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Abstract: As a major daily task for the popularization of artificial intelligence technology, more and
more attention has been paid to the scientific research of mental state electroencephalogram (EEG) in
recent years. To retain the spatial information of EEG signals and fully mine the EEG timing-related
information, this paper proposes a novel EEG emotion recognition method. First, to obtain the
frequency, spatial, and temporal information of multichannel EEG signals more comprehensively, we
choose the multidimensional feature structure as the input of the artificial neural network. Then, a
neural network model based on depthwise separable convolution is proposed, extracting the input
structure’s frequency and spatial features. The network can effectively reduce the computational
parameters. Finally, we modeled using the ordered neuronal long short-term memory (ON-LSTM)
network, which can automatically learn hierarchical information to extract deep emotional features
hidden in EEG time series. The experimental results show that the proposed model can reasonably
learn the correlation and temporal dimension information content between EEG multi-channel and
improve emotion classification performance. We performed the experimental validation of this paper
in two publicly available EEG emotional datasets. In the experiments on the DEAP dataset (a dataset
for emotion analysis using EEG, physiological, and video signals), the mean accuracy of emotion
recognition for arousal and valence is 95.02% and 94.61%, respectively. In the experiments on the
SEED dataset (a dataset collection for various purposes using EEG signals), the average accuracy of
emotion recognition is 95.49%.

Keywords: EEG; emotion recognition; multidimensional feature; depthwise separable convolution

1. Introduction

Emotion recognition is a multi-curricular field of study that combines cognitive science,
social psychology, and electronic information science [1–3]. It is a complex problem and
a hot spot in the cognitive science industry. Emotion identification methods are divided
into two categories. One is emotion identification based on non-physiological data signals,
such as words, language expressions, facial emotions, gestures, etc. [4]. However, this
method is relatively subjective and cannot ensure the authenticity and effectiveness of
emotions. Another emotion recognition is based on physiological data signals [5]. With the
development of wearable and non-invasive physiological signal acquisition devices, the
real-time performance and accuracy of the physiological signal collection have been greatly
improved, promoting the development of physiological signals in emotion recognition.
Nervous system physiology and social psychology studies have shown that brain electrical
signals can reflect various brain wave thematic activities and effects of the brain. Since the
occurrence of emotion is related to the activities of the cerebral cortex, the brain’s electrical
signals can also reflect the efficient information content of people’s emotional state [6].
Because of the advantages of strong universality and high classification and identification
accuracy, brain electronic signals have been gradually introduced into the field of emotion
identification research.
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Traditional EEG emotion identification methods usually capture handcrafted emotion
characteristics, followed by shallow machine learning for emotion classification. The main
methods include the K-nearest neighbor algorithm, mixed Gaussian algorithm, artificial
neural network method, Bayesian algorithm, support vector machine, and improvements
in these methods [7]. At this stage, the key characteristics of emotional discrimination of
EEG signals are time-domain characteristics, frequency domain characteristics, and time
frequency domain characteristics [8]. Time domain features are mainly used to directly
extract the waveform features of EEG signals, including event related potential (ERP),
signal statistics, energy, power, high order zero crossing analysis, non-stationary index
(NSI), and fractal dimension (FD) [9]. Since the time-domain feature cannot display the
frequency information of the signal, the researchers added frequency domain analysis.
First, the original time domain signal is converted into the frequency domain to obtain
the frequency spectrum. Then, the frequency band is decomposed into five sub-frequency
bands (δ, θ, α, β, γ) that are closely related to human psychological activities [10]. Extract
features from these five frequency bands. These features usually include power spectral
density (PSD) [11], differential entropy (DE) [12,13], differential asymmetry (DASM) [14],
and rational asymmetry (RASM) [15,16]. EEG signal is a non-stationary and non-linear
random signal [17]. Since the scope of the Fourier transform is the entire time domain,
it lacks local generalization ability. It is impossible to confirm the time corresponding to
each frequency domain component of the non-stationary signal, so the time frequency
domain is introduced to analyze the EEG signal [18]. Usually, the time frequency domain
signal transformation mainly adopts methods, such as short time Fourier transform (STFT),
wavelet transform (WT), and wavelet packet transform (WPT) or Hilbert–Huang [19].
However, these features need to be designed and selected according to specific purposes,
which also limits their performance in EEG emotion classification.

The rapid development of deep learning technology in computer vision [20], speech [21],
and natural language processing [22], methods based on deep neural networks, have begun
to get the attention of researchers in this field. EEG usually contains much helpful infor-
mation and has a wide range of applications. The related work is summarized in Table 1.
Komolovaitė et al. [23] contributed to the application of Alzheimer’s disease. They used con-
volutional neural networks to learn discriminant features in EEG to classify familiarity and
emotion. Thammasan used deep belief networks combined with fractal dimension, power
spectrum, and discrete wavelet transform features to classify the emotional categories of
EEG under music stimulation [24]. Tripathi gives the effect of the convolutional neural
network in the two classifications (high/low) and three classifications (high/normal/low)
of EEG emotions [25]. Elham scientifically investigated a three-dimensional convolutional
neural network (3D-CNN) for emotion discrimination based on multichannel EEG data
information, and the discrimination accuracy of valence and arousal were 87.44% and
88.49%, respectively [26]. Yang obtained the differential entropy characteristics of differ-
ent frequency bands and applied the three-dimensional convolutional neural network to
classify emotions on DEAP data at the level of valence and arousal. The mean accuracy is
89.45% and 90.24%, respectively [27].

Although the deep learning emotion recognition model has achieved higher accu-
racy than the shallow model, how to integrate more helpful EEG information to perform
emotion recognition better and improve the validity and reliability of predictions made
with machine learning remain challenging [28]. Firstly, regarding the relationship be-
tween EEG signal frequency bands and emotion types, Zheng et al. [29] applied a deep
belief network model to select meaningful frequency bands of key channels by training
the weight distribution of DBNs. The results showed that the Gamma and Beta bands
exhibited better classification performance in emotion recognition. Secondly, EEG signal
acquisition equipment generally includes 32 channels, 62 channels, and 128 channels. It
may contain some EEG signals that have nothing to do with emotions, which can bring
noise and interference to emotion recognition. In response to this problem, Meng-meng
extracted the frequency domain features on each electrode and then combined the common
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spatial patterns (CSP) algorithm with the spatial domain to calculate the spatial frequency
domain features. The average accuracy rate in the three-category emotion recognition
has reached 87.54% [30]. Finally, combining the temporal and spatial characteristics of
EEG signals, Liu designed the RCNN LSTM hybrid deep neural network entity model,
using the circulatory system neuron network to obtain the characteristics of brain electrical
signals, then integrating the information content of the LSTM time concept characteristics
to develop a fusion model [31].

Table 1. The detailed comparison to other works.

Article Method Application Dataset Accuracy (%)

Komolovaitė et al. [23] EEGNet SSVEP Alzheimer research Figshare website 50.2

Thammasan et al. [24] Deep Belief Network
(DBN)

Emotion recognition
in music listening

15 recruited healthy
students

(valence/arousal
emotion types)

82.42/88.24

Tripathi et al. [25] Convolutional Neural
Network (CNN)

Automatic emotion
recognition

DEAP
(valence/arousal
emotion types)

73.36/81.41

Salama et al. [26] 3-Dimensional Convolutional
Neural Networks (3D-CNN) Emotion recognition

DEAP
(valence/arousal
emotion types)

88.49/87.44

Yang et al. [27] Convolutional Neural
Network (CNN)

Automatic emotion
recognition

DEAP
(valence/arousal
emotion types)

90.24/89.45

Zheng et al. [29] Deep Belief Network
(DBN) Emotion recognition 15 recruited subjects 86.65

Meng-meng et al. [30] Common Spatial Pattern (CSP) Emotion recognition 6 recruited healthy
students 87.54

Liu et al. [31]

Recurrent Convolutional
Neural Network and Long

Short Term
Memory (RCNN-LSTM)

Automatic emotion
recognition DEAP 96.63

In summary, the frequency, time, and space characteristics of EEG signals are critical
for emotion identification. However, most of the literature only considers one or two of
these three functions. Therefore, it is possible to adaptively capture important frequency,
spatial and temporal characteristics in a unified network by integrating information from
different fields, which is of crucial significance for improving the accuracy of EEG signal
emotion recognition. The method proposed in this paper makes full use of frequency,
temporal, and spatial information features while also making an outstanding contribution
to the computational performance of the network, filling a gap in integrating information
while improving computational performance in EEG signal emotion recognition.

A single feature extracted by traditional emotion research methods is not enough to
describe the rich information contained in EEG, and a simple feature combination may cause
redundant features in the feature space, thereby affecting model accuracy and increasing
model complexity. This paper points out a new method of EEG emotion discrimination
based on multi-domain feature fusion. The general flowchart of the proposed method is
shown in Figure 1. Firstly, the EEG signal is converted into a 4D feature structure composed
of several time slices, which contain frequency, spatial and temporal information. Secondly,
because the EEG data training samples are limited and the feature dimension is large, we
use the depthwise separable convolution for dimensionality reduction, which balances
the width and depth of the network and can reduce the amount of computation. The
frequency and spatial features of EEG signals are fully extracted by using the feature of
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depthwise separable convolution. Finally, since the traditional LSTM does not consider
the order information of updating neurons during feature learning, it means that each
neuron is independent. Therefore, the knowledge learned from the perspective of spatial
structure is discrete, which makes it difficult to distinguish the information level between
neurons, which causes the loss of information at the spatial level. Therefore, this paper
uses ON-LSTM to increase the induced bias towards structural information by sorting
neurons, which enables the model to integrate the emotional hierarchy of EEG signals into
LSTM through a specific neuron order without destroying its sequential form. Thereby, the
feature information of the emotional hierarchy of the EEG signal is learned to express the
hidden emotional information in the time series.
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Figure 1. The general flowchart of the proposed method.

The key dedications in the text are as follows:

• We adopt a four-dimensional (4D) feature structure, including the frequency, space, and
time information of EEG signals, as the feature input of EEG signal emotion recognition.

• We use the FSTception model based on a depthwise separable convolutional neural
network to solve the problems of a few training samples of EEG data, large feature
dimensions, and feature extraction.

• In particular, we adopt the ON-LSTM structure to deal with the deep emotional feature
extraction hidden on time series in input features with a 4D structure.

Other parts of the organization are listed below. We will introduce the method pro-
posed in this article in Section 2. Section 3 introduces the data set, experimental settings,
results, and discussion. Finally, in Section 4, we conclude that we have achieved advanced
performance on both the SEED and DEAP data sets.

2. Materials and Methods

This section mainly describes the 4-dimensional feature organization, FSTception
model, and classification. The small details of each part will be introduced in detail.

2.1. 4D Frequency Spatial Temporal Representation

The original EEG signal can be divided into several different frequency patterns
according to the in-band correlation of different behavioral states. The frequency modes
and corresponding characteristics of EEG are listed in Table 2. The awareness increases
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with the increase of the frequency band. We believe that emotions are generated when
humans are highly awake. This statement also conforms to our intuitive understanding. If
a person is unconscious, he/she is unlikely to have specific emotions. To extract the feature
entirely, we constructed a 4D feature structure to integrate the three information features of
EEG signals, as shown in Figure 2. In data processing, just like the previous work [26,32],
because the Butterworth filter has the smoothest response curve in the passband and
is simple in design and easy to implement, we use the Butterworth filter to divide the
EEG signal into five frequency bands (δ[1~4 Hz], θ[4–8 Hz], α[8~13 Hz], β[13~30 Hz],
γ[30~50 Hz]). The frequency response of the filter is shown in Figure 3. After Butterworth
filtering decomposition, the EEG data of a participant varied from 40 × 8064 × 32 (video ×
sample × channel) to 40 × 8064 × 5 × 32 (video × sample × band × channel). The EEG
raw signal and its five frequency bands in the DEAP dataset are shown in Figure 4.

Table 2. The frequency modes and corresponding characteristics of EEG.

Patterns Frequency Brain State Awareness

(δ) Delta 1–4 Hz Deep sleep pattern Lower
(θ) Theta 4–8 Hz Light sleep pattern Low
(α) Alpha 8–13 Hz Closing the eyes, relax state Medium
(β) Beta 13–30 Hz Active thinking, focus, high alert, anxious High

(γ) Gamma 30–50 Hz Mentally active and hypertensive Higher

Since our focus is on identifying emotional states at the segmented level, the EEG
signal is cut into l segments of degree n. Our goal is to categorize these fragments into
the correct tags. The segmented EEG data is converted into 40 × l × n × 5 × 32 (video ×
segment × length × band × channel). When 0.5s is taken as the cutting window, l = 120 is
the number of segments to be cut, and n = 64 is the sample points contained in a segment.
Differential entropy can accurately reflect the response degree of the stimulus because of its
ability to distinguish the balance between the low frequency band and the high frequency
band of the EEG mode [33]. Therefore, the differential entropy algorithm is used in this
experiment to represent the complexity of a fixed length EEG signal. Differential entropy is
the generalized form of Shannon’s information entropy on continuous variables, where X
is a random variable, and its original expression is

H(X) = −
∫

f (x) log[ f (x)]dx (1)

where f (x) is the probability density function of the X. Shi et al. [34] proved that the
differential entropy of a random variable approximately obeying the Gaussian distribution
N(θ, σ2) is equal to the logarithm of its energy spectrum in a specific frequency band. The
specific expression is as follows

H(X) = −
∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 log

[
1√

2πσ2
e−

(x−µ)2

2σ2

]
dx =

1
2

log 2πeσ2 (2)

The original EEG signal is complex and does not obey the normal distribution, but the
bandpass filtering of a specific range approximates the Gaussian distribution. In order to
test whether the EEG after band-pass filtering follows the Gaussian distribution, 4800 EEG
segments of 0.5 s length in each sub-band signal were randomly selected from 32 subjects.
The Kolmogorov–Smirnov test was then applied to all 4800 EEG data segments to test
whether each sub-band was subject to Gaussian distribution, and the significance level α
was set at 0.05. It can be proven that the probability of a sub-band signal satisfying the
Gaussian distribution hypothesis is greater than 90%.
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Therefore, in the fixed frequency band i, the DE feature of each EEG segment in each
frequency band is respectively calculated as

Hi(X) =
1
2

log
(

2πeσ2
i

)
(3)

where Hi and σ2
i represent the differential entropy and signal variance of corresponding

EEG signals in the frequency band i, respectively.
From Equation (3), where π,e are constants, we only need to know σ2

i to get the
differential entropy of X. For the frequency band of the EEG signal, as a result of the zero
mean, the variance can be estimated as

σ̂2 =
1
N

N

∑
i=1

x2
i (4)

Equation (4) shows that the variance estimate of the signal sequence X is its average
energy. Moreover, due to Parseval’s theorem, the average energy is related to the energy
spectrum. It can be written as Equation (5) For the Discrete Fourier transform

N−1

∑
n=0

∣∣∣x2
i

∣∣∣ = 1
N

N−1

∑
k=0

∣∣∣X2
k

∣∣∣ = Pi (5)

where Xk is the discrete Fourier transform coefficient of signal sequence Xi. N is the length
of the fixed time windows. Pi can be thought of as the energy spectrum, equal to the value
of the signal variance σ2

i multiplied by a constant coefficient N.
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Therefore, after the bandpass filter to a specific band i, its variance can be estimated
by Pi

N . The relationship between the logarithmic energy spectrum and differential entropy
can be expressed as

Hi(x) = 1
2 log

(
2πeσ2

i
)
= 1

2 log(Nσ2
i ) +

1
2 log( 2πe

N )

= 1
2 log(Pi) +

1
2 log

( 2πe
N
) (6)

It can be seen that for EEG series of fixed length, the estimate of differential entropy is
equivalent to the logarithmic energy spectrum of a specific frequency band.

EEG signals have characteristic frequency ranges and spatial distribution, which are
often associated with different functional states of the brain. In the electroencephalogram,
each electrode is physically adjacent to the other and records the electrical signals in one
area of the brain. In order to maintain spatial information between multiple adjacent
channels, according to the mapping method shown in Figure 5, the one-dimensional EEG
signal is constructed into a two-dimensional matrix with a size of h× w. The values of h
and w are the maximum values of the electrodes in the vertical and horizontal directions,
respectively. Among them, a value of zero indicates that the signal of the channel is not used.
Then, the two-dimensional feature matrices of different frequency bands are superimposed
at the same time to obtain a three-dimensional matrix h × w× a, where a indicates the
total number of frequency bands. The 4D structure can be expressed as Xn ∈ Rh×w×a×2T ,
n = 1, 2, · · · , S, where S is the total number of samples. In this work, the values of h and
w were determined according to the two-dimensional matrix mapping of the distribution
positions of EEG acquisition electrodes. Two methods were used to select a compact graph
(8 × 9) and a sparse graph (19 × 19).
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2.2. The Structure of FSTception

The structure of the FSTception model proposed in this paper consists of two parts, the
first is that we use a deep separable convolutional network to further extract the frequency
and spatial information of the 4D input feature structure. Secondly, the LSTM with ordered
neuron structure is used to extract the contextual correlation of the time-series EEG signals,
thus mining the deep emotional information of the EEG signals and improving the accuracy
of emotion recognition.

2.2.1. Frequency Spatial Characteristic Learning

Both spatial and temporal information is vital for time-series EEG signals, which
represent activity relationships at different locations in the brain and the dynamics of brain
patterns over time. In order to better represent the spatial features of EEG information in
limited training samples, we propose the FSTception model, a CNN structure based on
depthwise separable convolutions. For the 4D frequency space time structure expressed
as Xn, we apply the FSTception model to obtain frequency and spatial information from



Entropy 2022, 24, 1830 9 of 21

each time slice. The structure is shown in Figure 6. First, since the size of the 2D feature
maps in the input samples is 8 × 9, the two-dimensional map size is relatively small. In
order to better preserve all the information, we set up two convolutional layers, the first
convolutional layer has 64 feature maps, and the filter size is 1× 1, the second convolutional
layer has 128 feature maps, the filter size is 3 × 3, and the deep features are extracted using
convolution kernels of different scales. Then, we use deep convolution to learn spatial
features. The main benefit of deep convolution is to reduce the total number of parameters
in the network training process because the convolution is not fully connected to the
previous feature map but are connected to each feature map separately to learn spatial
features of specific frequencies. Importantly, when used in specific EEG applications, this
operation provides a direct method to learn the spatial characteristics of each time slice so
that the spatial characteristics of specific frequencies can be effectively extracted. Finally,
we used separable convolution, which is a combination of deep convolution and pointwise
convolution. The main advantages are: (1) reduce the number of fitting parameters;
(2) summarize its feature maps separately by learning each core, and then merge the
optimal results and output, thereby expressing the relationship between the internal and
cross-feature maps of the feature map. When performing emotion recognition on EEG,
this operation is used to summarize a single feature map (depthwise convolution) and
optimize the combined feature map (pointwise convolution), because different feature
maps can represent information at different time scales. For the convolutional layers of this
network, zero-filling and rectified linear unit (ReLU) activation functions and normalization
operations are used. To better reduce overfitting and improve the robustness of the network,
we employ a max pooling layer with a size of 2 × 2 and a step size of 2 after the operation
of the convolution neural network. Finally, the output of the max-pooling layer is unrolled
and sent to a fully connected layer with 512 units. The frequency and spatial features of the
final output EEG are expressed as Qn = R512×2T .
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2.2.2. Temporal Characteristic Learning

Since the EEG signal contains dynamic content, the changes between time slices in
the 4-dimensional structure may hide other information, which may help perform more
accurate sentiment classification. Considering that the long short-term memory (LSTM)
network has better modeling capabilities for time series information, this paper uses
ON-LSTM to integrate neurons into the LSTM through specific sorting, thereby allowing
ON-LSTM to learn the hierarchical structure information automatically [35]. The detailed
structure of ON-LSTM is shown in Figure 7. ON-LSTM is actually a change in the overall
design of the LSTM cell state update. The cell state is done in a hierarchical operation, and
the traditional LSTM is to update all the cell states. The cell state is out of order, while
ON-LSTM to cell state is updated by two integers for the hierarchy and then hierarchical for
computation. This paper is the first innovative use of ON-LSTM in the temporal analysis
of EEG emotional features. ON-LSTM is an improved network structure based on LSTM,
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given a CNN output encoding sequence Qn = (q1, q2, q2T), where qt = R512 and t = 1, 2, 2T.
We apply an ON-LSTM layer with 128 data stores to discover the temporal dependence of
internal structural segments. The gate structure and output structure of ON-LSTM are the
same as those of general LSTM:

ft = σ
(

W f qt + U f ht−1 + b f

)
(7)

it = σ(Wiqt + Uiht−1 + bi) (8)

ot = σ(Woqt + Uoht−1 + bo) (9)

ĉt = tan h(Wcqt + Ucht−1 + bc) (10)

ht = ot
◦ tan h(ct) (11)

where historical information ht−1 and current information are input, the input gate it deter-
mines the amount of change of the input vector qt to the information in the storage unit at
the current moment. Output gates ot manipulate the output of information contained in the
current storage unit. The forget gate ft determines the degree of influence of the historical
information ht−1 at the last moment on the information in the current storage. ht is the final
output of the ON-LSTM unit at a time t. σ(·) is the logistic sigmoid function, tan h(·) is the
hyperbolic tangent function, W· and U· are the weight matrix corresponding to each gate.
b· the bias term corresponding to each gate. ◦ is the corresponding element multiplication.
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The improvement of ON-LSTM relative to LSTM is different in the update mechanism
from ĉt to ct, thus introducing a hierarchical structure of based on LSTM.

f̃t =
→
cs
(

so f tmax
(

Wjqt + Ujht−1 + b f

))
(12)

it =
←
cs(so f tmax(Wiqt + Uiht−1 + bi)) (13)

wt = f̃t
◦ ĩt (14)

ct = wt
◦
(

ft
◦ct−1 + ĩt

◦ c̃t

)
+
(

f̃t − wt

)
◦ct−1 +

(
ĩt − wt

)
◦ c̃t (15)

where
→
cs is cumsum from left to right, and

←
cs is cumsum from right to left. The main

forget gate f̃t determines the level of influence to the hierarchical data in the current data
storage from the hierarchical information content included in the historical in-formation
ht−1 at the last moment. The main input gate ĩt determines the amount of change of
the level information contained in the input vector qt at the current moment to the level
information in the storage unit. After ON-LSTM sorts the neurons, the information level



Entropy 2022, 24, 1830 11 of 21

is represented by the front and back of the position. Then, when updating the neuron,
first predict the historical level ht−1 and the input level qt, respectively, and update the
neurons between partitions through these two levels. ON-LSTM partition update is shown
in Figure 8. In this way, the high-level information may retain a considerable distance
because the high-level will directly copy the historical information so that the historical
information is continuously copied without being changed, and the low-level information
may be updated at each step of input. Because the lower layer directly copies the input, and
the input is constantly changing, a hierarchical structure is formed through information
classification. More generally speaking, it is a group update. Higher group information
is transmitted farther (larger span), and lower group span is more minor. These different
spans form the hierarchical structure of the input sequence. By learning the hierarchical
structure information, it can better mine the hidden connections between each time slice
and then achieve more accurate sentiment classification.
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Figure 8. ON-LSTM partition update. The numbers are randomly generated, with historical infor-
mation at the top, current input at the bottom, and currently integrated output in the middle. The
yellow part at the top is the historical information level (the main forgetting gate), the green part
at the bottom is the input information level (the main input gate), the yellow part in the middle is
the directly copied historical information, the green is the directly copied input information, the
purple is the intersection information fused according to the LSTM, and the white is the unrelated
“blank area”.

The final node output of ON-LSTM is used to represent the highest level of the
EEG segment, Yn ∈ R128, which integrates the frequency, time, and space features of the
EEG segment.

2.3. Classification

According to the final characteristics representation Yn, we apply the fully connected
layer and the softmax activation function to predict and analyze the sample label of the
EEG segment Xn. The calculation is as follows

Out = AYn + b = [out1, out2, · · · , outc] (16)
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where A represents the transform matrix, b represents the bias, and m represents the number
of emotion categories. Then, according to the output result, it is sent to the softmax classifier
to obtain the final emotion discrimination result., which can be described as

P( c|Xn) =
exp

(
outj

)
i=c
∑

i=1
exp(outi)

(j = 1, · · · , c) (17)

where represents the normalized prediction results of each category. In back propagation,
the Adam gradient algorithm is used.

3. Results
3.1. Experimental Setup

The tasks in this paper are done on TensorFlow on a suitable GPU (Nvidia Quadro
P5000) using Python 3.7 and Keras. For each trial, we completed a five-fold cross validation
and measured the mean classification accuracy (ACC) and standard deviation (STD) for
each experimenter. The final characteristics of everyone’s mode are shown as the mean
ACC and STD of all subjects. Applying the Adam boost loss function, we set the learning
rate to 0.003, the batch size to 120, and the epoch to 100. Codes are available at https:
//github.com/lixiaonian2022/code.git (accessed on 14 July 2022).

All EEG trials are divided into five groups randomly, then four folds of trials are
combined as training data, and the left 1-fold is considered as test data. The experiments
are repeated five times so that every fold has a chance to be the test data. The result is
calculated as the average of five experiments.

3.2. Dataset

All subjects were in good physical and psychological health, and 32 conductor AgCl
electrodes were used in the collection of data, with scalp electrodes positioned in accordance
with the international standard 10–20 system.

3.2.1. SEED Dataset

The SEED data set [36] has a total of 15 physical and mental health subjects (seven
men, eight women, mean age 23.27). Each subject performed three sets of experiments, and
each experiment watched 15 movie clips (five positive segments, five negative segments,
five neutral segments). The viewing process of each segment can be divided into four
stages, including a 5-s start prompt, 4-min movie playback time, 45-s self-assessment, and
15-s rest time. During the film screening, two films with the same emotion will not be
displayed consecutively. Each volunteer carried out three experiments, each time separated
by one week, for a total of 45 experiments.

3.2.2. DEAP Dataset

The DEAP data set [37] contains 32 subjects, and each subject has 32 channels of EEG
signals and 8 channels of peripheral physiological signals. The content of the DEAP dataset
is shown in Table 3. The 32 channels EEG signal is used as the experimental data in this
paper. The EEG data signal was first sampled at a sampling frequency of 512 Hz. Then,
the sampling frequency was reduced to 128 Hz, and then filtered using a 4.0~45.0 Hz filter
to remove EOG artifacts. Each subject watched 40 one-minute emotional music videos.
After watching each short video, the subjects scored the level of arousal, valence, liking,
and controlling influence. In this experiment, only two dimensions of arousal and potency
were selected for testing.

3.3. EEG Data Preprocessing

In order to eliminate the influence of artificial interference, such as ECG, EMG, and
power frequency interference, on emotion recognition, we retained more practical com-

https://github.com/lixiaonian2022/code.git
https://github.com/lixiaonian2022/code.git
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ponents of emotional EEG. The raw multichannel EEG data were first filtered using a
Butterworth bandpass filter, using 1 Hz and 50 Hz limits to divide the frequency bands
into five bands containing emotional information. These include the δ band (1 to 4 Hz), the
θ band (4–8 Hz), the α band (8–13 Hz), the β band (13–30 Hz), and the γ band (30–50 Hz).
Each trial contains an EEG signal of 63 s. Among them, the first 3 s is the baseline signal,
and the 60 s is the emotional signal of the EEG.

Table 3. DEAP dataset content.

Name Size Contents

Data 40 × 40 × 8064 videos × channels × data

Labels 40 × 4 videos × labels
(valence, arousal, dominance, liking)

The EEG of 63 s was divided into 126 segments with a length of 0.5 s on average, the
first 3 s was the baseline signal, and the eigenvalue of each frequency band of each segment
was calculated. In the experiment, in order to improve the accuracy of the experiment, the
difference between the characteristic value of EEG recorded by the subject under the stimu-
lus and the mean characteristic value of the baseline signal was used as the experimental
data, and the difference at the moment was recorded as the average segmentation of the 63 s
EEG into 126 segments with the length of 0.5 s, in which the first 3 s was the baseline signal.
The eigenvalue of each frequency band of each segment is calculated. In the experiment, in
order to improve the accuracy of the experiment, the difference between the characteristic
value of EEG recorded by the subject under the stimulus and the mean characteristic value
of the baseline signal was used as the experimental data, and the difference at time t was
denoted as EEG_removedt. The calculation formula is as follows

EEG_removedt =

f eaturet − base_ f eature1+base_ f eature2+···+base_ f eature6
6

(18)

where f eaturet is the EEG characteristic value extracted at time t and base_ f eaturei(i = 1, 2, · · · , 6)
is the baseline signal characteristic value extracted at time i.

3.4. Results and Discussion

The research results of the 4D-FSTception method proposed in this article on the SEED
data set is shown in Table 4, and as shown in bar Figure 9, numerical changes can be
observed and compared more easily. The accuracy rate of all subjects exceeded 90%, and
the average accuracy rate reached 95.49%. For different subjects, the classification accuracy
rate is different. For subject 1, the average classification accuracy rate in the three time
periods is 91.5% (the lowest), and for subject 4, the classification accuracy rate in the three
time periods is 91.5%. The average classification accuracy rate is 99.59% (the highest),
which reflects individual differences. However, for the same subject, the classification
accuracy of different time periods fluctuates. For example, for subject 8, the classification
accuracy rate in time period 2 is 94.81% (lowest), and the classification accuracy rate in time
period 3 is 97.63% (highest). Among 15 subjects, eight items (#2, #4, #6, #8, #9, #10, #11, #13)
are better than the mean classification accuracy.

Table 4. Recognition Accuracy for each subject on SEED dataset.

Subjects Accuracy Subjects Accuracy Subjects Accuracy Subjects Accuracy

1 92.45% 5 95.06% 9 95.89% 13 96.12%
2 96.86% 6 97.63% 10 96.83% 14 95.32%
3 94.17% 7 93.99% 11 95.83% 15 91.50%
4 99.59% 8 96.15% 12 95.03%
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Figure 9. Overall performance of the 4D-FSTception model on SEED dataset.

The experimental results of the 4D-FSTception method on the DEAP dataset are shown
in Tables 5 and 6, respectively, and as shown in bar Figure 10. The average accuracy of
arousal classification is 95.02%, and the standard deviation is 1.85%. Only two subjects (#2
and #22) had an accuracy rate less than 90%. In particular, the valence and arousal accuracy
rates of tester #22 were 79.88% and 84%, respectively, which were lower than other testers.
The reason for this may be that the subjects were inattentive during the test operation, or
the level of subjective experience was not effectively reported after the test.

Table 5. Recognition Accuracy for each subject on “Arousal”.

Subjects Accuracy Subjects Accuracy Subjects Accuracy Subjects Accuracy

1 98.13% 9 90.50% 17 91.50% 25 98.13%
2 90.00% 10 96.00% 18 95.38% 26 92.63%
3 97.25% 11 96.50% 19 93.50% 27 98.38%
4 90.50% 12 97.50% 20 96.88% 28 96.00%
5 95.00% 13 99.86% 21 97.13% 29 93.38%
6 98.75% 14 97.00% 22 79.88% 30 90.88%
7 98.00% 15 94.63% 23 98.38% 31 95.00%
8 96.25% 16 98.25% 24 96.00% 32 93.63%

Table 6. Recognition Accuracy for each subject on “Valence”.

Subjects Accuracy Subjects Accuracy Subjects Accuracy Subjects Accuracy

1 97.88% 9 93.75% 17 91.25% 25 96.75%
2 89.88% 10 96.13% 18 96.50% 26 92.13%
3 95.63% 11 92.00% 19 92.00% 27 98.75%
4 93.00% 12 96.63% 20 98.00% 28 95.13%
5 87.50% 13 98.00% 21 96.00% 29 94.88%
6 97.13% 14 97.25% 22 84.00% 30 90.13%
7 98.25% 15 95.50% 23 98.63% 31 96.25%
8 95.88% 16 98.00% 24 89.88% 32 94.75%
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Figure 10. Overall performance of the 4D-FSTception model on DEAP dataset.

The accuracy, precision, recall, and F1-score metrics are used to evaluate the perfor-
mance of the 4D-FSTception. The evaluation index is calculated based on all the predicted
results in DEAP and SEED datasets, as shown in Tables 7 and 8. The confusion matrix of
different data sets is shown in Figures 11 and 12. The superiority of the model in this paper
in EEG signal emotion recognition was fully demonstrated.

Table 7. The score of 4D-FSTception evaluation index is on SEED dataset.

Classes Accuracy Precision Recall F1-Score

Negative 96.67% 94.87% 92.50% 93.67%
Neutral 93.42% 94.29% 93.94% 96.12%
Positive 96.38% 98.96% 95.00% 96.94%

Table 8. The score of 4D-FSTception evaluation index is on DEAP dataset.

Valence/Arousal Class Accuracy Precision Recall F1-Score

Valence
High 94.90% 98.48% 93.94% 96.47%

Low 93.42% 98.41% 93.18% 96.12%

Arousal
High 96.32% 98.02% 91.67% 94.74%

Low 93.72% 93.30% 95.37% 96.71%

In order to verify the computational performance of the methods in this paper, we will
choose different methods for time cost analysis in both SEED and DEAP datasets. To be
able to view and compare maximum and minimum values in a more straightforward way.
Figures 13 and 14, respectively, show the performance of accuracy and time cost by different
methods in different datasets. As shown in Table 9, for the SEED dataset, a comparison
between the HCNN method with a sparse input map of 19 × 19 and the 4D-CRNN method
with the same input map of 8 × 9 as in this paper was used. After training, it can be seen
that the accuracy of the compact graph is 95.49%, which is 6.89% higher than that of the
sparse graph. Furthermore, in terms of their time cost, the compact map spends only 660 s
per topic in the five-fold cross-validation, which is almost a quarter of the time cost of the
sparse map. Moreover, it can be found that the accuracy of our compact map is close to
that of the 4D-CRNN method, which is also a compact map. However, in terms of time
cost, the method in this paper is 143 s faster than the 4D-CRNN method. On the DEAP
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dataset, our compact map outperforms the sparse map and outperforms the 4D-CRNN
method with the same compact map in terms of accuracy and training time cost. For
valence classification, the average accuracy of our method is 95.49%, which is 0.42% higher
than that of the 4D-CRNN method with the same input map. In addition, the time cost
of this paper’s method is even 15 s faster than that of the 4D-CRNN method. For arousal
classification, we can obtain a similar conclusion. The reason for obtaining similar results
may be that adding a sparse map of zeros between adjacent electrodes does not add any
useful information. The lower time cost of the compact map may be due to its smaller size,
which involves fewer convolution filters to compute. We obtained the model parameter
quantities as well as the floating-point operations to be 12.7 M and 20.61 G, respectively, in
the DEAP dataset. Compared with other methods, the algorithm in this paper has better
performance. The results for both datasets lead us to believe that the method in this paper
exhibits better computational performance when classifying emotions.
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To verify the importance of the combined structure of our proposed CNN model and
ON-LSTM, we performed two different combinations of CNN + LSTM (4D-FSTception
(LSTM)) and CNN + ON-LSTM (4D-FSTception) in the SEED and DEAP datasets. The
comparative experimental results are shown in Figure 15. Structure experiment. The
average classification accuracy of 4D-FSTception in the SEED dataset and the DEAP dataset
is 0.4% higher than the average classification accuracy of 4D-FSTception (LSTM). The results
show that the ON-LSTM structure contributes to modeling time-series information in EEG
signal emotion recognition. The hidden connection between each time slice can be better
mined by learning the hierarchical structure information. In particular, the output results
of the network proposed in this paper, after the EEG frequency and spatial information
modeling are used as the input of the ON-LSTM structure, which can better capture the
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continuity of emotion changes in time for the emotion recognition of the EEG signal with
the 4D structure, is of great significance.
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3.5. Method Comparison

In order to show that the 4D-FSTception method is superior to other classification meth-
ods, this article chooses the following EEG emotion classification methods for comparison.

1. HCNN [38]: It uses a hierarchical CNN for EEG emotion classification and recognition
and uses the differential entropy features of two-dimensional EEG as the input of the
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neural network model, which proves that the band and band are more suitable for
emotion recognition. The method considers the spatial information and frequency
information of the EEG signal.

2. RGNN [39]: It uses the adjacency matrix in the graph neural network to simulate the
inter-channel relationship in the EEG signal and realizes the simultaneous capture of
the relationship between the local channel and the global channel. The connection
and sparseness of the adjacency matrix are determined by humans. Supported by the
neurological theory of brain tissue, this method shows that the relationship between
global channels and local channels in the left and right hemispheres plays an important
role in emotion recognition.

3. BDGLS [40]: It uses differential entropy features as input data. By combining the
advantages of dynamic graph convolutional neural networks and generalized learning
systems, emotion recognition accuracy can be improved over the full frequency
band of EEG features. This method considers the frequency information and spatial
information of the EEG signal at the same time.

4. PCRNN [32]: It first uses the CNN module to obtain space characteristics from each
2D EEG topographic map, then uses LSTM to obtain time characteristics from the
EEG vector sequence, and finally integrates space and time characteristics to carry out
emotional classification.

5. 4D-CRNN [41]: It first extracts features from EEG signals to construct a four-dimensional
feature structure, then uses convolutional recurrent neural networks to extract EEG
signals to obtain spatial features and frequency features, and uses LSTM to extract time
from EEG vector sequences features, and finally carry out EEG emotion classification.

Table 9. Comparison of computational performance with other methods.

Method Map
Shape

SEED DEAP-Valence DEAP-Arousal

Acc
(%)

Time
Cost (s) Acc (%) Time

Cost (s) Acc (%) Time
Cost (s)

FLOPS
(G)

Params
(M)

HCNN [38] 19 × 19 88.60 3600 - - - - - -

4D-CRNN [42] 8 × 9 94.74 811 94.22 395 94.58 400 18.63 15.8

4D-FSTception (LSTM) (ours) 8 × 9 95.44 668 94.29 284 94.60 290 19.94 14.4

4D-FSTception (ours) 8 × 9 95.49 660 94.61 280 95.02 279 20.61 12.7

6. 4D-aNN (DE) [42]: It uses 4D space-spectrum-time representations containing the
space, frequency spectrum, and time information of the EEG signal as input. An
attention mechanism is added to the CNN module and the bidirectional LSTM module.
This method also considers the time, space, and frequency of EEG information.

7. ACRNN [43]: It adopts the convolutional recurrent neural network method based
on the attention mechanism. It first uses the attention mechanism to distribute the
weights between channels, then uses the CNN to extract the spatial information of the
EEG, and finally uses the RNN to integrate and extract the temporal information fea-
tures of the EEG. The method considers spatial information and temporal information
for the emotion classification of EEG signals.

The above methods considered in the statistical validation experiments in this paper
mainly include HCNN, RGNN, and BDGLS methods that used only frequency and spatial
information for sentiment classification and recognition, as well as PCRNN and ACRNN
methods that used spatial and temporal information features for sentiment classification.
We also worked with 4D-CRNN and 4D-aNN methods that used frequency, spatial, and
temporal features for sentiment recognition at the same time.

We reproduce these methods described above based on the structural parameters
exploited in the original paper. We conduct five-fold cross-validation experiments for these
approaches on the SEED and DEAP data. We list the mean accuracy and standard deviation



Entropy 2022, 24, 1830 19 of 21

for each method on the SEED data set and DEAP data set in Table 10. For the SEED data set,
the ACC of 4D-FSTception is 95.49%, which is 6.89% higher than the HCNN method that
only considers the spatial information of the EEG signal, and it is also 1.25% higher than the
RGNN. For the frequency information of the EEG signal simultaneously and the BDGLS
method of spatial information, this method is 1.83% higher than this method. Both the 4D-
CRNN and 4D-aNN (DE) methods consider the frequency, space, and time features at the
same time. We choose the same input feature structure, and the differential entropy feature
is selected in the frequency feature extraction. The 4D-FSTception is 0.75% higher than
4D-CRNN and 0.6% higher than 4D-aNN. For the DEAP data set, the experimental method
in this paper achieves good results in EEG emotion recognition; its valence and arousal
are 94.61% and 95.02%, respectively, which are 0.39% and 0.44% higher than 4D-CRNN,
respectively. It is 4.35% and 4.04% higher than PCRNN, which only considers frequency
and temporal information, and 0.89% and 1.64% higher than ACRNN, which only considers
spatial and temporal information. For the 4D-CRNN method that simultaneously considers
frequency, spatial, and temporal features, our method is 0.39% and 0.44% higher than
4D-CRNN in valence and arousal, respectively.

Table 10. The performances (average ACC ± STD (%)) of the compared methods on SEED and DEAP
datasets.

Method Information
ACC ± STD (%)

SEED DEAP-Valence DEAP-Arousal

HCNN [38] Frequency + spatial 88.60 ± 2.60 - -
RGNN [39] Frequency + spatial 94.24 ± 5.95 - -
BDGLS [40] Frequency + spatial 93.66 ± 6.11 - -
PCRNN [32] Spatial + temporal - 90.26 ± 2.88 90.98 ± 3.09
ACRNN [43] Spatial + temporal 93.72 3.21 93.38

4D-CRNN [41] Frequency + spatial + temporal 94.74 ± 2.32 94.22 ± 2.61 94.58 ± 3.69
4D-aNN (DE) [42] Frequency + spatial + temporal 95.39 ± 3.05 - -

4D-FSTception (LSTM) (ours) Frequency + spatial + temporal 95.44 ± 0.32 94.29 ± 1.89 94.60 ± 2.08
4D-FSTception (ours) Frequency + spatial + temporal 95.49 ± 3.01 94.61 ± 2.83 95.02 ± 2.85

To sum up, the method proposed in this paper shows the best emotion recognition and
classification performance in any combination of frequency, time, and space information or
in the combination of the three characteristics.

4. Conclusions

The paper points out a 4D-FSTception method for EEG emotion identification. The 4D
input features include the frequency features of different frequency bands of the EEG signal,
as well as the continuous-time features, while also maintaining the spatial information
between channels. This method first extracts the differential entropy feature vectors of
different frequency bands of the EEG signal at the same time. Secondly, according to the
distribution position of the electrodes, the multichannel one-dimensional feature vector is
converted into a two-dimensional feature matrix, which fully considers the spatial position
information of the EEG channel. Then, the two-dimensional feature matrix is superimposed
to form a three-dimensional matrix, and finally, the three-dimensional EEG sequence time
segments divided into fixed lengths constitute 4D input features. Next, we introduce the
FSTception model closely combined with CNN and ON-LSTM in detail. CNN is used to
solve frequency and space data, and ON-LSTM is used to obtain time correlations from
CNN output to reveal the underlying deep emotional characteristics. The proposed method
achieves better performance on both SEED and DEAP datasets. By comparing with seven
excellent studies, the 4D-FSTception model can effectively improve the accuracy of emotion
discrimination in EEG signals. We hope to enhance our paper by building our own data
set and verifying the validity of our approach in a real-world scenario. In future work, we
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can consider combining DE features with more features to further enhance the emotion
recognition performance of EEG signals through feature complementarity.

Author Contributions: Material preparation, data collection, and analysis were performed by Q.L.
(Qi Li), Q.L. (Quanyang Liu), Y.M. and X.Z. The first draft of the manuscript was written by Q.L. (Qi Li)
and all authors commented on previous versions of the manuscript. Y.L., Q.Z. and F.Y. made critical
revisions to work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Department Project of Jilin
Province, grant number YDZJ202101ZYTS064.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Datasets are available in a publicly accessible repository that does not
issue DOIs. These data can be found at the following address: http://www.eecs.qmul.ac.uk/mmv/
datasets/deap/index.html (accessed on 20 July 2022), and https://bcmi.sjtu.edu.cn/home/seed/
(accessed on 16 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bota, P.J.; Wang, C.; Fred, A.L.N.; Da Silva, H.P. A review, current challenges, and future possibilities on emotion recognition

using machine learning and physiological signals. IEEE Access 2019, 7, 140990–141020. [CrossRef]
2. Huang, Y.A.; Dupont, P.; Van de Vliet, L.; Jastorff, J.; Peeters, R.; Theys, T.; Van Loon, J.; Van Paesschen, V.; Van Den Stock, J.;

Vandenbulcke, M. Network level characteristics in the emotion recognition network after unilateral temporal lobe surgery. Eur. J.
Neurosci. 2020, 52, 3470–3484. [CrossRef]

3. Egger, M.; Ley, M.; Hanke, S. Emotion recognition from physiological signal analysis: A review. Electron. Notes Theor. Comput. Sci.
2019, 343, 35–55. [CrossRef]

4. Luo, J.; Tian, Y.; Yu, H.; Chen, Y.; Wu, M. Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising
Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals. Entropy 2022, 24, 577. [CrossRef]

5. Yao, L.; Wang, M.; Lu, Y.; Li, H.; Zhang, X. EEG-Based Emotion Recognition by Exploiting Fused Network Entropy Measures of
Complex Networks across Subjects. Entropy 2021, 23, 984. [CrossRef]

6. Keshmiri, S.; Shiomi, M.; Ishiguro, H. Entropy of the Multi-Channel EEG Recordings Identifies the Distributed Signatures of
Negative, Neutral and Positive Affect in Whole-Brain Variability. Entropy 2019, 21, 1228. [CrossRef]

7. Pan, L.; Wang, S.; Yin, Z.; Song, A. Recognition of Human Inner Emotion Based on Two-Stage FCA-ReliefF Feature Optimization.
Inf. Technol. Control 2022, 51, 32–47. [CrossRef]

8. Gao, Z.; Cui, X.; Wan, W.; Gu, Z. Recognition of Emotional States Using Multiscale Information Analysis of High Frequency EEG
Oscillations. Entropy 2019, 21, 609. [CrossRef]

9. Chao, H.; Dong, L.; Liu, Y.; Lu, B. Emotion recognition from multiband EEG signals using CapsNet. Sensors 2019, 19, 2212.
[CrossRef]

10. Catrambone, V.; Greco, A.; Scilingo, E.P.; Valenza, G. Functional Linear and Nonlinear Brain–Heart Interplay during Emotional
Video Elicitation: A Maximum Information Coefficient Study. Entropy 2019, 21, 892. [CrossRef]

11. Krishnan, P.T.; Joseph Raj, A.N.; Rajangam, V. Emotion classification from speech signal based on empirical mode decomposition
and non-linear features. Complex Intell. Syst. 2021, 7, 1919–1934. [CrossRef]

12. Danelljan, M.; Robinson, A.; Shahbaz Khan, F.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators
for visual tracking. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 472–488. [CrossRef]

13. Zhang, J.; Min, Y. Four-Classes Human Emotion Recognition Via Entropy Characteristic and Random Forest. Inf. Technol. Control
2020, 49, 285–298. [CrossRef]

14. Cao, R.; Shi, H.; Wang, X.; Huo, S.; Hao, Y.; Wang, B.; Guo, H.; Xiang, J. Hemispheric Asymmetry of Functional Brain Networks
under Different Emotions Using EEG Data. Entropy 2020, 22, 939. [CrossRef]

15. Liu, Y.; Sourina, O. Real-time fractal-based valence level recognition from EEG. In Transactions on Computational Science XVIII;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 101–120. [CrossRef]

16. Lin, Y.P.; Wang, C.H.; Jung, T.P.; Wu, T.L.; Jeng, S.K.; Duann, J.R.; Chen, J.H. EEG-based emotion recognition in music listening.
IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [CrossRef]

17. Altan, G.; Yayık, A.; Kutlu, Y. Deep learning with ConvNet predicts imagery tasks through EEG. Neural Process. Lett. 2021, 53,
2917–2932. [CrossRef]

18. Subha, D.P.; Joseph, P.K.; Acharya, U.R.; Lim, C.M. EEG signal analysis: A survey. J. Med. Syst. 2010, 34, 195–212. [CrossRef]
19. Zou, X.; Feng, L.; Sun, H. Compressive Sensing of Multichannel EEG Signals Based on Graph Fourier Transform and Cosparsity.

Neural Process. Lett. 2020, 51, 1227–1236. [CrossRef]

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/index.html
https://bcmi.sjtu.edu.cn/home/seed/(accessed
https://bcmi.sjtu.edu.cn/home/seed/(accessed
http://doi.org/10.1109/ACCESS.2019.2944001
http://doi.org/10.1111/ejn.14849
http://doi.org/10.1016/j.entcs.2019.04.009
http://doi.org/10.3390/e24050577
http://doi.org/10.3390/e23080984
http://doi.org/10.3390/e21121228
http://doi.org/10.5755/j01.itc.51.1.29430
http://doi.org/10.3390/e21060609
http://doi.org/10.3390/s19092212
http://doi.org/10.3390/e21090892
http://doi.org/10.1007/s40747-021-00295-z
http://doi.org/10.1007/978-3-319-46454-1_29
http://doi.org/10.5755/j01.itc.49.3.23948
http://doi.org/10.3390/e22090939
http://doi.org/10.1007/978-3-642-38803-3_6
http://doi.org/10.1109/TBME.2010.2048568
http://doi.org/10.1007/s11063-021-10533-7
http://doi.org/10.1007/s10916-008-9231-z
http://doi.org/10.1007/s11063-019-10150-5


Entropy 2022, 24, 1830 21 of 21

20. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

21. Khalil, R.A.; Jones, E.; Babar, M.I.; Jan, T.; Zafar, M.H.; Alhussain, T. Speech emotion recognition using deep learning techniques:
A review. IEEE Access 2019, 7, 117327–117345. [CrossRef]

22. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.
Intell. Mag. 2018, 13, 55–75. [CrossRef]
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