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Abstract: Multi-modal fusion can exploit complementary information from various modalities and
improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-
modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information
fusion in emotion recognition. Initially, we apply the STP to factorize a high-dimensional weight
matrix into two low-rank factor matrices without dimension matching constraints. Next, we project
the multi-modal features to the low-dimensional matrices and perform multiplication based on the
STP to capture the rich interactions between the features. Finally, we utilize an STP-pooling method
to reduce the dimensionality to get the final features. This method can achieve the information
fusion between modalities of different scales and dimensions and avoids data redundancy due to
dimension matching. Experimental verification of the proposed method on the emotion-recognition
task using the IEMOCAP and CMU-MOSI datasets showed a significant reduction in storage space
and recognition time. The results also validate that the proposed method improves the performance
and reduces both the training time and the number of parameters.

Keywords: multi-modal information fusion; semi-tensor product; emotion recognition; low-rank
matrix

1. Introduction

The multi-modal fusion technique refers to integrating the information of multiple
modalities by classification or prediction [1]. It has turned out to be an increasingly inter-
esting topic in artificial intelligence applications such as multimedia event detection [2,3],
sentiment analysis [4–6], behavior recognition [7], cross-modal translation [8,9], multi-
modal urban sound tagging [10], visual question answering (VQA) [1,11], and emotion
recognition [12–15]. The multi-modal fusion technique performs better prediction than
employing any unimodal information [3].

Emotion recognition is considered to be a hot research topic in the field of multi-modal
fusion and aims to integrate video, audio, and text modalities by employing fusion strate-
gies at feature, model, and decision levels [16]. Previous works [17,18] merged modalities in
a straightforward way. They have demonstrated the performances of feature-level fusion in
the emotion-recognition task that could not model the complicated relationships. Decision-
level fusion in [19,20] is usually implemented by combining the individual classification
scores and is therefore not able to well capture the mutual correlation among different
modalities. In [21], model-level fusion was performed by hidden Markov models, which
facilitated the establishment of optimal connections among modailites according to the
maximum entropy principle and the maximum mutual information criterion.

Recently, unlike existing approaches, the tensor-product representations have been
extensively used for the multi-modal emotion-recognition tasks due to their impressive
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capabilities to directly achieve dynamic interactions in both inter-modality and intra-
modality [3,22–24]. Zadeh et al. [25] proposed the tensor fusion network (TFN), by us-
ing the tensor cross-product to calculate the interactions between different features and
learning both inter-modality and intra-modality dynamics in an end-to-end manner. It per-
forms fusion at the feature level. Unfortunately, as the characteristic dimension increases,
the number of parameters in the model increases exponentially, leading to high computa-
tion and memory costs. To tackle this problem, the low-rank multi-modal fusion (LMF) [26],
the multi-modal, factorized, bilinear pooling (MFB) model [27], the memory fusion net-
work (MFN) [28], and the multi-modal transformer (MuLT) [14] have been proposed to
further improve the processing efficiency and evaluation. Saurav Sahay et al. proposed the
LMF-MulT [15] method, which builds up on the MuLT and applies transformers to fused
multi-modal signals that aim to capture all inter-modal signals via the LMF. It is trained
fast and uses few parameters. It performs fusion at the model or decision level. However,
these methods must satisfy the limitation of the dimension-matching conditions in matrix
multiplication. We notice that in real cases, the features of various modalities have different
scales and dimensions. Consequently, this can result in the inability to calculate or the need
to match dimensions when calculating, leading to data redundancy. Most importantly,
huge amounts of data require expensive hardware to store; storage devices thus limit the
applicability of such methods on resource constrained devices, such as mobile phones and
wearable devices. There is an urgent need to reduce storage space and runtime to enable
deployment on mobiles and under-resourced devices.

To solve the aforementioned problems, we introduce a generalization mechanism of
the conventional matrix product [29] in MFM pooling for multi-modal fusion, i.e., the semi-
tensor product (STP). The STP does not depend on the dimensionality of the operational
matrices or tensors. Due to its flexibility, the STP has been used in many fields. In the
compressed sensing technique [30], STP has been introduced to replace the conventional
matrix product in the sampling model. For visual question answering [31], the block-
wise operation of STP has been applied to multi-modal fusion. In digital watermarking,
Chen et al. [32] proposed a general nonnegative matrix factorization based on STP.

In this paper, we propose a hierarchical fusion method named parallel, multi-modal,
factorized bilinear pooling based on semi-tensor product (PFBP-STP). The proposed method
improves the efficiency of fusion at the feature level and decision level for various text
and audio/video-based tasks. More importantly, it can make information fusion between
different scales and dimensions of modalities independent of the dimension matching
conditions in matrix multiplication. We applied this computationally efficient and flexible
method to the emotion-recognition task.

The main contributions of this paper can be summarized as follows:

(1) Multi-modal, factorized, bilinear pooling based on STP, which can avoid data redun-
dancy due to dimension matching, and reduces the computational and memory costs.

(2) We proposed a parallel, multi-modal, factorized, bilinear pooling method based on
STP which can capture the rich interactions between the features by hierarchical fusion,
and which realizes the arbitrary combination and fusion of three modalities.

(3) Experimental evaluation of the proposed methodology on two multi-modal datasets.

2. Notation and Preliminaries

In this section, a new matrix product named the semi-tensor product (STP) [29] is
briefly reviewed initially. It is a generalization of the traditional matrix product and is
applicable for two matrices of arbitrary dimensions. In addition, this generalization ensures
the availability of all fundamental properties of the conventional matrix product. Therefore,
it has become a very powerful and convenient new mathematical tool for investigating
many matrix-expression-related problems.

We provide some basic preliminaries of the STP [33,34], which serve as the necessary
theoretical basis of the proposed method.
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Definition 1. For two matrices X ∈ Rm×n and Y ∈ Rp×q, the left STP is denoted by n and can
be expressed as:

X n Y = (X⊗ It/n)
(

Y⊗ It/p

)
∈ R(m·t/n)×(t/p·q) (1)

where ⊗ denotes the Kronecker product [35], considering t = lcm(n, p) is the least common
multiple of n and p; It/n and It/p are identity matrixes.

In Equation (1), set n = p. It is obvious that left STP reverts to ordinary matrix
multiplication as X n Y = XY.

Definition 2. Given a non-negative matrix Zk×l
+ , we aim to find two non-negative matrices

X ∈ Rm×n
+ , Y ∈ Rp×q

+ , such that

Zk×l
+ = Xm×n

+ n Yp×q
+ (2)

where t = lcm(n, p) is the least common multiple of n and p; k = m · t/n and l = q · t/p.

Definition 3. Let X ∈ RNP be a row and W ∈ RP be a column. We split X into equal-size blocks
as
(
X1, X2, . . . , XP), such that Xi ∈ RN , i = 1, . . . , P defines the STP of X and W is denoted by

X n W, which is given as

X n W =
P

∑
i=1

Xiwi ∈ RN . (3)

3. Methodology

In this section, we first describe the architecture of the proposed model. Then, we
introduce the concept of STP to extend the idea of bilinear pooling. Finally, we propose a
parallel, multi-modal, factorized, bilinear pooling method based on the STP (PFBT-STP).

3.1. Model Architecture

Our method first obtains the unimodal representations x1 ∈ RI , x2 ∈ RJ and x3 ∈ RK

by passing the unimodal inputs information (which includes text, video, and audio data)
through three sub-embedding networks, fl , fa, and fv, respectively. Then, we fuse one of
these modalities with the other two modalities separately to exploit multi-modal, factorized,
bilinear pooling based on STP, as the dimensionality differs among the features. Finally, we
employ a decision fusion layer to improve the classification accuracy of the output features
z12 and z13 for emotion recognition. The basic architecture of the PFBP-STP is shown in
Figure 1.

3.2. Multi-Modal, Factorized Bilinear Pooling

In this section, we revisit the multi-modal bilinear models and the MFB pooling model.
Given two feature vectors x1 ∈ RI and x2 ∈ RJ , the multi-modal bilinear pooling is

defined as follows:
yi = xT

1 Wix2 (4)

where Wi ∈ RI×J is a projection matrix and yi ∈ R is the output of bilinear pooling.
To obtain a K-dimensional output y = [y1, . . . , yK], a tensorW = [W1, . . . , WK] ∈ RI×J×K

needs to be learned. Unfortunately, the tensor W is a high-dimensional representation
and introduces a larger number of parameters, which leads to a higher computation and
memory cost and an even greater risk of overfitting, although multi-modal bilinear pooling
can effectively capture the rich interactions between multi-modal features.
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Figure 1. The basic architecture of our PFBP-STP method for emotion recognition.

It is known from [36,37] that the low-rank approximation of non-negative matrix
factorization can reduce the dimensionality of the original matrix, along with computational
and memory costs. Hence, the two low-rank factor matrices have good interpretability,
which is obtained by factorization.

Inspired by the matrix factorization techniques [37], the projection matrix Wi in
Equation (4) can be factorized into two low-rank matrices.

Wi = UiVT
i ; (5)

therefore, Equation (4) can be re-written as

yi = xT
1 UiVT

i x2 =
k

∑
d=1

xT
1 ui

dviT

d x2 = 1T
(

UT
i x1 ◦VT

i x2

)
(6)

where d is the latent dimensionality of the factorized matrices Ui =
⌊
ui

1, . . . , ui
d, . . . , ui

k
⌋
∈

RI×k and Vi =
⌊
vi

1, . . . , vi
d, . . . , vi

k
⌋
∈ RJ×k, 1 ∈ Rk is an all-one vector, and the operation ◦

represents the element-wise multiplication of two feature vectors or the Hadamard product.
According to Equation (6), we can get the following expression:

y =
o

∑
i=1

xT
1 UiVT

i x2 = xT
1 UVTx2 (7)
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where y ∈ Ro, and we need to learn two three-order tensors, i.e., U = [U1, . . . , Uo] ∈
RI×k×o and V = [V1, . . . , Vo] ∈ RJ×k×o, to obtain the output feature y. Generally, we
reshape the tensors U and V as 2D matrices Ũ ∈ RI×ko and Ṽ ∈ RJ×ko, respectively.

The fused (final) vector z can be obtained by summing non-overlapping windows
of size h over the Hadamard product of projected matrices. We define the projections of
feature vectors x1 and x2 in matrices Ũ and Ṽ as x̂1 = Ũx1 and x̂2 = ṼTx2. We refer to the
following model as the MFB pooling:

z = SumPool(x̂1 ◦ x̂2, k). (8)

The above traditional multi-modal bilinear pooling method directly projects the features
to the low-dimensional matrices and performs multiplication. In this process, there are
two-dimensional matching conditions that must be satisfied in the matrix factorization and
multiplication. In Equation (5), the projection matrix Wi and two low-rank matrices Ui and
Vi have to follow the dimension matching constraints.

In practice, the dimensions of multi-modal information, i.e., text, video, and audio,
are different in the feature space. In this case, we need to match the dimensions, as
it would cause data redundancy if we were to continue to use the traditional matrix
factorization method.

3.3. Multi-Modal, Factorized Bilinear Pooling Based on STP

In order to solve the above problems, we propose a multi-modal, factorized bilin-
ear pooling method based on STP. We factorize the projection matrix in Equation (5) by
Definition 2 as follows:

Wi = Ui n VT
i (9)

where Wi ∈ RI×J , Ui ∈ Rp×m, and Vi ∈ Rq×n. The variable t = lcm(n, p) is the least
common multiple of n and p, I = p · t/m, and J = q · t/n. According to Equation (9),
Equation (4) can be rewritten as

yi = xT
1 Ui n VT

i x2 (10)

further

y =
o

∑
i=1

xT
1 Ui n VT

i x2 = xT
1 U n VTx2 (11)

where y ∈ Ro. We reshape the tensor U = [U1, . . . , Uo] ∈ Rp×m×o and V = [V1, . . . , Vo] ∈
Rq×n×o as 2D matrices ˜̃U ∈ Rp×mo and ˜̃V ∈ Rq×no, respectively.

We define the projection of feature vectors x1 and x2 in matrices ˜̃U and ˜̃V as x̄1 = ˜̃Ux1

and x̄2 = ˜̃VT
x2. Similarly, Equation (11) can be re-written as

y = x̄1 n x̄2 (12)

In addition, we propose a pooling method based on the STP (STP-pooling). The main
function of pooling is reducing the dimensionality, which is achieved by the multiple
dimension relation of the STP.

Let y ∈ R1×nh and w0 ∈ Rh. We can split y into n equal-sized blocks as y1, y2, . . . , yn ∈
R1×n. Then, the semi-tensor product can be represented as follows:

y n w0 =
h

∑
h=1

yhw(h) ∈ R1×n (13)

We get the final (fused) vector z by estimating the STP with a non-overlapping window
of size h over the vector y.

z = STP-pooling (y n w0, h) (14)
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In this section, the proposed method breaks the limitation of dimension matching
conditions in matrix multiplication and achieves information fusion easily between different
modalities having different scales and dimensions.

3.4. Parallel, Multi-Modal, Factorized Bilinear Pooling Based on STP (PFBP-STP)

Based on the above method, we arbitrarily merge the modalities of text, video, and
audio at different scales to achieve multi-model fusion that overcomes the dimensional lim-
itation in our task. The three modalities are represented as x1 ∈ RI , x2 ∈ RJ , and x3 ∈ RK,
respectively, and the fused features are denoted as z12 ∈ R0 and z13 ∈ R0, which represent
the fusion results of x1 with x2 and x3 respectively. Equation (11) can be rewritten as:

y12 =
o

∑
i=1

xT
2 Ui n VT

i x1 = xT
2 U n VTx1 (15)

y13 =
o

∑
i=1

xT
3 Ūi n V̄T

i x1 = x3
TŪ n V̄Tx1 (16)

We reshape the tensors U ∈ Rp×m×o, V ∈ Rq×n×o, Ū ∈ Rp̄×m̄×o, and V̄ ∈ Rq̄×n̄×o as
2D matrices Ũ ∈ Rp×mo, Ṽ ∈ Rq×no, ˜̄U ∈ Rp̄×m̄o, and ˜̄V ∈ Rq̄×n̄o respectively.

Let us define the projections of feature vectors x2 and x3 on matrices Ũ and ˜̄U as

x̄2 = Ũx2 and x̄3 = ˜̄UT
x3; meanwhile, we perform the projection of the feature vector x1

on matrices Ṽ ∈ Rq×no and ˜̄V ∈ Rq̄×n̄o as x̄1 = ṼTx1 and ˜̄x1 = ˜̄Vx1 respectively. Similarly,
we get y12 = x̄2 n x̄1 and y13 = x̄3 n ˜̄x1. According to Equations (13) and (14), we get the
final (fused) vectors z12 and z13 as follows:

z12 = STP-pooling (y12 n w0, h) (17)

z13 = STP-pooling (y13 n w0, h) (18)

The final (fused) vectors of z12 and z13 in Equations (17) and (18) are then fused via soft
fusion at the decision-level stage to further improve the results. The weighted combination
of the two groups of fusion modalities’ scores is mathematically shown as follows:

Sz(c) = W12 · S12(c) + W13 · S13(c)· (19)

where W12 and W13 are the weights of z12 and z13. We set the same weight W12 = W13
at the initial time. S12(c) and S13(c) represent the score matrices of z12 and z13 for the
prediction of class c, and Sz(c) stands for the final classification results. Algorithm 1 shows
the process of PFBT-STP.

Algorithm 1 PFBP-STP

Input: vectors x1, x2 and x3;
Output: vector z12, z13;

1: Factorize the projection matrix: Wi = Ui n VT
i .

2: Projecting: ∑o
i=1 xT

2 Ui n VT
i x1 and ∑o

i=1 xT
3 Ūi n V̄T

i x1.
3: STP-pooling: z12 = STP-pooling (y12 n w0, h), z13 = STP-pooling (y13 n w0, h).
4: Soft fusion: Sz(c) = W12 · S12(c) + W13 · S13(c).
5: Return Sz(c).

In this paper, we use the parallel, multi-modal, factorized, bilinear pooling method
based on STP to fuse x1 with x2 and x3, separately. It not only realizes the fusion of different
scales and dimensions of information, but also avoids the problem of exponential growth
when three modalities are fused simultaneously, leading to the risk of overfitting. This
method also incorporates the scores from separate fusion modalities and generates a new
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prediction label by applying the soft fusion method at the decision-level fusion stage to
further improve the results for the emotion-recognition task.

4. Experimental

In this section, we present various experiments to evaluate the characteristics of
PFBP-STP and to support the following research claims:

(1) Comparison with state-of-the-art: We conducted experiments on PFBP-STP and state-
of-the-art methods for an emotion-recognition task on IEMOCAP and CMU-MOSI
datasets;

(2) The advantage of the PFBP-STP: It allows the information fusion independent of the
dimension-matching conditions in matrix multiplication by replacing matrix products
with semi-tensor products;

(3) Complexity analysis: We evaluate the speed and learned parameters of the method by
comparing them with those of other methods.

4.1. Datasets

The proposed method was analyzed on the IEMOCAP [38] and CMU-MOSI [24]
multi-modal datasets for emotion recognition.

The IEMOCAP dataset is designed to classify emotions such as voice and gesture dis-
plays during human interactions. It is an active, multi-modal, and multi-speaker database.
It contains approximately 12 h of 302 videos. Each segment consists of nine different
emotions: happy, angry, sad, excited, surprised, fear, neutral, frustrated, and disappointed.
Ten actors performed three selected plays with clear emotional content. In addition to the
script, subjects were asked to improvise conversations in hypothetical situations designed
to elicit specific emotions (happy, angry, sad, depressed, and neutral states). Detailed
motion-capture information, interaction configurations that elicit real emotions, and the
size of the database make this corpus a valuable addition to existing databases to study
and model multi-modal and expressive human communication.

The CMU-MOSI dataset is an opinion-level annotated corpus containing sentiment
and subjectivity analysis of online videos such as YouTube videos. It includes 93 videos
with comments. In each video, there are multiple opinion clips and emotional annotations
within the range of [−3,3]. The two thresholds represent highly negative and highly
positive opinions, respectively. For each video, an annotator was given 8 choices: highly
negative (labeled as −3), negative (−2), weakly negative (−1), neutral (0), weakly positive
(+1), positive (+2), and highly positive (+3). They could also choose to be “uncertain” in
an ambigous situation. It not only has rigorous labels for sentiment intensity, subjectivity,
visual features per-frame, and point of view, but also shows audio features per-millisecond.

The two datasets contain multiple information and were each divided into a training
set, validation set, and test set to evaluate the generalization ability of the proposed model.
It was ensured that there were no identical speakers between the training set and the test
set. The data segmentation of the three sets is shown in Table 1.

Table 1. The data segmentation for training, validation, and test sets.

Dataset IEMOCAP CMU-MOSI

Training 6373 1284
Validation 1775 229

Test 1807 686

4.2. Multi-Modal Data Features

The IEMOCAP dataset consists of three modalities, i.e., text, audio, and video. The uni-
modal features are extracted by utilizing global vectors for word representation, Glove [39],
Facet, and COVAREP [40], respectively.
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Text feature extraction implies Glove, an unsupervised learning algorithm that con-
verts each word into a vector representation. For different inputs in the dataset above,
the dimensions of each embedded text extracted by Glove number 300.

Audio feature extraction involved COVAREP, a collaborative and free speech-processing
algorithm library. Low-frequency acoustic characteristics can be obtained by using CO-
VAREP, including cepstrum coefficients of 12 MEL frequencies, tone tracking, glottic source
parameters, glottic peak slope parameters, etc. Each audio feature was extracted with a
5 ms shift on a 25 ms frame, and each dataset has 74 dimensions.

Video features consist of 35 facial action units extracted using by Facet from each
frame of the image. The video features are widely used to extract facial features, such as
basic and advanced emotions. Thus, for each dataset, the dimensions of each video feature
numbers 35.

4.3. Baseline

We choose early fusion LSTM (EF-LSTM) [14], late fusion LSTM (LF-LSTM) [14],
the multi-modal transformer (MulT), [14], and the low-rank fusion-based transformer for
multi-modal sequences (LMF-MulT) [15] as baselines. The MulT utilizes the low-rank
representation of multi-modal sequences in the multi-modal transformer to pay cross-
modal attention to modalities or fused signals. The LMF-MulT is built upon the MulT
and applies transformers to fused multi-modal signals, aiming to capture all inter-modal
signals through the low-rank matrix factorization (LMF).

4.4. Evaluation Metrics

In our experiments, multiple assessment tasks were performed, including regression
and classification. The regression task was applied to CMU-MOSI. We used the accuracy
Acc-k (where k represents the number of classes) and F1-score as the evaluation metrics for
the CMU-MOSI. Specifically, for the other group, we used the 7-class accuracy (ACC-7) as
the evaluation metric, which has seven sentiment scores. The mean absolute error (MAE)
and the correlation (Corr) between the predicted results and the ground truth labels were
used to evaluate the performance. The F1-score can be expressed by a weighted average of
recall and precision as F1-score = 2 precision · recall

precision + recall .

4.5. Training Setup

Our method was implemented on the open-source PyTorch framework. The hyper-
parameters were selected using grid search, which is dependent on the performance of the
model on the validation set. The sizes of video features, text features, and audio features
were set to 35, 300, and 74, respectively. The parameters of the model used in training were
configured as explained in the literature, where dropout was 0.2, weight normalization was
L2, and norm coefficient was 0.01. The Adam optimizer was employed with a learning rate
of 0.0003, and the batch size was 32.

5. Results and Discussion

We present and discuss the experimental results in this section.

5.1. Comparison with the State-of-the-Art

We compared the performance of our model with those of the above baselines. The ex-
perimental results on the IEMOCAP and CMU-MOSI are presented in Tables 2 and 3,
respectively.
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Table 2. Results for multi-modal emotion recognition on IEMOCAP.

Emotion Happy Sad Angry Neutral

Metric F1 Acc F1 Acc F1 Acc F1 Acc

EF-LSTM
LF-LSTM

MulT
LMF-MulT

75.7
71.8
79.0
79.0

76.2
72.5
85.6
85.6

70.5
70.4
70.3
70.3

70.2
72.9
79.4
79.4

67.1
67.9
65.4
65.4

72.7
68.6
75.8
75.8

57.4
56.2
44.0
44.0

58.1
59.6
59.2
59.3

OURS 79.0 85.7 70.3 79.5 65.4 75.9 43.8 59.2

According to Table 2, the Acc values of the proposed method for happy, sad, and angry
emotions were 85.7, 79.5, and 75.9, which are higher than the four baselines’ values. These
observations indicate the necessity and effectiveness of applying STP in multi-modal fusion.
Due to the multiple-dimension relation, STP is a block vs. block operation, unlike other
mechanisms using point-wise operation. It keeps temporal and spatial information of the
video, audio, and text, which allows for better representation of intra-modality correlations
and improves the fusion performance.

Table 3. Results for multi-modal emotion recognition on CMU-MOSI.

Metric MAE Corr Acc-2 F1 Acc-7

EF-LSTM 1.078 0.542 73.6 74.5 31.0
LF-LSTM 0.988 0.624 77.6 77.8 33.7

MulT 1.008 0.645 80.3 80.4 34.3
LMF-MulT 0.957 0.681 78.5 78.5 34.0

OURS 1.038 0.683 71.7 78.9 34.5

From Table 3, it is shown that the Corr of the proposed method was 0.683, and the
accuracy was 34.5% in the 7-class test, so it outperformed the baselines. In comparison with
the performances of the baselines, the proposed method showed significant improvement
on the IEMOCAP as compared to the CMU-MOSI.

5.2. Ablation Experiment

We chose bimodal or trimodal audio, video, and text as the input for emotion predic-
tion. The bimodal and trimodal results are presented in Table 4.

For bimodal data, the experimental results in Table 4 demonstrate that the bimodal of
t+v succeeded over the other two bimodals (a+t, a+v). This is because the audio contains
some inevitable noises, and thus increases the difficulty of emotion recognition from speech.
Compared with the audio, the text tends to have less noisy signals. Hence, we can learn
more emotion-salient representation using text features.

Meanwhile, compared with bimodal inputs, the proposed method achieves better
performance on trimodal inputs. Due to the complexity of emotion recognition, we can
achieve better recognition performance by integrating multi-modal information.
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Table 4. Performance of the proposed method using different modality combinations on IEMOCAP.
Here, a, v, and t denote audio, video, and text, respectively.

Methods
Happy Sad Angry Neutral

F1 Acc F1 Acc F1 Acc F1 Acc

PFBT-STP
(a+v) 77.9 85.2 69.2 79.3 65.4 75.8 42.5 57.9

PFBT-STP
(a+t) 77.8 85.6 69.4 79.2 64.3 75.7 41.2 58.2

PFBT-STP
(t+v) 78.5 85.7 70.0 79.5 65.1 75.9 43.7 58.8

PFBT-STP
(a+v+t) 79.0 85.7 70.3 79.5 65.4 75.9 43.8 59.2

5.3. Evaluation Indicators

Each modality of the central axis was combined and fused with the other two modali-
ties, and the fusion results are compared under the three-layer framework. In this experi-
ment, three modalities were randomly combined and fused, which demonstrates that the
semi-tensor product is independent of the dimensional and scale-matching conditions for
the fusion of the information using matrix multiplication.

We used the IEMOCAP dataset and the accuracy metrics to verify the performance of
our method.

From Figure 2, we can see that the Acc score measure grows with each new iteration
in the first seven epochs, which indicates that the model converges quickly.

Figure 2. Comparison of the Acc of the three modalities with those of the other two modalities.

In Figure 3, we can see that our model learns efficiently and quickly in training, and
the loss function changes swiftly in the first five iterations and then smooths in the next
iterations.
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Figure 3. Training and validating measures are visible in the loss calculated for each iteration.
(a). The fusion between audio with video and text. (b). The fusions between video and audio and
text. (c). The fusions between text and audio and video.

According to the accuracy values in Table 2, happy and angry emotions, again, had
better recognition scores, whereas neutral had a worse recognition score during the training
process; see Figures 2 and 3. The main reason is that the model had a less obvious learning
effect on attribute values with neutral features in IEMOCAP.

5.4. Computational Complexity

In order to evaluate the computational complexity of our method, we compared the
parameters and the training speed of our method with those of MulT and LMF-MulT.
The results are shown in Tables 5 and 6.

Table 5. Comparison of the number of parameters of our method with those of the other two models.

Dataset IEMOCAP CMU-MOSI

MulT 1074998 1071211
LMF-MulT 856078 512121

OURS 559872 500342

In Table 5, we can observe that our model contained about 5.5 × 106 parameters and
MulT contains about 10.7 × 106 parameters, which is almost twice the number. Experi-
mental results show that the proposed method used less running time and fewer trainable
parameters compared with the other two models to achieve better performance.

Table 6. Comparison of the average time per epoch for our method and the other two models.

Dataset IEMOCAP CMU-MOSI

MulT 37.93 19.25
LMF-MulT 23.53 12.03

OURS 17.92 11.92
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These models were all implemented in the same environment. Based on the results
in Table 6, the proposed model significantly reduces the time required to train the model.
Our model trained with an average time/epoch of 17.92 s on IEMOCAP and 17.92 s on
CMU-MOSI. MulT trained at an average of 37.93 s per epoch on IEMOCAP and 19.25 s per
epoch on CMU-MOSI, which is nearly 2 times slower.

Detailed analysis showed that the parameters are fewer and the running time is
reduced, yet the performance of the original part is improved. This is due to the introduction
of matrix decomposition based on the STP, which eliminates the data redundancy caused
by the need for dimension matching for matrix factorization, and the three modalities of
different dimensions can be arbitrarily combined and fused.

6. Conclusions

In this paper, a parallel, multi-modal, factorized, bilinear pooling method based on the
semi-tensor product (PFBP-STP) is proposed, which achieves information fusion between
modalities of different scales and dimensions. By replacing matrix products with STP, the
information fusion becomes independent of the dimension-matching conditions in matrix
multiplication.

Experiments have shown that the proposed method can achieve a significant increase
in training speed and better classification accuracy simultaneously. The proposed method
removes the dimensional consistency limitation of matrix multiplication and expresses the
same information in a more compact structure that employ less memory. It is computation-
ally friendly and flexible.
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