFWA‑TOPSIS is constructed, and the result of dynamic fusion target threat as‑
sessment considering the fusion ofmulti‑target attributes, multiple times, andmulti‑expert
decision information is obtained.

In this paper, the influence of the battlefield situation on target threat assessment has
not been considered, and the intelligence level of target threat assessment method needs
to be improved. Therefore, future research will focus on the following aspects: (1) Care‑
fully considering the impact of the battlefield situation on target threat in complex battle‑
field environment. (2) Applying intelligent simulation technologies, such as reinforcement
learning and deep learning, to threat assessment. (3) Research on target threat assessment
method under incomplete target information.
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