
Citation: Zheng, J.; Bao, T. An Image

Encryption Algorithm Using Cascade

Chaotic Map and S-Box. Entropy 2022,

24, 1827. https://doi.org/10.3390/

e24121827

Academic Editors: Xiaowei Li,

Jian-Zhong Li and Yu Zhao

Received: 8 November 2022

Accepted: 12 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An Image Encryption Algorithm Using Cascade Chaotic Map
and S-Box
Jiming Zheng 1,2,* and Tianyu Bao 1

1 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China

2 Key Laboratory of Intelligent Analysis and Decision on Complex Systems, Chongqing University of Posts
and Telecommunications, Chongqing 400065, China

* Correspondence: zhengjm@cqupt.edu.cn

Abstract: This paper proposed an image algorithm based on a cascaded chaotic system to improve
the performance of the encryption algorithm. Firstly, this paper proposed an improved cascaded
two-dimensional map 2D-Cosine-Logistic-Sine map (2D-CLSM). Cascade chaotic system offers good
advantages in terms of key space, complexity and sensitivity to initial conditions. By using the
control parameters and initial values associated with the plaintext, the system generates two chaotic
sequences associated with the plaintext image. Then, an S-box construction method is proposed, and
an encryption method is designed based on the S-box. Encryption is divided into bit-level encryption
and pixel-level encryption, and a diffusion method was devised to improve security and efficiency in
bit-level encryption. Performance analysis shows that the encryption algorithm has good security
and is easily resistant to various attacks.

Keywords: image encryption; cascaded chaotic system; S-box; diffusion

1. Introduction

After decades of development, digital information has grown extensively in capacity,
and various electronic devices are changing gradually, accompanied by a large amount
of data for transmission and communication [1], which brings various kinds of security
risks in this background, especially image data and video. While traditional encryption
techniques such as DES and AES have achieved good results in text encryption, they are
not ideal for encrypting large amounts of modern image data [2,3].

Due to chaotic sensitivity to initial state and control value, good pseudo-randomness,
ergodicity and unpredictable trajectory [4], the combination of chaos and encryption tech-
nology has produced many different chaos and applications: The chaotic system that has
the property crosses a pre-define cylinder repeatedly and proposes the XOR approach
for diffusion encryption of images. Despite receiving good encryption performance, this
scheme lacks the appropriate scrambling operations, and the encryption scheme is inde-
pendent of the plaintext image, making it difficult to resist chosen-plaintext attacks [5]. The
encryption algorithm uses 3Dchua’s system with a combination of DWT transform and
compressed sensing [6], and its experiments have shown its good encryption effect. The
method NCCS, which generates new maps by combining methods, is able to overcome the
shortcomings of a traditional one-dimensional chaotic map and gives a bit-level confusion
and diffusion scheme while incorporating plaintexts in the keys used, which are shown
to be well secured. However, when operating on the bit level, a large number of chaotic
sequences are required, which creates some time consumption [7]. In addition, a cascaded
chaotic system, as a form of chaos, is also a research hotspot; different chaos and encryption
schemes are proposed: Zheng et al. [8] used an encryption scheme based on cascaded
chaos, which generates new chaos through a cascaded one-dimensional chaotic map, so
as to improve the performance of chaos and be used in encryption. Encryption methods

Entropy 2022, 24, 1827. https://doi.org/10.3390/e24121827 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121827
https://doi.org/10.3390/e24121827
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6237-0168
https://doi.org/10.3390/e24121827
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121827?type=check_update&version=2

Entropy 2022, 24, 1827 2 of 26

based on DNA and dual chaotic systems are also proposed, but the overall encryption is
not associated with the plaintext and lacks an efficient scrambling process. Lan et al. [9]
proposed a composite integrated chaotic system, which integrated cascading, nonlinear
combination and other operations, and then proposed an encryption scheme ICST with
bit-level substitution and transform, but the overall lack of an effective diffusion process.
Wang et al. [10] proposed a cascaded chaos model for CMCS to generate new chaos maps
by using two-dimensional chaos mappings and one-dimensional chaos mappings, and
demonstrated the good performance of the new chaos map through relevant experiments,
an encryption method for chunking images and performing different operations on differ-
ent blocks is also given, including bit-level transformations, shuffling algorithms, DNA
encoding and V-shaped diffusion, etc. At the same time, in order to improve the security of
the algorithm, people started to introduce some other techniques into chaotic encryption,
and S-boxes is one of them.

Two types of cryptosystems can be classified: stream ciphers, which are converted
bit-by-bit, and packet ciphers, which convert n-bit inputs into m-bit outputs. At the
core of this conversion is the static S-box, which gives the cryptosystem the obfuscation
properties described by Shannon [11]. An S-box is considered to be a well-performing S-box
if it satisfies some of the following conditions [12]: bijection, nonlinearity, strict avalanche
criterion (SAC) and output bit independence criterion (BIC). According to the way the S-box
is generated, we can also classify it into static S-boxes and dynamic S-boxes. The security
of the ciphertext is not guaranteed [13]. Dynamic S-boxes are based on key generation,
and different keys can generate different S-boxes; all of these can improve the security of
the encryption system [14]. Currently, S-boxes are the only nonlinear component of many
packet ciphers, and the performance of S-boxes largely determines the security strength
of encryption algorithms. In [15], Zhou et al. proposed a randomized approach to S-box
generation by using DNA encoding and showed that the S-boxes generated by this method
are resistant to different types of attacks. In addition, many researchers have applied
knowledge from other fields to the generation of S-boxes, but some of these methods are
still not efficient enough to meet today’s cryptographic efficiency requirements, so most
of them cannot be practically applied in the encryption process. With the development
of chaotic applications, many research results have been achieved in chaos-based S-box
generation. Wang et al. [16] used LDCML to construct new S-boxes by dividing the interval
of [0, 1] into 256 equal intervals, iterating LDCML to generate chaotic sequences, and
generating non-repeating numbers between 0 and 255 according to the interval in which
the generated values fall, and verifying that this method can generate S-boxes that satisfy
the S-box criteria. Belazi et al. [17] used a map method to generate values between 0 and
255 and randomly place the mapped values through the sinusoidal map. In [18], Beg
et al. finished S-box construction by expanding the remaining random values, generating
chaotic sequences by iterating a chaotic map and expanding the remainder to continuously
generate non-repeating values between 0 and 255 to add to the array.

As the security strength of the entire encryption algorithm is determined by the cryp-
tographic strength of the S-box, the researcher has proposed many methods to enhance
the S-box’s performance, such as using the high-dimensional chaotic system, and multiple
chaotic systems to generate S-boxes have become solutions. Liu et al. [19] used a high-
performance S-box construction using 3D chaotic systems and gave the corresponding
encryption algorithm, iterating the high-dimensional chaotic systems to complete the S-
box construction; however, the high-dimensional chaotic system then takes much time in
computation, and although the security is improved, it becomes less efficient in terms of
efficiency. Zheng et al. [20] proposed a multi-chaotic method for constructing dynamic
S-boxes with improved efficiency and security and gave a corresponding encryption algo-
rithm, which was shown to be feasible in experimental results. Özkaynak [21] proposed to
use two S-boxes from the Henon map and Chen system, which are chosen at random to
increase the encryption’s security. Wang et al. proposed to generate three S-boxes by the 3D
chaotic map and perform one round of permutation for encryption [22], but the generation

Entropy 2022, 24, 1827 3 of 26

process generates a large number of useless chaotic sequences, which perform slightly
worse in terms of real-time performance, and the key of the encryption algorithm is fixed,
which means that the S-boxes generated by each encryption iteration are the same. Wang
et al. proposed a cascade chaotic map and used it to generate S-box [23], followed by a
diffusion operation after substituting with S-boxes, and this algorithm has good advantages
in terms of security and complexity.

Based on the above analysis, a cascade chaotic map 2D-Cosine-Logistic-Sine map
(2D-CLSM) is proposed in this paper. The initial values and parameters of the chaotic map
are combined with the original image to resist known plaintext attacks. Then, an S-box
construction method is proposed, and an S-box-based encryption method is designed. The
encryption method is divided into four stages: key generation, S-box generation, bit-level
encryption and pixel-level encryption. In bit-level encryption, a bit-level operation is
performed on the plaintext pixel values, converting the original decimal plaintext image
pixels to eight-bit binary, then permuting the lower four bits and using a proposed new
diagonal diffusion method for the higher four bits. In the pixel-level encryption part, one
diffusion is completed by a three-number XOR (by using the chaotic sequence value, the
current pixel value to be encrypted and the previously encrypted pixel value), and the
resulting value calculates the row and column index of the S-box for pixel value replace-
ment. Through experimental analysis, the encryption algorithm in this paper has good
security performance.

The remainder of this essay is structured as follows: Section 2 introduces the chaotic
map; Section 3 describes the design of the encryption algorithm; Section 4 gives the
simulation experiments and analysis of the results of the method titled in this paper; Finally,
Section 5 gives conclusion remarks and further research work.

2. Introduction of Chaotic Map

In nonlinear dynamic systems, chaos is a stochastic process that is frequently employed
in cryptography research [24]. One-dimensional Logistic and Sine map is classical chaotic
map with a simple structure. They are defined as follows.

tn+1 = 4µtn(1− tn) (1)

tn+1 = ksin(πtn) (2)
with the control parameters µ, k ∈ [0, 1].

The chaotic behavior of a chaotic system can be measured by the bifurcation dia-
gram and the Lyapunov exponent. Figure 1a,b shows that the chaotic range of the one-
dimensional Logistic chaotic map is restricted. From Figure 1b, we are able to find that µ
is in the range of [0.89, 1], and its Lyapunov exponent is greater than 0. Figure 1c,d show
that the chaotic range of the one-dimensional Sine map is similarly constrained, with k in
Figure 1d in the range [0.87, 1] before its Lyapunov exponent is greater than 0 to be chaotic.
Hence the classical Logistic and Sine maps are limited in terms of key space and are not
resistant to brute force cracking.

2.1. Cascade Chaotic Map

A cascade map is a form of a chaotic map; the use of cascades can effectively improve
the performance of chaotic systems. In order to solve the problem of small chaotic intervals
and uneven distribution, we designed a two-dimensional cascade chaotic map, which has
a more complex chaotic behavior than one-dimensional chaos and a faster iteration speed
than two-dimensional chaos. The cascade system is shown in Figure 2, where f1(xn), f2(xn)
are two different subsystems.

Entropy 2022, 24, 1827 4 of 26
Entropy 2022, 24, x FOR PEER REVIEW 4 of 28

(a) (b)

(c) (d)

Figure 1. Chaotic bifurcation diagrams and Lyapunov exponents: (a) bifurcation diagram of Logistic
map; (b) Lyapunov exponent of Logistic map; (c) bifurcation diagram of Sine map; (d) Lyapunov
exponent of Sine map.

2.1. Cascade Chaotic Map
A cascade map is a form of a chaotic map; the use of cascades can effectively improve

the performance of chaotic systems. In order to solve the problem of small chaotic inter-
vals and uneven distribution, we designed a two-dimensional cascade chaotic map, which
has a more complex chaotic behavior than one-dimensional chaos and a faster iteration
speed than two-dimensional chaos. The cascade system is shown in Figure 2, where
() ()1 2,n nf x f x are two different subsystems.

()1 nf x ()2 nf x

()()1 2 1n nx f f x+ =

Figure 2. Cascade system.

The essence of cascading is that the output of a certain initial value after the iteration
of system 1 is taken as the iterative output of system 2, and the iterative output of system
2 is taken as the iterative output of system 1, thus forming a circular iteration between two
subsystems. Chaotic systems are generated by the cascade method, where the Lyapunov
value of the system is the sum of the Lyapunov exponents of the cascaded subsystems,
and the sequential trajectory of the system output deviates sharply as the number of iter-
ations increases [25].

Figure 1. Chaotic bifurcation diagrams and Lyapunov exponents: (a) bifurcation diagram of Logistic
map; (b) Lyapunov exponent of Logistic map; (c) bifurcation diagram of Sine map; (d) Lyapunov
exponent of Sine map.

Entropy 2022, 24, x FOR PEER REVIEW 4 of 28

(a) (b)

(c) (d)

Figure 1. Chaotic bifurcation diagrams and Lyapunov exponents: (a) bifurcation diagram of Logistic
map; (b) Lyapunov exponent of Logistic map; (c) bifurcation diagram of Sine map; (d) Lyapunov
exponent of Sine map.

2.1. Cascade Chaotic Map
A cascade map is a form of a chaotic map; the use of cascades can effectively improve

the performance of chaotic systems. In order to solve the problem of small chaotic inter-
vals and uneven distribution, we designed a two-dimensional cascade chaotic map, which
has a more complex chaotic behavior than one-dimensional chaos and a faster iteration
speed than two-dimensional chaos. The cascade system is shown in Figure 2, where
() ()1 2,n nf x f x are two different subsystems.

()1 nf x ()2 nf x

()()1 2 1n nx f f x+ =

Figure 2. Cascade system.

The essence of cascading is that the output of a certain initial value after the iteration
of system 1 is taken as the iterative output of system 2, and the iterative output of system
2 is taken as the iterative output of system 1, thus forming a circular iteration between two
subsystems. Chaotic systems are generated by the cascade method, where the Lyapunov
value of the system is the sum of the Lyapunov exponents of the cascaded subsystems,
and the sequential trajectory of the system output deviates sharply as the number of iter-
ations increases [25].

Figure 2. Cascade system.

The essence of cascading is that the output of a certain initial value after the iteration
of system 1 is taken as the iterative output of system 2, and the iterative output of system 2
is taken as the iterative output of system 1, thus forming a circular iteration between two
subsystems. Chaotic systems are generated by the cascade method, where the Lyapunov
value of the system is the sum of the Lyapunov exponents of the cascaded subsystems, and
the sequential trajectory of the system output deviates sharply as the number of iterations
increases [25].

Using cosine functions is proposed and demonstrated in [26], where existing chaotic
maps are cascaded by using cosine functions to improve their chaotic performance and
extend the chaotic space, the expression as shown in Equation (3):

xi+1 = G
(

2h+F(xi)
)

(3)

where G(·) is the subsystem 2 and F(·) is the subsystem 1. In order to extend it to two
dimensions, the general form expression is shown in Equation (4):

S(xi, yi) = G
(

2h+F(xi ,yi)
)

(4)

where xi, yi are two variables and G is the cosine that it can be represented as Equation (5):

Entropy 2022, 24, 1827 5 of 26

 xi+1 = G
(

2h+A(xi ,yi)
)
= cos

(
2h+A(xi ,yi)

)
yi+1 = G

(
2h+B(xi ,yi)

)
= cos

(
2h+B(xi ,yi)

) (5)

In Equation (3), to increase the chaotic complexity of the cosine function-based system,
a new control parameter h is introduced as part of the exponential function. When the
angle of the cosine function is large enough that even small differences can lead to large
output differences such as cos

(
210) = 0.0001557636 and cos

(
210.00001) = 0.987355203504,

also reducing the complexity of the calculation to make h ∈ [10, 24].
f1(xi) = 4k1xi(1− xi) and f2(xi) = k2 sin(πxi) are Logistic map and Sine map, re-

spectively, and A(xi, yi) = f1(xi) + f2(yi), B(xi, yi) = f1(yi) + f2(xi). We made them as
subsystem 1 of Equation (4) and used it as the argument of subsystem 2, and then we
derived Equation (6): xi+1 = cos

(
2h+ f1(xi)+ f2(yi)

)
= cos

(
2h+(4k1xi(1−xi)+k2 sin (πyi))

)
yi+1 = cos

(
2h+ f1(yi)+ f2(xi+1)

)
= cos

(
2h+(4k1yi(1−yi)+k2 sin (πxi+1))

) (6)

Further, controlling the value of the parameter θ enables Logistic and Sine to be in
chaos, which, according to Figure 1, makes k1 = k2 = 1− 1

9 θ [27], and when using mod1 to
control the iteration value between (0, 1), the chaotic map 2D-CLSM expression is shown in
Equation (7):  xi+1 =

[
cos
(

2h+(1− 1
9 θ)(4xi(1−xi)+sin (πyi))

)]
mod1

yi+1 =
[
cos
(

2h+(1− 1
9 θ)(4yi(1−yi)+sin (πxi+1))

)]
mod1

(7)

where xi ∈ (0, 1), yi ∈ (0, 1) are the control parameters h ∈ [10, 24], θ ∈ [0, 1].

2.2. Performance Evaluation

In order to analyze the 2D-CLSM’s performance, we compared it with another ex-
isting 2D chaotic map for image encryption, i.e., the 2D Logistic-Sine-Coupling Map
(2D-LSCM) [28]. {

xi+1 = sin(π(θ · 4xi(1− xi) + (1− θ) sin(πyi)))
yi+1 = sin(π(θ · 4yi(1− yi) + (1− θ) sin(πxi+1)))

(8)

2.2.1. Chaotic Trajectory

The trajectory of a 2D-CLSM shows how motion increases over time from a specific
initial state. In the case of periodic motion, the trajectory would be a closed curve, whereas
the trajectory of chaotic behavior would theoretically never close or repeat. Therefore,
chaotic trajectories usually occupy a part of the phase space and can reflect the randomness
of the chaotic system output. If a chaotic trajectory can occupy a larger portion of the phase
space, the chaotic system has a better stochastic output.

From Figure 3a–f, we can see that the 2D-CLSM is able to occupy the full phase plane
for all trajectories within the parameter range, and the ability to occupy the full phase plane
with both different θ and h indicates that the improved chaotic system has a better random
output. On the contrary, 2D-LSCM is influenced by control parameters, which are not able
to occupy full space.

2.2.2. Bifurcation Diagram

We set initial value as x0 = 0.4, y0 = 0.3 and the 2D-CLSM h = 15. As shown in
Figure 4a–d, 2D-CLSM is in a chaotic state in the whole parameter domain, and it is more
uniform. On the contrary, the 2D-LSCM does not occupy the entire plane, where the control
parameters are at [0.3, 0.43], and values between [0, 0.1] cannot be generated iteratively.

Entropy 2022, 24, 1827 6 of 26

Entropy 2022, 24, x FOR PEER REVIEW 6 of 28

() ()()()
() ()()()

1

1 1

sin 4 1 (1)sin

sin 4 1 (1)sin

i i i i

i i i i

x x x y

y y y x

π θ θ π

π θ θ π

+

+ +

 = ⋅ − + −


= ⋅ − + −

 (8)

2.2.1. Chaotic Trajectory
The trajectory of a 2D-CLSM shows how motion increases over time from a specific

initial state. In the case of periodic motion, the trajectory would be a closed curve, whereas
the trajectory of chaotic behavior would theoretically never close or repeat. Therefore,
chaotic trajectories usually occupy a part of the phase space and can reflect the random-
ness of the chaotic system output. If a chaotic trajectory can occupy a larger portion of the
phase space, the chaotic system has a better stochastic output.

From Figure 3a–f, we can see that the 2D-CLSM is able to occupy the full phase plane
for all trajectories within the parameter range, and the ability to occupy the full phase
plane with both different θ and h indicates that the improved chaotic system has a
better random output. On the contrary, 2D-LSCM is influenced by control parameters,
which are not able to occupy full space.

(a) (b) (c)

(d) (e) (f)

Figure 3. The trajectory of chaotic systems: (a) the trajectory of 2D-CLSM with 0.71, 15hθ = = ; (b)
the trajectory of 2D-CLSM with 0.3, 15hθ = = ; (c) the trajectory of 2D-CLSM with

0.71, 20hθ = = ; (d) the trajectory of 2D-CLSM with 0.3, 20hθ = = ; (e) the trajectory of 2D-LSCM
with 0.3θ = ; (f) 2D-LSCM with 0.71θ = .

2.2.2. Bifurcation Diagram

We set initial value as 0 00.4, 0.3x y= = and the 2D-CLSM 15h = . As shown in Fig-
ure 4a–d, 2D-CLSM is in a chaotic state in the whole parameter domain, and it is more
uniform. On the contrary, the 2D-LSCM does not occupy the entire plane, where the con-
trol parameters are at [0.3, 0.43], and values between [0, 0.1] cannot be generated itera-
tively.

Figure 3. The trajectory of chaotic systems: (a) the trajectory of 2D-CLSM with θ = 0.71, h = 15;
(b) the trajectory of 2D-CLSM with θ = 0.3, h = 15; (c) the trajectory of 2D-CLSM with θ = 0.71, h = 20;
(d) the trajectory of 2D-CLSM with θ = 0.3, h = 20; (e) the trajectory of 2D-LSCM with θ = 0.3;
(f) 2D-LSCM with θ = 0.71.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 28

(a) (b)

(c) (d)

Figure 4. Bifurcation diagram of chaotic system: (a) bifurcation diagram of 2D-CLSM xθ − ;
(b) bifurcation diagram of 2D-CLSM yθ − ; (c) bifurcation diagram of 2D-LSCM xθ − ; (d) bifur-
cation diagram of 2D-LSCM yθ − .

2.2.3. Lyapunov Exponent
The LE (Lyapunov exponent) describes the sensitivity of a chaotic mapping to initial

values. In general, a chaotic map is in a chaotic state when 0λ > indicates that two ad-
jacent phase points are about to separate and the chaotic map is in a chaotic state. For a
two-dimensional map, the system of difference equations is assumed to be:

()
()

1 1

1 2

,

,
i i i

i i i

x f x y

y f x y
+

+

=


=
 (9)

Its Jacobian matrix at the point () =ix (,)i ix y is as follows:

f ′ ()()ix
1 1

2 2

(,)i i

f f
x y
f f
x y x y

∂ ∂
∂ ∂

∂ ∂
∂ ∂

 
=  
  

 (10)

Let 𝐽𝐽𝑖𝑖 = 𝑓𝑓′(𝒙𝒙(0))𝑓𝑓′(𝒙𝒙(1))⋯𝑓𝑓′(𝒙𝒙(𝑖𝑖−1)), then the eigenvalue of iJ may be expressed as
() ()

1 2,i iλ λ . The Lyapunov exponents of system (9) can be expressed as Equation (11):

()1lim i
k ki

ln
i

λ λ
→∞

= (11)

The larger the value of λ , the faster the separation of point phase points in the phase
space and the greater the sensitivity of chaos to initial values. Figure 5 shows the Lya-
punov exponent of 2D-CLSM and 2D-LSCM; it is clear that the 2D-CLSM has a better
chaotic behavior than 2D-LSCM.

Figure 4. Bifurcation diagram of chaotic system: (a) bifurcation diagram of 2D-CLSM θ − x;
(b) bifurcation diagram of 2D-CLSM θ − y; (c) bifurcation diagram of 2D-LSCM θ − x; (d) bifur-
cation diagram of 2D-LSCM θ − y.

Entropy 2022, 24, 1827 7 of 26

2.2.3. Lyapunov Exponent

The LE (Lyapunov exponent) describes the sensitivity of a chaotic mapping to initial
values. In general, a chaotic map is in a chaotic state when λ > 0 indicates that two
adjacent phase points are about to separate and the chaotic map is in a chaotic state. For a
two-dimensional map, the system of difference equations is assumed to be:{

xi+1 = f1(xi, yi)
yi+1 = f2(xi, yi)

(9)

Its Jacobian matrix at the point x(i) =(xi, yi) is as follows:

f ′
(

x(i)
)
=

[∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

]∣∣∣∣∣
(xi ,yi)

(10)

Let Ji = f ′
(

x(0)
)

f ′
(

x(1)
)
· · · f ′

(
x(i−1)

)
, then the eigenvalue of Ji may be expressed

as λ
(i)
1 , λ

(i)
2 . The Lyapunov exponents of system (9) can be expressed as Equation (11):

λk = lim
i→∞

1
i

ln
∣∣∣λ(i)

k

∣∣∣ (11)

The larger the value of λ, the faster the separation of point phase points in the phase
space and the greater the sensitivity of chaos to initial values. Figure 5 shows the Lyapunov
exponent of 2D-CLSM and 2D-LSCM; it is clear that the 2D-CLSM has a better chaotic
behavior than 2D-LSCM.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 28

(a) (b)

Figure 5. Lyapunov exponents for chaotic systems: (a) Lyapunov exponent of 2D-CLSM; (b) Lya-
punov exponent of 2D-LSCM.

2.2.4. NIST Test
In this paper, 15 NIST tests were used to test the randomness of the generated se-

quences, and 15 correspond to p-values to show the test result. The sequence is considered
random when the p-value is over 0.01. Table 1 contains the NIST test results for the 2D-
LSCM map and the 2D-CLSM map. The NIST test results for the 2D-CLSM map are all
“Success”, as shown in Table 1, and 11 of the 2D-CLSM test results are higher than 2D-
LSCM, demonstrating 2D-CLSM map can generate pseudo-random sequences with good
random performance.

Table 1. NIST test results.

Serial Number Test Items
2D-CLSM 2D-LSCM

p Value
Test

Results
p Value Test Results

1 Frequency 0.1422 Success 0.0767 Success
2 Block Frequency 0.7165 Success 0.9936 Success
3 Cumulative Sums 0.2472 Success 0.0692 Success
4 Runs 0.8561 Success 0.7405 Success
5 Longest Run of Ones 0.7310 Success 0.4477 Success
6 Rank 0.1691 Success 0.1514 Success
7 Discrete Fourier Transform 0.8330 Success 0.1766 Success

8
Nonperiodic Template

Matchings
0.6254 Success 0.4721 Success

9
Overlapping Template

Matchings
0.6886 Success 0.9365 Success

10 Universal 0.9992 Success 0.9583 Success
11 Approximate Entropy 0.9309 Success 0.7040 Success
12 Random Excursions 0.1319 Success 0.2175 Success
13 Random Excursion Variant 0.1025 Success 0.4166 Success
14 Serial 0.9068 Success 0.1638 Success
15 Linear Complexity 0.9250 Success 0.5041 Success

2.2.5. Information Entropy
In information theory, information entropy is used to quantify the uncertainty of the

information content. It can be used to evaluate how random a set of data is. We trans-
formed the chaotic sequence obtained by iteration into values between 0 and 255 and ob-
tain the information entropy according to Equation (12):

Figure 5. Lyapunov exponents for chaotic systems: (a) Lyapunov exponent of 2D-CLSM; (b) Lya-
punov exponent of 2D-LSCM.

2.2.4. NIST Test

In this paper, 15 NIST tests were used to test the randomness of the generated se-
quences, and 15 correspond to p-values to show the test result. The sequence is considered
random when the p-value is over 0.01. Table 1 contains the NIST test results for the 2D-
LSCM map and the 2D-CLSM map. The NIST test results for the 2D-CLSM map are all
“Success”, as shown in Table 1, and 11 of the 2D-CLSM test results are higher than 2D-
LSCM, demonstrating 2D-CLSM map can generate pseudo-random sequences with good
random performance.

Table 1. NIST test results.

Serial Number Test Items
2D-CLSM 2D-LSCM

p Value Test Results p Value Test Results

1 Frequency 0.1422 Success 0.0767 Success
2 Block Frequency 0.7165 Success 0.9936 Success

Entropy 2022, 24, 1827 8 of 26

Table 1. Cont.

Serial Number Test Items
2D-CLSM 2D-LSCM

p Value Test Results p Value Test Results

3 Cumulative Sums 0.2472 Success 0.0692 Success
4 Runs 0.8561 Success 0.7405 Success
5 Longest Run of Ones 0.7310 Success 0.4477 Success
6 Rank 0.1691 Success 0.1514 Success

7 Discrete Fourier
Transform 0.8330 Success 0.1766 Success

8 Nonperiodic
Template Matchings 0.6254 Success 0.4721 Success

9 Overlapping
Template Matchings 0.6886 Success 0.9365 Success

10 Universal 0.9992 Success 0.9583 Success

11 Approximate
Entropy 0.9309 Success 0.7040 Success

12 Random Excursions 0.1319 Success 0.2175 Success

13 Random Excursion
Variant 0.1025 Success 0.4166 Success

14 Serial 0.9068 Success 0.1638 Success
15 Linear Complexity 0.9250 Success 0.5041 Success

2.2.5. Information Entropy

In information theory, information entropy is used to quantify the uncertainty of the
information content. It can be used to evaluate how random a set of data is. We transformed
the chaotic sequence obtained by iteration into values between 0 and 255 and obtain the
information entropy according to Equation (12):

H(X) = −
2N−1

∑
i=0

Pr(xi) log2 Pr(xi) (12)

where X is a data sequence, xi is the ith possible value in X and Pr(xi) is the probability of
xi. A bigger information entropy value means better randomness; for a set with 256 states,
its maximum expected value is log2

256 = 8.
Better randomness is correlated with larger information entropy values, and Figure 6

shows the information entropy of the output sequences generated by 2D-CLSM for different
parameter settings. From Figure 6, the mean information entropy value of 2D-CLSM is
bigger than 2D-LSCM, and it is close to 8, which means good randomness.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 28

() () ()
12

2
0

log
N

i i
i

H X Pr x Pr x
−

=

= −∑ (12)

where X is a data sequence, ix is the ith possible value in X and ()iPr x is the

probability of ix . A bigger information entropy value means better randomness; for a set

with 256 states, its maximum expected value is 256
2log 8= .

Better randomness is correlated with larger information entropy values, and Figure
6 shows the information entropy of the output sequences generated by 2D-CLSM for dif-
ferent parameter settings. From Figure 6, the mean information entropy value of 2D-
CLSM is bigger than 2D-LSCM, and it is close to 8, which means good randomness.

(a) (b)

Figure 6. The information entropy of the sequences: (a) information entropy of 2D-CLSM; (b) infor-
mation entropy of 2D-LSCM.

3. New Encryption Algorithm Design
There are four main stages in our encryption algorithm: key generation, S-box gen-

eration, bit-level encryption and pixel-level encryption. The size of the plaintext image P
is M N× , and , , , , ,t x y mµ θ ∆ are the initial keys. The overall process is shown in Figure
7.

Key
generation

S-box
generation

Bit-level
manipulation

Pixel-level
manipulation Cipher imagePlain image

Figure 7. Overall process.

Two different chaotic maps are used in our algorithm: Logistic and 2D-CLSM, which
are used in different stages of encryption. In the S-box generation stage, a Logistic map is
used to generate the chaotic sequence needed to generate the S-box; a 2D-CLSM map is
used in the bit-level operation and pixel-level operation phases. By using the different
chaotic maps in different stages to expand the key space, a more complex encryption al-
gorithm is generated.

Figure 6. The information entropy of the sequences: (a) information entropy of 2D-CLSM;
(b) information entropy of 2D-LSCM.

Entropy 2022, 24, 1827 9 of 26

3. New Encryption Algorithm Design

There are four main stages in our encryption algorithm: key generation, S-box genera-
tion, bit-level encryption and pixel-level encryption. The size of the plaintext image P is
M× N, and t, µ, θ, x, y, ∆m are the initial keys. The overall process is shown in Figure 7.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 28

() () ()
12

2
0

log
N

i i
i

H X Pr x Pr x
−

=

= −∑ (12)

where X is a data sequence, ix is the ith possible value in X and ()iPr x is the

probability of ix . A bigger information entropy value means better randomness; for a set

with 256 states, its maximum expected value is 256
2log 8= .

Better randomness is correlated with larger information entropy values, and Figure
6 shows the information entropy of the output sequences generated by 2D-CLSM for dif-
ferent parameter settings. From Figure 6, the mean information entropy value of 2D-
CLSM is bigger than 2D-LSCM, and it is close to 8, which means good randomness.

(a) (b)

Figure 6. The information entropy of the sequences: (a) information entropy of 2D-CLSM; (b) infor-
mation entropy of 2D-LSCM.

3. New Encryption Algorithm Design
There are four main stages in our encryption algorithm: key generation, S-box gen-

eration, bit-level encryption and pixel-level encryption. The size of the plaintext image P
is M N× , and , , , , ,t x y mµ θ ∆ are the initial keys. The overall process is shown in Figure
7.

Key
generation

S-box
generation

Bit-level
manipulation

Pixel-level
manipulation Cipher imagePlain image

Figure 7. Overall process.

Two different chaotic maps are used in our algorithm: Logistic and 2D-CLSM, which
are used in different stages of encryption. In the S-box generation stage, a Logistic map is
used to generate the chaotic sequence needed to generate the S-box; a 2D-CLSM map is
used in the bit-level operation and pixel-level operation phases. By using the different
chaotic maps in different stages to expand the key space, a more complex encryption al-
gorithm is generated.

Figure 7. Overall process.

Two different chaotic maps are used in our algorithm: Logistic and 2D-CLSM, which
are used in different stages of encryption. In the S-box generation stage, a Logistic map
is used to generate the chaotic sequence needed to generate the S-box; a 2D-CLSM map
is used in the bit-level operation and pixel-level operation phases. By using the different
chaotic maps in different stages to expand the key space, a more complex encryption
algorithm is generated.

3.1. Keys Generation

If the key stream used for encryption is only related to the key and not related to the
plaintext image, the designed algorithm is not safe for chosen/known plaintext attack. In
order to ensure the security of encryption, the encryption key is generated from the initial
key and the plaintext image.

Initial encryption keys contain six decimal numbers, t, µ, θ, x, y, ∆m. Six decimal
encryption keys, t0, µ̂, θ̂, x0, y0, ĥ, are generated by combining the plaintext images, which
are used as initial values and control parameters of the chaotic system. Using ∆m > 0
as a scrambling value prevents an attacker from attacking the key with a black or white
image. The encryption key is generated by Algorithm 1, where t0, µ̂ is used as the initial
value and control parameter of the Logistic map; x0, y0, ĥ, θ̂ is set as the initial value, control
parameter and variables h of 2D-CLSM.

Algorithm 1 Generation of the encryption keys

Input: Plain image P, initial keys t, µ, θ, x, y, ∆m
Output: The encryption keys t0, µ̂, θ̂, x0, y0, ĥ

1: Read the size: [M, N] = size (P)
2: Obtain the sum of all pixels and add scramble number

sum =
M−1
∑

i=0

N−1
∑

j=0
P(i, j) + ∆m

3: Calculate the mean of the all pixels m = sum/(M× N)
4: t0 = cos

(
m× 2t+15)mod1

5: µ̂ = 1− cos
(
m× 2µ+15)mod0.1

6: θ̂ = cos
(

m× 2θ+20
)

mod1

7: x0 = cos
(
m× 2x+20)mod1

8: y0 = cos
(
m× 2y+20)mod1

9: ĥ =
(
cos
(
m× 2x0×y0+20)mod1

)
× 14 + 10

3.2. S-Box Generation
3.2.1. S-Box Generation Algorithm

In the construction method of a chaotic S-box, there is the problem of generating
useless chaotic sequences that affect efficiency. Wang et al. proposed in [15] to use a three-

Entropy 2022, 24, 1827 10 of 26

dimensional chaotic map to iterate chaotic sequences and expand the modulo operation
to generate values between 0 and 255 to generate S-boxes, and the algorithm only ends
when all 256 values are generated, this method generates a large number of useless chaotic
sequences, and if a value cannot be generated all the time, the efficiency of the algorithm
is affected, and the real-time performance becomes poor. In some methods, there are
immobile points in the generated S-boxes [29], which can become attackable points. Table 2
gives the generation times of existing S-box generation methods, the presence of fixed
points and the number of fixed points before and after the Fisher–Yates shuffling algorithm
is applied to the S-box.

Table 2. Generation time and fix point.

S-Box Generate Time Fixed Point After Fisher–Yates

Ref. [17] 0.9415 2, 17, C7, CB None
Ref. [21] 0.0487 0D, 33, 77, 95 None
Ref. [22] 0.7593 None None

The Fisher–Yates shuffling algorithm is an algorithm proposed by R. Fisher and F.
Yates for generating random permutations of finite linear arrays [30]. The most important
feature of this approach is that it generates an unbiased result so that the probability of each
value being at any position is equally likely, essentially generating a finite set of random
permutations. Thus, by using the Fisher–Yates random shuffle algorithm, we are able to
make the encryption scheme more complex and secure by enabling us to quickly generate
different S-boxes and reduce the presence of fixed points during each encryption. The steps
are as follows:

Step 1: Obtain the length m of the sequence P that needs to be shuffled;
Step 2: Generate a random number n with a value between [0, m− 1];
Step 3: Shuffle the values of the two positions according to n and m, then exchange the

values of P(n) and P(m);
Step 4: Subtract 1 from m to obtain the new position;
Step 5: Repeat step1~step4 until m = 1.

Algorithm 2 describes the generation process of the S-box. t0, µ̂, generated by algo-
rithm 1, is taken as the initial value and control parameter of Logistic, iteratively generating
a chaotic sequence Q with a length of 512 bits, and then divided into two sequences
Q1, Q2 with a length of 256 bits, respectively, calculating and obtaining the ascending index
q1 ∈ [0, 255], q2 ∈ [0, 255] of Q1 and Q2. Then q2 is taken as the random number sequence
of the shuffling algorithm, shuffling q1 and finally, q1 is converted into a 16 bits × 16 matrix
to obtain the S-box s.

Algorithm 2 Generation of S-box

Input: encryption keys t0, µ̂

Output: S-box s
1: for i from 1 to 1512:

Substituting t0, µ̂ into Equation (1)
if i >1000:

obtain the 512-length chaotic sequences Q
2: Divide Q into two subsequences of length 256 Q1, Q2; obtain the ascending

sort index of the Q1, Q2; and assign it to q1 = argsort(Q1) and q2 = argsort(Q2)
3: Read the size: m = size(q1)
4: while m > 1:

Obtain a random number q2(m)
Swap the value of q1(q2(m)), q1(m)
Set m = m− 1

5: If m = 1 transform q1 into 16 matrix and assign it to s
6: Obtain S-box s

Entropy 2022, 24, 1827 11 of 26

3.2.2. Performance Test of the Proposed S-Box

In order to verify the performance and strength of the generated S-boxes, we used
the general criteria for S-box performance evaluation to be able to test them [31]. In this
thesis, the nonlinearity of the S-box, the strict avalanche criterion SAC, the output bit
independence criterion BIC and the differential approximate probability DP are verified,
respectively. Table 3 displays the S-box matrix that we produced.

Table 3. The generated S-box by proposed algorithm.

i\j. 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 100 62 60 203 217 27 159 103 77 112 134 236 2 167 219 96
1 228 29 18 170 113 39 64 127 87 90 1 160 94 183 7 125
2 199 54 55 193 104 246 146 129 79 14 162 137 237 63 191 174
3 148 115 109 99 225 13 202 187 17 250 185 41 110 25 139 177
4 50 15 76 238 114 34 12 107 207 222 45 102 249 75 220 200
5 98 195 47 0 151 51 67 3 82 230 184 204 241 117 35 130
6 36 254 156 196 227 178 248 68 145 31 126 149 153 5 43 181
7 19 157 30 154 121 231 86 201 239 101 189 72 69 71 119 37
8 131 11 118 10 83 24 215 140 247 74 38 152 46 206 8 106
9 59 208 164 150 136 192 255 9 84 235 229 88 213 171 147 92
A 166 48 97 28 224 180 23 144 85 4 190 122 111 173 108 243
B 52 188 210 209 197 58 182 233 143 40 26 163 33 244 218 211
C 120 89 20 16 124 57 53 232 142 179 73 172 22 44 175 70
D 176 212 32 216 91 194 49 245 155 80 161 234 141 42 226 198
E 186 135 205 61 240 123 223 251 105 21 95 133 253 221 252 242
F 66 93 169 116 81 165 78 128 138 132 214 56 65 6 168 158

(I) Nonlinearity In the process of encryption, if the given S-box makes a linear map-
ping between the input (plaintext) and the output (ciphertext) [32], then a decipherer can
easily deduce and break the ciphertext when the cryptographic strength of the S-box is
very small, but if the S-box can map the input to the output in a nonlinear way, then it is
considered a reliable S-box that can protect the plaintext data and can help us resist the
attacks of linear cryptanalysis, and we can calculate the nonlinear value of the 8-bit Boolean
function S by using Equation (13).

NL f = 128− 1
2

max
ω∈GF(2n)

∣∣∣WH f (ω)
∣∣∣ (13)

where NLf is the 8-bit Boolean function, WH f (ω) is the Walsh–Hadamard transform of the
eight-bit Boolean function S. The values of the S-box nonlinearity obtained according to the
above are shown in Table 4, where the maximum value is 110, the minimum value is 106
and the average value is 107.5

Table 4. S-box nonlinear values.

S1 S2 S3 S4 S5 S6 S7 S8

NL(s) 108 106 108 106 108 108 110 106

(II) Strict Avalanche Criterion (SAC) Webster and Tavares used the strict avalanche
criterion as an important feature of the performance of an S-box [33]. The strict avalanche
criterion ensures that if one bit is changed in the input, it causes at least 50% of the output to
change, and an S-box is considered to be a strong S-box if the value of SAC is approximately
equal to 0.5. We propose that the S box has a SAC value that satisfies the strict avalanche
criterion. The SAC dependency matrix of our generated S-boxes is shown in Table 5. The
table shows the average SAC of the generated S-boxes is 0.4996, which is very close to the
desired value of 0.5, and shows that the generated S-boxes satisfy the SAC criteria.

Entropy 2022, 24, 1827 12 of 26

Table 5. Generating S-box SAC values.

0.4196 0.4235 0.4196 0.5647 0.4823 0.5137 0.5450 0.5294
0.4549 0.5019 0.4509 0.5019 0.5490 0.4705 0.4352 0.5176
0.5960 0.4862 0.4980 0.5137 0.5607 0.5333 0.5607 0.5176
0.4980 0.5137 0.5490 0.4980 0.4392 0.4862 0.5450 0.5490
0.5019 0.5294 0.5294 0.4980 0.4392 0.4862 0.5450 0.5490
0.5019 0.4509 0.5647 0.5176 0.5137 0.4980 0.5137 0.4392
0.4666 0.5333 0.4823 0.4235 0.4549 0.5450 0.5294 0.4235
0.4705 0.5333 0.4823 0.4549 0.5490 0.5294 0.5019 0.4980

(III) Output Bits Independence Criterion (BIC) This criterion was introduced by
Webster et al. as one of the important properties of S-box evaluation, a property that
ensures that there is no dependence on the change of any two output bits when a single
input bit is changed, a property that makes any Boolean function must be independent and
highly nonlinear. For two output bit Boolean functions fi and f j in an S-box, if fi ⊕ f j is
highly nonlinear and satisfies the SAC as close as possible, then it is guaranteed that when
one input bit is inverted, the correlation coefficient of each output bit is close to 0, i.e., the
BIC is satisfied.

Through experimental tests, the average BIC nonlinearity value of the proposed S-box
is 104.5, and the BIC-SAC test result is 0.5009, which satisfies the BIC criterion.

(IV) Difference Approximation Probability (DP) differential cryptanalysis, intro-
duced by Biham and Shamir [34], is able to obtain the input differential from the output
differential while being able to attempt to obtain from it modifications to the plaintext and
changes to the ciphertext data, combined with the difference between the two changes
an attacker is able to use the resulting small differences to identify complete or partial
plaintexts and keys, and in the process of designing the S-box, there is a need to minimize
both changes The difference between the two needs to be minimized in the design of the
S-box. The designer calculates the difference by differential uniformity, which is checked
right by the differential approximation probability, as shown in Equation (14):

DP(f) = max
∆x 6=0,∆y

(
#{x ∈ GF(2n)| f (x)⊕ f (x + ∆x) = ∆y}

2n

)
(14)

where ∆x and ∆y are the input difference and output difference, and DP denotes the
maximum probability that the output of each given difference ∆x is equal to ∆y. The
maximum DP value of our proposed generated S-box is 10, indicating that our S-box can
resist differential.

In comparison with the other four methods, the results show in Table 6 that the S-
box nonlinearity produced by the algorithm in this paper is higher than the other four
solutions. The SAC value of S box 0.4996 is closest to the ideal value of 0.5 in five methods,
and the BIC value also meets the test requirements. The BIC of the S-box also meets the
test requirements based on the DP value of the test and has a good ability to resist the
differential password attack based on the DP value of the test. In terms of S-box generation
time, the algorithm in this paper has a good advantage. Although our nonlinear value is
still some distance from the ideal value, we believe that the performance of the generated
S-box needs to meet the performance requirements, and the efficiency and space cost of
S-box generation also need to be considered.

Table 6. S-box performance test results.

S-Box
Nonlinearity

SAC BIC-SAC
BIC-

Nonlinearity DP
Generate

TimeMin Max Avg

ours 106 110 107.5 0.4996 0.5009 104 10 0.0066
Ref. [18] 100 106 104 0.4988 0.5006 104 10 0.3071
Ref. [19] 102 108 104 0.4988 0.5052 104 10 0.0091
Ref. [20] 106 108 106 0.4916 0.5058 104.14 10 0.0160
Ref. [22] 99 106 103.5 0.5065 0.5013 103.357 12 0.7593

Entropy 2022, 24, 1827 13 of 26

3.3. Bit-Level Encryption

Traditional image encryption generally falls into one of three categories: permutation-
only, diffusion-only, or combined forms. Due to its simpler computational complexity, the
permutation-only type of these is more efficient, but the security is not very strong. Due to
the substantial computational load required for real arithmetic operations, the diffusion
type is a time-consuming process. The pixel values and random numbers are used to
perform an XOR operation, and the calculated numbers are used to determine the ranks of
the S-boxes and substitute the original pixels with the values in the S-boxes, but the overall
encryption efficiency is low due to the lack of permutation and diffusion operations on the
plaintext image and the low efficiency of S-box generation [15].

In this stage, by separating the eight-bit pixel values into upper four bits and lower
four bits, different operations are performed on the two parts, respectively, and a new
diagonal diffusion method for irregular matrices is proposed to be applied to the high
four-bit matrix. The bit-level encryption process is shown in Figure 8.

Entropy 2022, 24, x FOR PEER REVIEW 14 of 28

Table 6. S-box performance test results.

S-Box
Nonlinearity

SAC BIC-SAC
BIC-

Nonlinearity
DP

Generate
Time Min Max Avg

ours 106 110 107.5 0.4996 0.5009 104 10 0.0066
Ref. [18] 100 106 104 0.4988 0.5006 104 10 0.3071
Ref. [19] 102 108 104 0.4988 0.5052 104 10 0.0091
Ref. [20] 106 108 106 0.4916 0.5058 104.14 10 0.0160
Ref. [22] 99 106 103.5 0.5065 0.5013 103.357 12 0.7593

3.3. Bit-Level Encryption
Traditional image encryption generally falls into one of three categories: permuta-

tion-only, diffusion-only, or combined forms. Due to its simpler computational complex-
ity, the permutation-only type of these is more efficient, but the security is not very strong.
Due to the substantial computational load required for real arithmetic operations, the dif-
fusion type is a time-consuming process. The pixel values and random numbers are used
to perform an XOR operation, and the calculated numbers are used to determine the ranks
of the S-boxes and substitute the original pixels with the values in the S-boxes, but the
overall encryption efficiency is low due to the lack of permutation and diffusion opera-
tions on the plaintext image and the low efficiency of S-box generation [15].

In this stage, by separating the eight-bit pixel values into upper four bits and lower
four bits, different operations are performed on the two parts, respectively, and a new
diagonal diffusion method for irregular matrices is proposed to be applied to the high
four-bit matrix. The bit-level encryption process is shown in Figure 8.

Convert pixel
values to

8-bit binary

Upper 4 bits of
pixel value

Lower 4 bits of
pixel value

Rearrange
matrix

Upper 4 bits of
pixel value

Iterative
2D-CLSM
mapping

Permutation

Adaptive
diagonal
diffusion

Plain image

Images for
completing bit-
level operations

Chao
sequence

Figure 8. Bit-level encryption process.

3.3.1. Pixel Value Split
We converted the original pixel value of the plaintext image into a binary represen-

tation and extracted it into two parts for different operations. The upper four bits P1 of
the pixel value and the lower four bits P2 of the pixel value are shown in Figure 9.

101 200

46 89 58

97

69 73 255

0110
0101

1100
1000

0010
1110

0101
1001

0011
1010

0110
0001

0100
0101

0100
1001

1111
1111

0110 1100 0110 0010 0101 0011 0100 0100 1111

0101 1000 0001 1110 1001 1010 0101 1001 1111

Upper 4-bit P1

Lower 4-bit P2

Figure 9. Plaintext image processing.

Figure 8. Bit-level encryption process.

3.3.1. Pixel Value Split

We converted the original pixel value of the plaintext image into a binary representa-
tion and extracted it into two parts for different operations. The upper four bits P1 of the
pixel value and the lower four bits P2 of the pixel value are shown in Figure 9.

Entropy 2022, 24, x FOR PEER REVIEW 14 of 28

Table 6. S-box performance test results.

S-Box
Nonlinearity

SAC BIC-SAC
BIC-

Nonlinearity
DP

Generate
Time Min Max Avg

ours 106 110 107.5 0.4996 0.5009 104 10 0.0066
Ref. [18] 100 106 104 0.4988 0.5006 104 10 0.3071
Ref. [19] 102 108 104 0.4988 0.5052 104 10 0.0091
Ref. [20] 106 108 106 0.4916 0.5058 104.14 10 0.0160
Ref. [22] 99 106 103.5 0.5065 0.5013 103.357 12 0.7593

3.3. Bit-Level Encryption
Traditional image encryption generally falls into one of three categories: permuta-

tion-only, diffusion-only, or combined forms. Due to its simpler computational complex-
ity, the permutation-only type of these is more efficient, but the security is not very strong.
Due to the substantial computational load required for real arithmetic operations, the dif-
fusion type is a time-consuming process. The pixel values and random numbers are used
to perform an XOR operation, and the calculated numbers are used to determine the ranks
of the S-boxes and substitute the original pixels with the values in the S-boxes, but the
overall encryption efficiency is low due to the lack of permutation and diffusion opera-
tions on the plaintext image and the low efficiency of S-box generation [15].

In this stage, by separating the eight-bit pixel values into upper four bits and lower
four bits, different operations are performed on the two parts, respectively, and a new
diagonal diffusion method for irregular matrices is proposed to be applied to the high
four-bit matrix. The bit-level encryption process is shown in Figure 8.

Convert pixel
values to

8-bit binary

Upper 4 bits of
pixel value

Lower 4 bits of
pixel value

Rearrange
matrix

Upper 4 bits of
pixel value

Iterative
2D-CLSM
mapping

Permutation

Adaptive
diagonal
diffusion

Plain image

Images for
completing bit-
level operations

Chao
sequence

Figure 8. Bit-level encryption process.

3.3.1. Pixel Value Split
We converted the original pixel value of the plaintext image into a binary represen-

tation and extracted it into two parts for different operations. The upper four bits P1 of
the pixel value and the lower four bits P2 of the pixel value are shown in Figure 9.

101 200

46 89 58

97

69 73 255

0110
0101

1100
1000

0010
1110

0101
1001

0011
1010

0110
0001

0100
0101

0100
1001

1111
1111

0110 1100 0110 0010 0101 0011 0100 0100 1111

0101 1000 0001 1110 1001 1010 0101 1001 1111

Upper 4-bit P1

Lower 4-bit P2

Figure 9. Plaintext image processing.

Figure 9. Plaintext image processing.

3.3.2. Improved Diagonal Diffusion

In order to make the information of pixel points have a good diffusion effect, many
diffusion methods, such as V-diffusion, zigzag diffusion and chunk diffusion, were pro-
posed. A zigzag algorithm was used in [35] and improved to rearrange the pixel values,
but the transformation law of zigzag is relatively single, traversing from the upper left foot
to the lower right corner in a Z-shaped order, as shown in Figure 10.

However, the security of the zigzag is not guaranteed due to the fact that it is extremely
easy to be broken by a single variation.

In order to obtain faster diffusion speed and diffusion effect, this paper proposes a
new diagonal diffusion method by randomly and irregularly rearranging the image matrix
through a chaotic sequence. The number of pixel values in each row is controlled by the
random sequence, there may be no pixel values at some positions of the diagonal, and the
matrix presents an irregular arrangement. Through the proposed new diagonal diffusion,

Entropy 2022, 24, 1827 14 of 26

it can complete the diagonal of diffusion. Through the comparative analysis of the relevant
experiments in Section 4, this scheme has good performance.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 28

3.3.2. Improved Diagonal Diffusion
In order to make the information of pixel points have a good diffusion effect, many

diffusion methods, such as V-diffusion, zigzag diffusion and chunk diffusion, were pro-
posed. A zigzag algorithm was used in [35] and improved to rearrange the pixel values,
but the transformation law of zigzag is relatively single, traversing from the upper left
foot to the lower right corner in a Z-shaped order, as shown in Figure 10.

1 2

4 5 6

3

7 8 9

1 2 4 7 5 3 6 8 9

1 2

7 5 3

4

6 8 9

Figure 10. Zigzag transform.

However, the security of the zigzag is not guaranteed due to the fact that it is ex-
tremely easy to be broken by a single variation.

In order to obtain faster diffusion speed and diffusion effect, this paper proposes a
new diagonal diffusion method by randomly and irregularly rearranging the image ma-
trix through a chaotic sequence. The number of pixel values in each row is controlled by
the random sequence, there may be no pixel values at some positions of the diagonal, and
the matrix presents an irregular arrangement. Through the proposed new diagonal diffu-
sion, it can complete the diagonal of diffusion. Through the comparative analysis of the
relevant experiments in Section 4, this scheme has good performance.

In this paper, after obtaining the upper four-bit matrix, we changed its alignment
through a random sequence to generate different irregular matrices, performed diagonal
diffusion on the matrix according to the changed alignment and changed its alignment,
as shown in Figure 11. Algorithm 3 describes the transformation process.

1 2 3 4 5 6 7 8 9

1 2

3 4 5 6

7 8 9

1

2 3

4 5 6 7 8 9

Different random
sequences

1 2 3 4

5

6 7 8

9

Figure 11. Matrix rearrangement.

Algorithm 3 Matrix rearrange
Input: upper 4-bits sequence 1P ，random sequence X i′()
Output: irregular matrices 1P ′

1: Obtain the size of 1P , m = size (1P)
2: Set an empty list 1P ′ and 0, 0i j= =
3: While (0m X i− ′() >):
 1 1(:)P i P j j X i′() = + ′()
 1i i= +

()j j X i= + ′

()m m X i= − ′

Figure 10. Zigzag transform.

In this paper, after obtaining the upper four-bit matrix, we changed its alignment
through a random sequence to generate different irregular matrices, performed diagonal
diffusion on the matrix according to the changed alignment and changed its alignment, as
shown in Figure 11. Algorithm 3 describes the transformation process.

Algorithm 3 Matrix rearrange

Input: upper 4-bits sequence P1, random sequence X′(i)
Output: irregular matrices P1′

1: Obtain the size of P1, m = size (P1)
2: Set an empty list P1′ and i = 0, j = 0
3: While (m− X′(i) > 0):

P1′(i) = P1(j : j + X′(i))
i = i + 1

j = j + X′(i)
m = m− X′(i)

4: P1′(j) = P1(j :)

Entropy 2022, 24, x FOR PEER REVIEW 15 of 28

3.3.2. Improved Diagonal Diffusion
In order to make the information of pixel points have a good diffusion effect, many

diffusion methods, such as V-diffusion, zigzag diffusion and chunk diffusion, were pro-
posed. A zigzag algorithm was used in [35] and improved to rearrange the pixel values,
but the transformation law of zigzag is relatively single, traversing from the upper left
foot to the lower right corner in a Z-shaped order, as shown in Figure 10.

1 2

4 5 6

3

7 8 9

1 2 4 7 5 3 6 8 9

1 2

7 5 3

4

6 8 9

Figure 10. Zigzag transform.

However, the security of the zigzag is not guaranteed due to the fact that it is ex-
tremely easy to be broken by a single variation.

In order to obtain faster diffusion speed and diffusion effect, this paper proposes a
new diagonal diffusion method by randomly and irregularly rearranging the image ma-
trix through a chaotic sequence. The number of pixel values in each row is controlled by
the random sequence, there may be no pixel values at some positions of the diagonal, and
the matrix presents an irregular arrangement. Through the proposed new diagonal diffu-
sion, it can complete the diagonal of diffusion. Through the comparative analysis of the
relevant experiments in Section 4, this scheme has good performance.

In this paper, after obtaining the upper four-bit matrix, we changed its alignment
through a random sequence to generate different irregular matrices, performed diagonal
diffusion on the matrix according to the changed alignment and changed its alignment,
as shown in Figure 11. Algorithm 3 describes the transformation process.

1 2 3 4 5 6 7 8 9

1 2

3 4 5 6

7 8 9

1

2 3

4 5 6 7 8 9

Different random
sequences

1 2 3 4

5

6 7 8

9

Figure 11. Matrix rearrangement.

Algorithm 3 Matrix rearrange
Input: upper 4-bits sequence 1P ，random sequence X i′()
Output: irregular matrices 1P ′

1: Obtain the size of 1P , m = size (1P)
2: Set an empty list 1P ′ and 0, 0i j= =
3: While (0m X i− ′() >):
 1 1(:)P i P j j X i′() = + ′()
 1i i= +

()j j X i= + ′

()m m X i= − ′

Figure 11. Matrix rearrangement.

Where P1(i : j) denotes from the ith to the jth digit of P1, and P1(i :) denotes from the
ith to the last digit of P1.

Based on the rearranged matrices, we proposed a diagonal diffusion to perform
diffusion operations on upper 4-bit matrices capable of new diagonal diffusion operations
based on different irregular matrices, as shown in Figure 12, where the arrows represent
the order and direction.

Entropy 2022, 24, x FOR PEER REVIEW 16 of 28

4: () ()1 1 :P j P j′ =

Where ()1 :P i j denotes from the ith to the jth digit of 1P , and ()1 :P i denotes
from the ith to the last digit of 1P .

Based on the rearranged matrices, we proposed a diagonal diffusion to perform dif-
fusion operations on upper 4-bit matrices capable of new diagonal diffusion operations
based on different irregular matrices, as shown in Figure 12, where the arrows represent
the order and direction.

1 2

3 4 5 6

7 8 9

1

2 3

4 5 6 7 8 9

1 2 3 4

5

6 7 8

9

Figure 12. Diagonal diffusion of different matrices.

According to the irregular matrix obtained by Algorithm 3, we need to diffuse ac-
cording to the diagonal, but the shape of the matrix is irregular, so given Algorithm 4 used
to obtain the order of the pixel values of the diagonal of the irregular matrix, sequentially
traversing the diagonal to obtain its diffusion order matrix for diffusion, according to dif-
ferent irregular matrices for the order of diagonal diffusions, such as the first: (1- > 3- > 2-
> 7- > 4- > 8- > 5- > 9- > 6), the second: (1- > 2- > 4- > 3- > 5- > 6- > 7- > 8- > 9) and the third:
(1- > 5- > 2- > 6- > 3- > 9- > 7- > 4- > 8), if we use the normal zigzag, then the order of each
diffusion is fixed in a 3 × 3 matrix, and the result is (1- > 2- > 4- > 7- > 5- > 3- > 6- > 8- > 9)
each time, which is not guaranteed in terms of security.

Algorithm 4 Diagonal diffusion order
Input: irregular matrices 1P ′
Output: order sequence D

1: Obtain the size of 1P ′ m = size (1P ′)
2: Set tow empty list D , sub
3: for i from 1 to m :
 Obtain the size of 1P ′ (1 ())n size P i= ′
 for i from 1 to n :
 ()()(). 0, 1 ,sub i j insert P i j+ ′

4: Obtain the size of sub ()m size sub=
5: for i from 1 to m :
 Obtain the size of ()sub i n = size (()sub i)
 for i from 1 to n :
 ()(). ,D insert sub i j

Where ()()(). 0, 1 ,sub i j insert P i j+ ′ means adding ()1 ,P i j′ to the head of the array

()sub i j+ and ()(). ,D insert sub i j means adding (,)sub i j to the end of the array D .

Figure 12. Diagonal diffusion of different matrices.

Entropy 2022, 24, 1827 15 of 26

According to the irregular matrix obtained by Algorithm 3, we need to diffuse accord-
ing to the diagonal, but the shape of the matrix is irregular, so given Algorithm 4 used to
obtain the order of the pixel values of the diagonal of the irregular matrix, sequentially
traversing the diagonal to obtain its diffusion order matrix for diffusion, according to
different irregular matrices for the order of diagonal diffusions, such as the first: (1- > 3- >
2- > 7- > 4- > 8- > 5- > 9- > 6), the second: (1- > 2- > 4- > 3- > 5- > 6- > 7- > 8- > 9) and the
third: (1- > 5- > 2- > 6- > 3- > 9- > 7- > 4- > 8), if we use the normal zigzag, then the order of
each diffusion is fixed in a 3 × 3 matrix, and the result is (1- > 2- > 4- > 7- > 5- > 3- > 6- > 8-
> 9) each time, which is not guaranteed in terms of security.

Algorithm 4 Diagonal diffusion order

Input: irregular matrices P1′

Output: order sequence D
1: Obtain the size of P1′ m = size (P1′)
2: Set tow empty list D, sub
3: for i from 1 to m:

Obtain the size of P1′ n = size(P1′(i))
for i from 1 to n:

sub(i + j).insert(0, P1′(i, j))
4: Obtain the size of sub m = size(sub)
5: for i from 1 to m:

Obtain the size of sub(i) n = size (sub(i)))
for i from 1 to n:

D. insert(sub(i, j))

Where sub(i + j).insert(0, P1′(i, j)) means adding P1′(i, j) to the head of the array
sub(i + j) and D. insert(sub(i, j)) means adding sub(i, j) to the end of the array D.

3.3.3. Permutation and Diffusion Process

Step 1: Generate S-boxes s according to the S-box generation method proposed in Section 3.2.;
Step 2: Generate the encryption key θ̂, x0, y0, ĥ and process the image to obtain P1, P2

according to Algorithm 1 and θ, x, y;
Step 3: Iterate over θ̂, x0, y0, ĥ as the control parameter and initial value of the 2D-

CLSM chaos map to generate two chaotic sequences X = {x1, x2, . . . , xM×N},
Y = {y1, y2, . . . , yM×N} of length M× N;

Step 4: Process the chaotic sequence to obtain the random numbers for array rearrangement;

X′(i) =
(

f loor
(

X(i)× 1013
)

modN
)
+1, i = 1, 2, . . . , M× N (15)

Step 5: Based on the resulting upper 4-bit matrix P1 and the random sequence X′(i),
the upper 4-bit matrix is rearranged by Algorithm 3 to obtain a new irregular
matrix P1′;

Step 6: Perform a diffusion operation on the irregular matrix P1′ obtained in step 4. For
computational convenience, we first transform the irregular matrix into a one-
dimensional matrix D by means of Algorithm 4;

Step 7: Diffusion operation based on the 1D matrix D obtained in step 6 to obtain D′;{
D′(i) = (X′(1)mod16)⊕ D(i), i = 1
D′(i) = D′(i− 1)⊕ D(i), i = 2, 3, . . . , M× N

(16)

Step 8: Process the chaotic sequence to obtain chaotic values for the lower four positions;

Y′(i) = f loor
(

Y(i)× 1013
)

mod65536 i = 1, 2, . . . , M× N (17)

Step 9: Based on the resulting Y′(i) the lower four bits of the matrix are permutated.
temp = P2(Y′(i))
P2(Y′(i)) = P2(i)
P2(i) = temp

, i = 1, 2, . . . , M× N (18)

Entropy 2022, 24, 1827 16 of 26

3.3.4. Pixel-Level Encryption

At the end of the bit-level encryption, pixel-level encryption is performed by the result-
ing pixel values using the S-box. It mainly includes pixel value diffusion and substitution.
The main process is shown in Figure 13.

Entropy 2022, 24, x FOR PEER REVIEW 18 of 28

S-box

 Pixel diffusion

Cipher image

 Substitution

Images for
completing bite-
sized operations

Chao
sequence

Figure 13. Pixel-level encryption process.

Generate an empty matrix C of size M N× . Based on the matrix , 2D P′ after
completing the diffusion and permutation, reorganize , 2D P′ by replacing the original
upper four bits as lower four bits and the original lower four bits as upper four bits to
obtain 8-bit values between 0 and 255, calculate the row index r and column index c of
the S-box and complete the pixel value substitution using the S-box s generated in the
second stage.

() ()() ()

()

dec 2 (1)

%16 , 1,2,...,
/ 16

() (,)

temp P i D i X i C i

c temp i M N
r temp c
C i s r c

 = + ′ ⊕ ′ ⊕ −  
 = = ×

= −
 =

 (19)

where 1, (1) 0i C i= − = ; (), (1) 1i M N C i C= × − = . ()dec a b+   is the reconfiguration

of two four-bit binary numbers ,a b into an eight-bit binary number, and (,)s r c repre-
sent obtaining the value at row r and column c from the S-box s .

Finally, C is converted to an M N× ciphertext image.

4. Simulation Experiments
The simulation results of the proposed method are presented in this section by run-

ning PyCharm software under Windows 10 64-bit system. By using the method in this
paper, 10 images were both encrypted and decrypted. The results of encrypting and de-
crypting several grey-scale images such as Baboon.png, House.png, Cameraman.png and
Peppers.png pixels are shown here, respectively. The initial keys used for encryption/de-
cryption are shown in Table 7, and generated keys are shown in Table 8, where 0 ˆ,t µ are

used as initial values and control parameters for the Logistic. 0 0
ˆ ˆ, , ,x y h θ are used as con-

trol parameters, initial values and variables h for the 2D-CLSM.

Table 7. Initial key.

t µ θ x y Δm
0.9 0.5 0.2 0.5 0.2 5001

Figure 13. Pixel-level encryption process.

Generate an empty matrix C of size M× N. Based on the matrix D′, P2 after complet-
ing the diffusion and permutation, reorganize D′, P2 by replacing the original upper four
bits as lower four bits and the original lower four bits as upper four bits to obtain 8-bit
values between 0 and 255, calculate the row index r and column index c of the S-box and
complete the pixel value substitution using the S-box s generated in the second stage.

temp = dec(dP2(i) + D′(i)e)⊕ X′(i)⊕ C(i− 1)
c = temp%16
r = (temp− c)/16
C(i) = s(r, c)

, i = 1, 2, . . . , M× N (19)

where i = 1, C(i− 1) = 0; i = M×N, C(i− 1) = C(1). dec(da + be) is the reconfiguration
of two four-bit binary numbers a, b into an eight-bit binary number, and s(r, c) represent
obtaining the value at row r and column c from the S-box s.

Finally, C is converted to an M× N ciphertext image.

4. Simulation Experiments

The simulation results of the proposed method are presented in this section by running
PyCharm software under Windows 10 64-bit system. By using the method in this paper,
10 images were both encrypted and decrypted. The results of encrypting and decrypt-
ing several grey-scale images such as Baboon.png, House.png, Cameraman.png and Pep-
pers.png pixels are shown here, respectively. The initial keys used for encryption/decryption
are shown in Table 7, and generated keys are shown in Table 8, where t0, µ̂ are used as initial
values and control parameters for the Logistic. x0, y0, ĥ, θ̂ are used as control parameters,
initial values and variables h for the 2D-CLSM.

Table 7. Initial key.

t µ θ x y ∆m

0.9 0.5 0.2 0.5 0.2 5001

From Table 8, we can clearly see that the encryption keys generated by the algorithm
in this paper have good plaintext correlation, can generate completely different encryption
keys depending on the plaintext, have good plaintext sensitivity and can effectively resist
selective plaintext/known plaintext attacks.

Entropy 2022, 24, 1827 17 of 26

Table 8. Generated encryption keys.

Image Baboon House Cameraman Peppers

t0 0.1202650498467574 0.9477909907361988 0.2160499006239973 0.0961937648047185
µ̂ 0.9349678430636638 0.9505574749633823 0.9210123850695779 0.9032945073229159
θ̂ 0.0664003944646814 0.6920508714375233 0.2309975836114158 0.977565451998436
x0 0.0264462005880243 0.4490902428109265 0.1811279735456482 0.1440190683132808
y0 0.0664003944646814 0.6920508714375233 0.2309975836114158 0.977565451998436
ĥ 20.512754134641057 16.49739814853646 22.592144200059774 11.400485742889497

Figure 14a–c shows the experimental results of Baboon, Figure 14d–f shows the
experimental results of House, Figure 14g–i shows the experimental results of Cameraman
and Figure 14j–l shows the experimental results of Peppers. It is clear from the Figure 14
that the encrypted image can still be fully restored, which verifies the effectiveness of the
algorithm in this paper, which can obtain good encryption and decryption results.

Entropy 2022, 24, x FOR PEER REVIEW 19 of 28

Table 8. Generated encryption keys.

Image Baboon House Cameraman Peppers
0t 0.1202650498467574 0.9477909907361988 0.2160499006239973 0.0961937648047185
µ̂ 0.9349678430636638 0.9505574749633823 0.9210123850695779 0.9032945073229159
θ̂ 0.0664003944646814 0.6920508714375233 0.2309975836114158 0.977565451998436

0x 0.0264462005880243 0.4490902428109265 0.1811279735456482 0.1440190683132808
0y 0.0664003944646814 0.6920508714375233 0.2309975836114158 0.977565451998436

ĥ 20.512754134641057 16.49739814853646 22.592144200059774 11.400485742889497

From Table 8, we can clearly see that the encryption keys generated by the algorithm
in this paper have good plaintext correlation, can generate completely different encryp-
tion keys depending on the plaintext, have good plaintext sensitivity and can effectively
resist selective plaintext/known plaintext attacks.

Figure 14a–c shows the experimental results of Baboon, Figure 14d–f shows the ex-
perimental results of House, Figure 14g–i shows the experimental results of Cameraman
and Figure 14j–l shows the experimental results of Peppers. It is clear from the Figure 14
that the encrypted image can still be fully restored, which verifies the effectiveness of the
algorithm in this paper, which can obtain good encryption and decryption results.

(a) Original Baboon (b) Cipher Baboon (c) Decrypted Baboon

(d) Original House (e) Cipher House (f) Decrypted House

(g) Original Cameraman (h) Cipher Cameraman (i) Decrypted Cameraman

Figure 14. Cont.

Entropy 2022, 24, 1827 18 of 26Entropy 2022, 24, x FOR PEER REVIEW 20 of 28

(j) Original Peppers (k) Cipher Peppers (l) Decrypted Peppers

Figure 14. Encryption and decryption results: (a) plaintext image Baboon; (b) encrypted image Ba-
boon; (c) decrypted image Baboon; (d) plaintext image House; (e) encrypted image House; (f) de-
crypted image House; (g) plaintext image Cameraman; (h) encrypted image Cameraman; (i) de-
crypted image Cameraman; (j) plaintext image Peppers; (k) encrypted image Peppers; (l) decrypted
image Peppers.

4.1. Security Analysis
4.1.1. Key Space Analysis

Assuming that the accuracy of the computer is 1610− , in order to make the key suf-
ficiently resistant to brute-force attacks, the key space of the encryption system must be

more than 1002 , and the parameters of the encryption system are 0 0 0
ˆˆˆ, , , , ,t x y hµ θ ,

0 0 0
ˆˆˆ[0,1], [0.89,1], [0,1], [0,1], [0,1], [10.24]t x y hµ θ∈ ∈ ∈ ∈ ∈ ∈ , so the key space is calcu-

lated as in Equation (20). The key space is larger than 1002 , so the algorithm in this paper
has sufficient key space to resist brute-force cracking attacks.

16 16 16 16 16 16 1000.11 10 10 10 10 10 14 10 2× × × × × × × > (20)

4.1.2. Key Sensitivity Analysis
In a secure encryption system, a mirror change in the key can cause a complete

change in the ciphertext obtained from the encryption. Through testing, the encryption
key ,t µ of the Peppers graph was increased by 1610− to the original one, respectively,
and the rest of the keys were left unchanged, and the Peppers were encrypted with the
modified key and the original key, respectively, and the results obtained are shown in
Figure 15a–f.

(a) Original keys 𝑡𝑡 (b) Changed keys 𝑡𝑡 +
10−16

(c)Difference diagram

Figure 14. Encryption and decryption results: (a) plaintext image Baboon; (b) encrypted image
Baboon; (c) decrypted image Baboon; (d) plaintext image House; (e) encrypted image House;
(f) decrypted image House; (g) plaintext image Cameraman; (h) encrypted image Cameraman;
(i) decrypted image Cameraman; (j) plaintext image Peppers; (k) encrypted image Peppers;
(l) decrypted image Peppers.

4.1. Security Analysis
4.1.1. Key Space Analysis

Assuming that the accuracy of the computer is 10−16, in order to make the key suf-
ficiently resistant to brute-force attacks, the key space of the encryption system must be
more than 2100, and the parameters of the encryption system are t0, µ̂, θ̂, x0, y0, ĥ, t0 ∈ [0, 1],
µ̂ ∈ [0.89, 1], θ̂ ∈ [0, 1], x0 ∈ [0, 1], y0 ∈ [0, 1], ĥ ∈ [10.24], so the key space is calculated as in
Equation (20). The key space is larger than 2100, so the algorithm in this paper has sufficient
key space to resist brute-force cracking attacks.

0.11× 1016 × 1016 × 1016 × 1016 × 1016 × 14× 1016 > 2100 (20)

4.1.2. Key Sensitivity Analysis

In a secure encryption system, a mirror change in the key can cause a complete change
in the ciphertext obtained from the encryption. Through testing, the encryption key t, µ of
the Peppers graph was increased by 10−16 to the original one, respectively, and the rest of
the keys were left unchanged, and the Peppers were encrypted with the modified key and
the original key, respectively, and the results obtained are shown in Figure 15a–f.

As shown in Figure 15, when the initial key is slightly changed, the resulting encrypted
image is completely changed, which shows that the algorithm has good key sensitivity and
only the correct key can decrypt the ciphertext.

Entropy 2022, 24, x FOR PEER REVIEW 20 of 28

(j) Original Peppers (k) Cipher Peppers (l) Decrypted Peppers

Figure 14. Encryption and decryption results: (a) plaintext image Baboon; (b) encrypted image Ba-
boon; (c) decrypted image Baboon; (d) plaintext image House; (e) encrypted image House; (f) de-
crypted image House; (g) plaintext image Cameraman; (h) encrypted image Cameraman; (i) de-
crypted image Cameraman; (j) plaintext image Peppers; (k) encrypted image Peppers; (l) decrypted
image Peppers.

4.1. Security Analysis
4.1.1. Key Space Analysis

Assuming that the accuracy of the computer is 1610− , in order to make the key suf-
ficiently resistant to brute-force attacks, the key space of the encryption system must be

more than 1002 , and the parameters of the encryption system are 0 0 0
ˆˆˆ, , , , ,t x y hµ θ ,

0 0 0
ˆˆˆ[0,1], [0.89,1], [0,1], [0,1], [0,1], [10.24]t x y hµ θ∈ ∈ ∈ ∈ ∈ ∈ , so the key space is calcu-

lated as in Equation (20). The key space is larger than 1002 , so the algorithm in this paper
has sufficient key space to resist brute-force cracking attacks.

16 16 16 16 16 16 1000.11 10 10 10 10 10 14 10 2× × × × × × × > (20)

4.1.2. Key Sensitivity Analysis
In a secure encryption system, a mirror change in the key can cause a complete

change in the ciphertext obtained from the encryption. Through testing, the encryption
key ,t µ of the Peppers graph was increased by 1610− to the original one, respectively,
and the rest of the keys were left unchanged, and the Peppers were encrypted with the
modified key and the original key, respectively, and the results obtained are shown in
Figure 15a–f.

(a) Original keys 𝑡𝑡 (b) Changed keys 𝑡𝑡 +
10−16

(c)Difference diagram

Figure 15. Cont.

Entropy 2022, 24, 1827 19 of 26Entropy 2022, 24, x FOR PEER REVIEW 21 of 28

(d) Original keys 𝜇𝜇 (e) Changed keys 𝜇𝜇 +
10−16

(f) Difference diagram

Figure 15. Key sensitivity analysis: (a) image encrypted with original key 𝑡𝑡; (b) image encrypted
with original key 𝑡𝑡 + 10−16; (c) the difference between (a ,b); (d) image encrypted with orig-
inal key 𝜇𝜇; (e) image encrypted with original key 𝜇𝜇 + 10−16; (f) the difference between (d ,e).

As shown in Figure 15, when the initial key is slightly changed, the resulting en-
crypted image is completely changed, which shows that the algorithm has good key sen-
sitivity and only the correct key can decrypt the ciphertext.

4.1.3. Histogram Analysis
The distribution of the image’s pixel values can be directly described by the histo-

gram. A secure encryption system should ensure that pixel values of the obtained cipher-
text image are uniformly distributed in order to reduce readability, improve security and
provide effective protection against statistical attacks.

Figure 16 shows the histogram of plaintext and ciphertext pixel frequencies for Ba-
boon, House, Cameraman and Peppers, from which we can see that the pixel of ciphertext
images is uniformly distributed. The statistical properties of the images were altered so
that they are well resistant to statistical analysis attacks.

(a) Original Baboon (b) Cipher Baboon

(c) Original House (d) Cipher House

Figure 15. Key sensitivity analysis: (a) image encrypted with original key t; (b) image encrypted
with original key t + 10−16; (c) the difference between (a,b); (d) image encrypted with original key µ;
(e) image encrypted with original key µ + 10−16; (f) the difference between (d,e).

4.1.3. Histogram Analysis

The distribution of the image’s pixel values can be directly described by the histogram.
A secure encryption system should ensure that pixel values of the obtained ciphertext image
are uniformly distributed in order to reduce readability, improve security and provide
effective protection against statistical attacks.

Figure 16 shows the histogram of plaintext and ciphertext pixel frequencies for Baboon,
House, Cameraman and Peppers, from which we can see that the pixel of ciphertext images
is uniformly distributed. The statistical properties of the images were altered so that they
are well resistant to statistical analysis attacks.

The variance of the histogram can be used to specifically describe the distribution of
pixel values. The calculation equation is shown in (21), and the result shows in Table 9.

var(z) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

1
z
(zi − zj)

2 (21)

Entropy 2022, 24, x FOR PEER REVIEW 21 of 28

(d) Original keys 𝜇𝜇 (e) Changed keys 𝜇𝜇 +
10−16

(f) Difference diagram

Figure 15. Key sensitivity analysis: (a) image encrypted with original key 𝑡𝑡; (b) image encrypted
with original key 𝑡𝑡 + 10−16; (c) the difference between (a ,b); (d) image encrypted with orig-
inal key 𝜇𝜇; (e) image encrypted with original key 𝜇𝜇 + 10−16; (f) the difference between (d ,e).

As shown in Figure 15, when the initial key is slightly changed, the resulting en-
crypted image is completely changed, which shows that the algorithm has good key sen-
sitivity and only the correct key can decrypt the ciphertext.

4.1.3. Histogram Analysis
The distribution of the image’s pixel values can be directly described by the histo-

gram. A secure encryption system should ensure that pixel values of the obtained cipher-
text image are uniformly distributed in order to reduce readability, improve security and
provide effective protection against statistical attacks.

Figure 16 shows the histogram of plaintext and ciphertext pixel frequencies for Ba-
boon, House, Cameraman and Peppers, from which we can see that the pixel of ciphertext
images is uniformly distributed. The statistical properties of the images were altered so
that they are well resistant to statistical analysis attacks.

(a) Original Baboon (b) Cipher Baboon

(c) Original House (d) Cipher House

Figure 16. Cont.

Entropy 2022, 24, 1827 20 of 26
Entropy 2022, 24, x FOR PEER REVIEW 22 of 28

(e) Original Cameraman (f) Cipher Cameraman

(g) Original Peppers (h) Cipher Peppers

Figure 16. Plain text image histogram and Ciphertext image histogram analysis: (a) plaintext Baboon
histogram; (b) Ciphertext Baboon histogram; (c) plaintext House histogram; (d) Ciphertext House
histogram; (e) plaintext Cameraman histogram; (f) Ciphertext Cameraman histogram; (g) plaintext
Peppers histogram; (h) Ciphertext Peppers histogram.

The variance of the histogram can be used to specifically describe the distribution of
pixel values. The calculation equation is shown in (21), and the result shows in Table 9.

1 1
2

2
0 0

1 1() ()
N N

i j
i j

var z z z
N z

− −

= =

= −∑∑ (21)

Where z represents histogram values; N represents the total number of samples (N
for an image with a grey level of 8 is 256); iz , jz are number of pixels with grey values

at i , j . The smaller the histogram’s variance, the more evenly distributed the histo-
gram.

Table 9. Variance of histograms of encrypted images.

Image
Plain
Image

Ours Ref. [18]
Ref.
[19]

Ref. [20] Ref. [22]

Baboon 47,065.25 233.35 270.33 270.68 271.31 237.31
House 28,706.41 217.75 255.35 263.38 246.16 246.76

Cameraman 10,5149.27 247.92 269.91 249.93 265.32 259.79
Peppers 35,550.14 246.04 234.49 242.46 240.74 242.06
Average 54,513.19 236.26 257.52 256.61 255.88 246.48

Table 9 compares the variance of histograms with methods in Refs. [18–22], from
which we can see that our encrypted Baboon, House, and Cameraman have the lowest
variance of all the schemes, and Peppers is slightly higher than the others. The average
variance of the four images is 236.26, which is the lowest of the four methods, so it per-
forms better in resisting statistical attacks.

Figure 16. Plain text image histogram and Ciphertext image histogram analysis: (a) plaintext Baboon
histogram; (b) Ciphertext Baboon histogram; (c) plaintext House histogram; (d) Ciphertext House
histogram; (e) plaintext Cameraman histogram; (f) Ciphertext Cameraman histogram; (g) plaintext
Peppers histogram; (h) Ciphertext Peppers histogram.

Table 9. Variance of histograms of encrypted images.

Image Plain
Image Ours Ref. [18] Ref. [19] Ref. [20] Ref. [22]

Baboon 47,065.25 233.35 270.33 270.68 271.31 237.31
House 28,706.41 217.75 255.35 263.38 246.16 246.76

Cameraman 10,5149.27 247.92 269.91 249.93 265.32 259.79
Peppers 35,550.14 246.04 234.49 242.46 240.74 242.06
Average 54,513.19 236.26 257.52 256.61 255.88 246.48

Where z represents histogram values; N represents the total number of samples (N for
an image with a grey level of 8 is 256); zi, zj are number of pixels with grey values at i, j.
The smaller the histogram’s variance, the more evenly distributed the histogram.

Table 9 compares the variance of histograms with methods in Refs. [18–22], from
which we can see that our encrypted Baboon, House, and Cameraman have the lowest
variance of all the schemes, and Peppers is slightly higher than the others. The average
variance of the four images is 236.26, which is the lowest of the four methods, so it performs
better in resisting statistical attacks.

4.1.4. Plaintext Sensitivity Analysis

A differential attack is a common form of attack in cryptography, in which an attacker
usually selects to encrypt the plaintext and a slightly altered plaintext and analyses them
to find a specific relationship. In order to be effective against differential attacks, the
encryption algorithm should be sensitive enough to the plaintext that a diffusion operation
during encryption can cause small changes in the plaintext to affect all pixels, and we
usually evaluate the sensitivity of the algorithm using the pixel change rate NPCR and the
normalized pixel average change intensity UACI, their ideal expectations are 99.6094% and
33.4635%, respectively. We obtained NPCR and UACI values by randomly modifying two
pixel points of the plaintext image. In this paper, we choose to modify pixel points (2, 2)
and (236, 207). In Table 10, we give the corresponding experimental results as well as the

Entropy 2022, 24, 1827 21 of 26

corresponding results for the other four scenarios. The calculation expressions are shown
in Equations (22)–(24).

NPCR =
1

M× N

M−1

∑
i=0

N−1

∑
j=0

D(i, j)× 100% (22)

D(i, j) =
{

0, C(i, j) = C′(i, j)
1, C(i, j) 6= C′(i, j)

(23)

UACI =
1

M× N

M−1

∑
i=0

N−1

∑
j=0

|C1(i, j)− C2(i, j)|
255

× 100% (24)

where i = 0, 1, . . . , M− 1, j = 0, 1, . . . , N − 1, C, C′ are original encrypted image and the
encrypted image with the plaintext modified, respectively; M and N make the height and
length of the image, respectively; and C(i, j) denotes the pixel values at coordinates (i, j) of
the encrypted image C.

Table 10. NPCR and UACI values.

Image NPCR UACI

Baboon Ours 99.6246% 33.4949%
Ref. [18] 99.4863% 32.1574%
Ref. [19] 99.5616% 33.0145%
Ref. [20] 99.6551% 33.4146%
Ref. [22] 99.5256% 33.3324%

House Ours 99.6292% 33.5274%
Ref. [18] 99.4515% 33.1501%
Ref. [19] 99.5849% 33.3829%
Ref. [20] 99.6149% 33.5051%
Ref. [22] 99.5951% 33.1216%

Cameraman Ours 99.6231% 33.4488%
Ref. [18] 99.5987% 33.2151%
Ref. [19] 99.5739% 33.3015%
Ref. [20] 99.6032% 33.5028%
Ref. [22] 99.5897% 32.7981%

Peppers Ours 99.5941% 33.5739 %
Ref. [18] 99.4782% 33.4131%
Ref. [19] 99.5801% 33.4466%
Ref. [20] 99.6337% 33.5884%
Ref. [22] 99.6111% 33.0147%

Table 10 compares the NPCR and UACI values of our scheme with the methods
in Refs. [18–22]. In our method, the NPCR and UACI values of Baboon, House and
Cameraman images exceed the expected values, and the NPCR values of Peppers are
close to the expected values. Of the other methods, only the Cameraman plot of Ref. [20]
achieved the desired values for both NPCR and UACI values. In contrast, our encryption
algorithm has better sensitivity to plaintext.

4.1.5. Correlation Analysis

When the image is not encrypted, there is a strong correlation between the pixel values
of the images; the encryption operation on the plaintext allows us to break this correlation.
We calculated the correlation coefficient by randomly selecting n pair of adjacent pixels
(ai, bi) from the image for which the correlation is to be calculated using the following
Equation (25). Table 11 shows the experimental results for a random selection of 3000 pairs
of pixel values.

Entropy 2022, 24, 1827 22 of 26

rab =

n
∑

i=1
(ai − a)(bi − b)√

n
∑

i=1
(ai − a)2

√
n
∑

i=1
(bi − b)

2
(25)

where rab represents the correlation coefficients, a, b is the mean value.

Table 11. Correlation coefficients.

Image Directions Ours Ref. [18] Ref. [19] Ref. [20] Ref. [22]

Horizontal 0.0007 −0.0284 −0.0027 0.0039 0.0034
Baboon Vertical −0.0030 0.0147 0.0023 0.0103 −0.0019

Diagonal 0.0080 0.0459 0.0088 −0.0070 0.0005

Horizontal −0.0020 0.0497 0.0047 −0.0063 0.0098
House Vertical −0.0147 0.0327 0.0030 0.0035 −0.0342

Diagonal 0.0086 −0.0154 −0.0039 0.0103 0.0196

Horizontal −0.0055 0.0120 −0.0027 0.0047 0.0023
Cameraman Vertical −0.0008 0.0478 0.00025 0.0018 0.0044

Diagonal −0.0005 0.0354 0.0039 −0.0019 −0.0048

Horizontal −0.0029 −0.0654 −0.0008 0.0028 0.0051
Peppers Vertical 0.0089 −0.0259 0.0083 −0.0017 −0.0049

Diagonal −0.0088 −0.0351 −0.0012 −0.0103 0.0078

The closer the calculated correlation coefficient is to 1, the stronger the correlation is,
and the closer it is to 0, the weaker the correlation is. As shown in Table 11, take baboon
as an example; we are able to see in Table 11 that it has a horizontal correlation of 0.0007,
a vertical correlation of −0.003 and a diagonal correlation of 0.008, with a correlation
index very close to 0 in three directions, indicating that the high correlation between pixels
is broken.

In addition, from Figure 17, we can clearly see that for the plaintext image, most
of the points are close to the diagonal of the axes, whereas, for the encrypted image,
these points are randomly distributed throughout the space, with significantly lower inter-
pixel correlation. Both illustrate the effectiveness of our algorithm in removing intra-
pixel correlations.

4.1.6. Information Entropy Analysis

Information entropy is another metric for evaluating the security of a ciphertext and
represents the strength of the uncertainty of the image information, which is expressed in
Equation (12).

For a grey-scale image with 256 states, it has a maximum expectation value of 8,
Table 12 shows the test results we obtained and the comparison of the other four schemes,
where the result of the three encrypted images of House, Baboon and Peppers are higher
than the other schemes, and the results of all four images are close to the ideal value of 8.
It can be said that the image results processed by our encryption scheme are close to the
random images, with good uncertainty, and can effectively resist statistical analysis attacks.

Table 12. Comparison of ciphertext information entropy.

Methods Baboon House Cameraman Peppers

Ours 7.9974 7.9976 7.9972 7.9972
Ref. [18] 7.9865 7.9907 7.9716 7.9930
Ref. [19] 7.9609 7.9611 7.9581 7.9592
Ref. [20] 7.9974 7.9969 7.9974 7.9967
Ref. [22] 7.9672 7.9858 7.9773 7.9668

Entropy 2022, 24, 1827 23 of 26Entropy 2022, 24, x FOR PEER REVIEW 25 of 28

(a) Original Baboon (b) Cipher Baboon

(c) Original House (d) Cipher House

(e) Original Cameraman (f) Cipher Cameraman

(g) Original Peppers (h) Cipher Peppers

Figure 17. Plain text image correlation and Ciphertext image correlation analysis: (a) plaintext Ba-
boon diagonal direction; (b) Ciphertext Baboon diagonal direction; (c) plaintext House diagonal di-
rection; (d) Ciphertext House diagonal direction; (e) plaintext Cameraman diagonal direction; (f)
Ciphertext Cameraman diagonal direction; (g) plaintext Peppers diagonal direction; (h) Ciphertext
Peppers diagonal direction.

4.1.6. Information Entropy Analysis
Information entropy is another metric for evaluating the security of a ciphertext and

represents the strength of the uncertainty of the image information, which is expressed in
Equation (12).

For a grey-scale image with 256 states, it has a maximum expectation value of 8, Table
12 shows the test results we obtained and the comparison of the other four schemes, where
the result of the three encrypted images of House, Baboon and Peppers are higher than
the other schemes, and the results of all four images are close to the ideal value of 8. It can

Figure 17. Plain text image correlation and Ciphertext image correlation analysis: (a) plaintext
Baboon diagonal direction; (b) Ciphertext Baboon diagonal direction; (c) plaintext House diagonal
direction; (d) Ciphertext House diagonal direction; (e) plaintext Cameraman diagonal direction;
(f) Ciphertext Cameraman diagonal direction; (g) plaintext Peppers diagonal direction; (h) Ciphertext
Peppers diagonal direction.

4.1.7. Anti-Cropping Attack Analysis

During the transmission of information, information may be lost due to humans or
some uncontrollable factors. If the encryption algorithm is able to restore the plaintext
image in this case, then the encryption algorithm is valid. In Figure 18, we add a 5% loss of
pixel values to the Peppers. From the perspective of the decrypted image, even though the
image has lost some data, it is still possible to decrypt the basic information and be able to
recover it basically, so the algorithm is resistant to basic cropping attacks.

Entropy 2022, 24, 1827 24 of 26

Entropy 2022, 24, x FOR PEER REVIEW 26 of 28

be said that the image results processed by our encryption scheme are close to the random
images, with good uncertainty, and can effectively resist statistical analysis attacks.

Table 12. Comparison of ciphertext information entropy.

Methods Baboon House Cameraman Peppers
Ours 7.9974 7.9976 7.9972 7.9972

Ref. [18] 7.9865 7.9907 7.9716 7.9930
Ref. [19] 7.9609 7.9611 7.9581 7.9592
Ref. [20] 7.9974 7.9969 7.9974 7.9967
Ref. [22] 7.9672 7.9858 7.9773 7.9668

4.1.7. Anti-Cropping Attack Analysis
During the transmission of information, information may be lost due to humans or

some uncontrollable factors. If the encryption algorithm is able to restore the plaintext
image in this case, then the encryption algorithm is valid. In Figure 18, we add a 5% loss
of pixel values to the Peppers. From the perspective of the decrypted image, even though
the image has lost some data, it is still possible to decrypt the basic information and be
able to recover it basically, so the algorithm is resistant to basic cropping attacks.

(a) Original Peppers
(b) 5% loss cipher

Peppers
(c) Decrypted Peppers

Figure 18. The cropped encrypted image and the corresponding decrypted image. (a) The plain
image of Peppers. (b) The cipher image of Peppers with 5% loss. (c) The decrypted image of (b).

4.1.8. Speed Analysis
Running speed is an important index to evaluate the encryption algorithm; we sim-

ulated it in Python 3.7 environment on a PC with a 2.2 GHz CPU and 8G RAM. As can be
seen from Table 13, this paper’s encryption efficiency is superior to that of Refs. [11–13]
while being slightly slower than that of Ref. [15]. This shows that our proposed encryption
algorithm performs well in terms of efficiency and is capable of being applied in practical
applications. Because we used a round of bitrate encryption and a round of pixel-level
encryption, the efficiency is reduced, but the security is improved.

Table 13. Comparison of encryption algorithm runtimes (seconds).

Ref. [18] Ref. [19] Ref. [20] Ref. [22] Ours
1.84 1.69 1.91 0.83 1.12

5. Conclusions
In this paper, we propose an improved cascaded chaotic map 2D-CLSM and design

a novel encryption scheme based on it and S-box. By generating a key associated with the
plaintext, the whole encryption process is associated with the plaintext, effectively resist-
ing the chosen/known plaintext attack. An S-box encryption scheme is designed and ap-
plied to our encryption, increasing the overall security of the algorithm. Dividing the en-
cryption into bit-level encryption and pixel-level encryption improves the complexity and
security of the encryption to a certain extent but reduces its efficiency. The encryption

Figure 18. The cropped encrypted image and the corresponding decrypted image. (a) The plain
image of Peppers. (b) The cipher image of Peppers with 5% loss. (c) The decrypted image of (b).

4.1.8. Speed Analysis

Running speed is an important index to evaluate the encryption algorithm; we simu-
lated it in Python 3.7 environment on a PC with a 2.2 GHz CPU and 8 G RAM. As can be
seen from Table 13, this paper’s encryption efficiency is superior to that of Refs. [11–13]
while being slightly slower than that of Ref. [15]. This shows that our proposed encryption
algorithm performs well in terms of efficiency and is capable of being applied in practical
applications. Because we used a round of bitrate encryption and a round of pixel-level
encryption, the efficiency is reduced, but the security is improved.

Table 13. Comparison of encryption algorithm runtimes (seconds).

Ref. [18] Ref. [19] Ref. [20] Ref. [22] Ours

1.84 1.69 1.91 0.83 1.12

5. Conclusions

In this paper, we propose an improved cascaded chaotic map 2D-CLSM and design a
novel encryption scheme based on it and S-box. By generating a key associated with the
plaintext, the whole encryption process is associated with the plaintext, effectively resisting
the chosen/known plaintext attack. An S-box encryption scheme is designed and applied
to our encryption, increasing the overall security of the algorithm. Dividing the encryption
into bit-level encryption and pixel-level encryption improves the complexity and security
of the encryption to a certain extent but reduces its efficiency. The encryption method in this
paper can be applied to different image types, such as grey-scale images, grey-scale medical
images, etc., while the algorithm is able to meet everyday encryption requirements, both
in terms of efficiency and security. The experimental results show that the algorithm has
sufficient key space, is resistant to brute force attacks and performs well against statistical
analysis attacks, clipping attacks and differential attacks. However, although we improved
the efficiency of S-box generation, we used two rounds of encryption, one at the bit level
and one at the pixel level, which makes us less efficient overall, so the next step is to
improve the efficiency of encryption in both rounds.

Author Contributions: Investigation, J.Z. and T.B.; Writing—original draft, T.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
(Grant No. 62272077).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors are thankful to the reviewers for their comments and suggestions to
improve the quality of the manuscript.

Entropy 2022, 24, 1827 25 of 26

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Wang, M.; Liu, H.; Zhao, M. Bit-level image encryption algorithm based on random-time S-Box substitution. Eur. Phys. J. Spec.

Top. 2022, 24, 3225–3237. [CrossRef]
2. Xiang, H.; Liu, L. An improved digital logistic map and its application in image encryption. Multimed. Tools Appl. 2020, 79,

30329–30355. [CrossRef]
3. Ratan, R.; Yadav, A. Security analysis of bit-plane level image encryption schemes. Def. Sci. J. 2021, 71, 209–221. [CrossRef]
4. Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [CrossRef]
5. Farhan, A.K.; Al-Saidi, N.M.G.; Maolood, A.T. Entropy analysis and image encryption application based on a new chaotic system

crossing a cylinder. Entropy 2019, 21, 958. [CrossRef]
6. Luo, Y.; Lin, J.; Liu, J. A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process. 2019,

161, 227–247. [CrossRef]
7. Zhou, W.; Wang, X.; Wang, M. A new combination chaotic system and its application in a new Bit-level image encryption scheme.

Opt. Lasers Eng. 2022, 149, 106782. [CrossRef]
8. Zheng, J.; Liu, L.F. Novel image encryption by combining dynamic DNA sequence encryption and the improved 2D logistic sine

map. IET Image Process. 2020, 14, 2310–2320. [CrossRef]
9. Lan, R.; He, J.; Wang, S. Integrated chaotic systems for image encryption. Signal Process. 2018, 147, 133–145. [CrossRef]
10. Wang, T.; Ge, B.; Xia, C. Multi-Image Encryption Algorithm Based on Cascaded Modulation Chaotic System and Block-Scrambling-

Diffusion. Entropy 2022, 24, 1053. [CrossRef]
11. Adams, C.; Tavares, S. The structured design of cryptographically good s-boxes. J. Cryptol. 1990, 3, 27–41. [CrossRef]
12. Arslan, S.; Fawad, A. Image encryption using dynamic S-box substitution in the wavelet domain. Wirel. Pers. Commun. 2020, 115,

2243–2268.
13. Yang, C.; Wei, X.; Wang, C. S-Box design based on 2D multiple collapse chaotic map and their application in image encryption.

Entropy 2021, 23, 1312. [CrossRef] [PubMed]
14. Li, Y.; Ge, G.; Xia, D. Chaotic hash function based on the dynamic s-box with variable parameters. Nonlinear Dyn. 2016, 84,

2387–2402. [CrossRef]
15. Zhou, S.; He, P.; Kasabov, N. A dynamic DNA color image encryption method based on SHA-512. Entropy 2020, 22, 1091.

[CrossRef]
16. Wang, X.; Yang, J. A novel image encryption scheme of dynamic s-boxes and random blocks based on spatiotemporal chaotic

system. Optik 2020, 217, 164884. [CrossRef]
17. Belazi, A.; El-Latif, A. A simple yet efficient S-box method based on chaotic sine map. Optik 2017, 130, 1438–1444. [CrossRef]
18. Beg, S.; Baig, F.; Hameed, Y. Thermal image encryption based on laser diode feedback and 2D logistic chaotic map. Multimed.

Tools Appl. 2022, 81, 26403–26423. [CrossRef]
19. Liu, H.; Liu, J.; Ma, C. Constructing dynamic strong S-Box using 3D chaotic map and application to image encryption. Multimed.

Tools Appl. 2022, 81, 12069. [CrossRef]
20. Zheng, J.M.; Zeng, Q.X. An image encryption algorithm using a dynamic s-box and chaotic maps. Appl. Intell. 2022, 52,

15703–15717. [CrossRef]
21. Özkaynak, F. Construction of robust substitution boxes based on chaotic systems. Neural Comput. Appl. 2019, 31, 3317–3326.

[CrossRef]
22. Wang, X.; Çavuşoğlu, Ü.; Kacar, S. S-Box based image encryption application using a chaotic system without equilibrium. Appl.

Sci. 2019, 9, 781. [CrossRef]
23. Wang, J.; Zhu, Y.; Zhou, C. Construction method and performance analysis of chaotic s-box based on a memorable simulated

annealing algorithm. Symmetry 2020, 12, 2115. [CrossRef]
24. Zhou, G.; Zhang, D.; Liu, Y. A novel image encryption algorithm based on chaos and Line map. Neurocomputing 2015, 169,

150–157. [CrossRef]
25. Zhou, Y.; Hua, Z.; Pun, C.M. Cascade chaotic system with applications. IEEE Trans. Cybern. 2014, 45, 2001–2012. [CrossRef]
26. Alawida, M.; Samsudin, A.; Teh, J.S. Digital cosine chaotic map for cryptographic applications. IEEE Access 2019, 7, 150609–150622.

[CrossRef]
27. Lu, Q.; Zhu, C.; Deng, X. An efficient image encryption scheme based on the LSS chaotic map and single s-box. IEEE Access 2020,

8, 25664–25678. [CrossRef]
28. Hua, Z.Y. 2D Logistic-Sine-Coupling map for image encryption. Signal Process. 2018, 149, 148–161. [CrossRef]
29. Zhang, Y. The unified image encryption algorithm based on chaos and cubic s-box. Inf. Sci. 2018, 450, 361–377. [CrossRef]
30. Wang, X.; Su, Y.; Liu, L. Color image encryption algorithm based on Fisher-Yates scrambling and DNA subsequence operation.

Vis. Comput. 2021, 37, 2311. [CrossRef]
31. Liu, H.; Kadir, A.; Xu, C. Cryptanalysis and constructing S-box based on chaotic map and backtracking. Appl. Math. Comput.

2020, 376, 125153. [CrossRef]
32. Farwa, S.; Muhammad, N. A Novel Image Encryption Based on Algebraic s-box and Arnold Transform. 3D Res. 2017, 8, 26.

[CrossRef]

http://doi.org/10.1140/epjs/s11734-022-00638-y
http://doi.org/10.1007/s11042-020-09595-x
http://doi.org/10.14429/dsj.71.15643
http://doi.org/10.1016/j.imavis.2006.02.021
http://doi.org/10.3390/e21100958
http://doi.org/10.1016/j.sigpro.2019.03.022
http://doi.org/10.1016/j.optlaseng.2021.106782
http://doi.org/10.1049/iet-ipr.2019.1340
http://doi.org/10.1016/j.sigpro.2018.01.026
http://doi.org/10.3390/e24081053
http://doi.org/10.1007/BF00203967
http://doi.org/10.3390/e23101312
http://www.ncbi.nlm.nih.gov/pubmed/34682036
http://doi.org/10.1007/s11071-016-2652-1
http://doi.org/10.3390/e22101091
http://doi.org/10.1016/j.ijleo.2020.164884
http://doi.org/10.1016/j.ijleo.2016.11.152
http://doi.org/10.1007/s11042-022-12724-3
http://doi.org/10.1007/s11042-022-12069-x
http://doi.org/10.1007/s10489-022-03174-3
http://doi.org/10.1007/s00521-017-3287-y
http://doi.org/10.3390/app9040781
http://doi.org/10.3390/sym12122115
http://doi.org/10.1016/j.neucom.2014.11.095
http://doi.org/10.1109/TCYB.2014.2363168
http://doi.org/10.1109/ACCESS.2019.2947561
http://doi.org/10.1109/ACCESS.2020.2970806
http://doi.org/10.1016/j.sigpro.2018.03.010
http://doi.org/10.1016/j.ins.2018.03.055
http://doi.org/10.1007/s00371-021-02311-2
http://doi.org/10.1016/j.amc.2020.125153
http://doi.org/10.1007/s13319-017-0135-x

Entropy 2022, 24, 1827 26 of 26

33. Lu, Q.; Zhu, C.; Wang, G. A novel s-box design algorithm based on a new compound chaotic system. Entropy 2019, 21, 1004.
[CrossRef]

34. Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [CrossRef]
35. Wang, X.; Du, X. Chaotic image encryption method based on improved zigzag permutation and DNA rules. Multimed. Tools Appl.

2022, 81, 13012. [CrossRef]

http://doi.org/10.3390/e21101004
http://doi.org/10.1007/BF00630563
http://doi.org/10.1007/s11042-022-13012-w

	Introduction
	Introduction of Chaotic Map
	Cascade Chaotic Map
	Performance Evaluation
	Chaotic Trajectory
	Bifurcation Diagram
	Lyapunov Exponent
	NIST Test
	Information Entropy

	New Encryption Algorithm Design
	Keys Generation
	S-Box Generation
	S-Box Generation Algorithm
	Performance Test of the Proposed S-Box

	Bit-Level Encryption
	Pixel Value Split
	Improved Diagonal Diffusion
	Permutation and Diffusion Process
	Pixel-Level Encryption

	Simulation Experiments
	Security Analysis
	Key Space Analysis
	Key Sensitivity Analysis
	Histogram Analysis
	Plaintext Sensitivity Analysis
	Correlation Analysis
	Information Entropy Analysis
	Anti-Cropping Attack Analysis
	Speed Analysis

	Conclusions
	References

