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Abstract: Social insects such as honey bees exhibit complex behavioral patterns, and their distributed
behavioral coordination enables decision-making at the colony level. It has, therefore, been proposed
that a high-level description of their collective behavior might share commonalities with the dynamics
of neural processes in brains. Here, we investigated this proposal by focusing on the possibility that
brains are poised at the edge of a critical phase transition and that such a state is enabling increased
computational power and adaptability. We applied mathematical tools developed in computational
neuroscience to a dataset of bee movement trajectories that were recorded within the hive during
the course of many days. We found that certain characteristics of the activity of the bee hive system
are consistent with the Ising model when it operates at a critical temperature, and that the system’s
behavioral dynamics share features with the human brain in the resting state.
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1. Introduction

Social insects are capable of creating and supporting sophisticated modes of spatial
organization; furthermore, they possess the ability for decision-making at the colony level.
What is the basis of this collective cognitive capacity? Several lines of research seek to
elucidate what traits are shared by entities capable of such adaptive behavior, regardless of
whether their mode of operation is individual or collective [1]. For the case of individual an-
imals, a prominent conjecture conceived through the cross-pollination of statistical physics
and experimental neuroscience is known as the “Critical brain hypothesis”. It holds that
the remarkable adaptive abilities of neural systems require them to be poised in the vicinity
of the critical state, because in this way, the system has access to the widest repertoire
of dynamic patterns. This claim is supported by a notable amount of experimental data,
recorded both in vitro and in vivo. At the same time, there is evidence that some collective
entities such as swarms of midges and flocks of birds exhibit hallmarks of the critical state
at the collective level [2–4]. However, a comprehensive assessment of criticality was not
carried out for any of the major types of eusocial insects, such as ants, bees, and termites.
Recent advances in scientific image acquisition and analysis techniques now allow for
recording trajectories of individual insects [5]. In our work we analyzed a dataset of honey
bee trajectories, focusing on the hallmarks of the critical state.

1.1. Smarts in Numbers—Collective Intelligence

Eusocial insects’ abilities in foraging [6], enacting complex spatial arrangements of
their bodies [7,8] and creating elaborate nesting structures are well known. Furthermore,
they can handle making decisions on a more abstract level. For example, a honey bee colony
produces a daughter colony when the original site becomes overcrowded [9]. The choice
of nest site depends on a number of parameters and an erroneous decision could lead to
the inevitable demise of the colony. Thus, when swarming, bees aggregate themselves
into a cluster, usually in a form of penchant hanging from a tree brunch. Then, the
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collective considers information brought by scout bees about the relative quality of the
nearby locations. The swarm evaluates the merits of the proposed locations and makes
the choice which is then followed through unanimously, in the overwhelming majority
of cases. Everyday functioning of the colony also requires the handling of information to
optimize foraging and allocate tasks for individual bees.

Ants display similarly complex behavior on the colony level. They are using coop-
eration to extend their sensing range [10] and engage in complex physical tasks, such as
transporting heavy objects or building elaborate structures. Furthermore different colonies
demonstrate distinct differences in behavioral patterns across several behavioral traits, thus
having a degree of “collective personality”, which affects their evolutionary fitness [11].

At an abstract level of description, the mechanisms of collective decision-making
share common features with the mechanisms of cognition within the brain [1]. Famous
entomologist Thomas D. Seeley [9] noted in his book remarkable similarities between the
way in which a honeybee swarm performs the task of making a decision for a new nest
site and the activity of a primate brain during a perceptual discrimination task. In both
cases, the correct decision is acquired through the non-linear aggregation of activity of
individual constituents of the system. Other studies showed [12] that bee colonies adhere
to the same psychophysical laws that humans do when making decisions while facing
varied and conflicting sources of information.

A fundamental organizing principle shared by the brain and eusocial insects is that
all forms of behavior and cognitive ability arise from the local interactions between the
system’s elements, be it insects or neurons, and does not need to be explicitly organized
with a blueprint or central pacemaker of some sort.

1.2. Critical Brain Theory

In the neuroscience field, it has been conjectured that healthy brains are poised in the
vicinity of second-order phase transition [13–16]. Unlike the more familiar case of first-
order transition, exemplified by the freezing of water, the second-order transition does not
have a sharp boundary separating the two phases. In the vicinity of the critical point, both
states of matter could coexist and the system displays a set of remarkable characteristics:
most notably, long-range correlations link distant locations, and events of all scales could
occur in the system [17].

Recordings of Local Field potentials (LFPs) from cortical slices [18], as well as an anal-
ysis of neural data of different modalities, including EEG, MEG, and fMRI [19,20], showed
that both the isolated neural tissue and the intact functioning brains exhibit statistical
properties characteristic of the system in the critical state. Most importantly, the size of
fluctuations in the system scales abides by the power-law scaling, making events of all sizes
possible, long-range correlations exist in both temporal and spatial domains, and activity
patterns exhibit complexity and variability, significantly exceeding what would be expected
by random chance. Furthermore, research in the field showed that such a state might be
not epiphenomenal (i.e., consequent of but not causal to), but necessary to maintain the
brain’s functionality [15].

This view, which became known as the “critical brain theory”, conjectures that the
critical state of the system underlies its key functionality, including its ability to produce
a wide range of emergent configurations of activity. Emergent behavior is paramount for
an adaptive system, as it underlies its ability to produce a multitude of responses without
altering the underlying structure.

It has been established that in the vicinity of the critical point, the system has the
widest repertoire of dynamic patterns emerging from local interactions only [21]. A body
of evidence, accumulated through computational models and experiments with cortical
slices, shows that critical state neural networks are best suited for complex computation.
Information transmission, integration [22], and representation [23] are optimal, and dy-
namic range is maximized [24], allowing for the networks to respond to a wide range of
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stimuli. These findings are corroborated by medical research showing that deviations from
criticality are correlated with suboptimal mental states in humans [25].

1.3. Evidence for Criticality in Collective Behavior

Evidence of criticality and its implications discussed above in Section 1.3 applies
mostly to mammalian brains. As we argue in Section 1.1, insect communities, despite
having little structural resemblance to the brain, share the same burden of navigating the
world and making choices crucial to survival.

The universality of physical laws implies that different systems could be described
with the same set of basic laws. At the same time, principles of convergent evolution
make it possible that similar phenomena could come to be in unrelated species if they are
advantageous to survival. Given the benefits that the critical state confers to the adaptive
ability of the systems, it is fitting to conjecture that swarms and colonies of collective
insects would evolve to be positioned in its vicinity [4,26]. Investigations of brains’ critical
phenomena focus on analyzing patterns of electric signals (EEG, LFP, MEG) or alternatively
using proxy metrics for brain activity (fMRI). Animal collectives use many modes of
interaction to exchange information and synchronize actions within the group, including
vocal cues, movements, and phenomenal signals. Previous research we reviewed assumes,
unanimously, that the spatial and temporal scale at which critical phenomena would
presumably be exhibited by such systems makes the movement patterns, correlations,
and derivatives thereof the best venue for analysis.

Recent research showed that critical phenomena are observable in flocking birds [2]
and swarming of midges [3,27]. Long-range velocity correlations underlie the astonishing
ability of these creatures to maneuver collectively with the synchronicity of one. Cursory
evidence exists to suggest that ants make use of enhanced coordination between individuals
conferred by criticality to maximize the load-carrying capacity of a group [28] and optimize
forage route allocation [29].

2. Materials and Methods
2.1. Bee Data

All bee data analyzed in this paper were provided by Professor G. Robinson and his
team. Their recent paper explains the nuances of the methods [5]. To summarize briefly:
five recording sessions, henceforth refereed to as trials, were conducted, during each, a
different colony of 1200 worker bees was recorded for several days and nights. Insects
were marked with barcodes attached to the thorax. Colonies resided in the rectangular
hives which had video cameras installed inside. Barcodes enabled tracking of the positions
of individual insects. Several days and nights of activity were recorded for each colony.
For the first two days and two nights of each trial, hives were kept sealed and supplied with
the necessary nutrients. Afterward, bees were allowed to leave at will to scout and forage.

The raw dataset contained IDs and coordinates accompanied by UNIX timestamps.
We developed a prepossessing pipeline using linear interpolation to re-sample individual
trajectories at uniform time intervals. Data were partitioned into day and night intervals.
Inactive bees, for which it was impossible to reconstruct the trajectory accurately, were
filtered out. During our analysis, we focused on the solar days when bees were sealed
inside the hive, assuming that such a condition is similar to the resting state of the brain.

For each insect, we compute its kinetic energy from the horizontal and vertical dis-
placement over time (1). Such an approach was first implemented [30] to identify bursts
of activity in bee hives. It should be noted that the purpose of computing kinetic energy
is that it provides a convenient proxy to measure the change in activity over time, such
that physically, more rigorous details such as accounting for the mass of each bee, could
be omitted. Figure 1 illustrates example trajectories and their kinetic energy is computed.
To characterize the activity of a hive as a whole, mean kinetic energy Kmean is computed
according to (2)

Kbee(t) = ∆x2 + ∆y2 (1)
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Kmean(t) =
n

∑
i=1

Ki (2)

Figure 1. Illustrative example demonstrating how spatial coordinates are converted to kinetic energy.
Pane (a) presents illustrative fragments of trajectories of two bees, each 5 s long, recorded during
the first day of Trial 1. Panes (b,c), respectively, show kinetic energy time-series computed from
their movements.

2.2. The Ising Model

The Ising model was originally developed to describe ferromagnetism; however, it has
been successfully implemented to model disparate phenomena, ranging from statistical
physics to economics [31]. Its relevance to our research is that when the spatial dimensions
of the model exceed 1, then the system could undergo phase transition and exhibit critical
behavior (the one-dimensional Ising model could exhibit critical behavior, however, phase
transition is impossible in the 1d system). In our work, we used a two-dimensional model
on the toroidal grid. It consists of a square lattice with sides of length L composed of N =
L× L sites with the nearest-neighbor interactions. Each site has an associated binary “spin”
variable si = ±1. Lattice configuration is uniquely specified by a sequence of spin variables.
For a system-level description of the model, its order parameter—Magnetisation (3), which
corresponds to the mean spin of the model, is computed. The energy of different lattice
configurations in the absence of an external magnetic field is given by the Hamiltonian
function (4), where J represents interactions between different lattice sites.

M =
1
N

N

∑
i=1

si (3)

E = −J
N

∑
i,j=nn(i)

sisj (4)
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Neighboring spins tend to align with each other, where the probability of alignment
is controlled by the temperature parameter T. Competition between thermal fluctuations,
which induce stochastic behavior, and the nearest-neighbor interactions, which pull the
system towards a more ordered state, governs the dynamics of the model. At low tem-
peratures T = Tlow, the system soon finds itself in a quiescent state. High temperature
T = Thigh causes uncorrelated, random activity. In the vicinity of the critical point, T ≈ Tcrit
the system exhibits a multitude of critical phenomena, such as long-range temporal and
spatial correlations and complex patterns of activity.

We implemented the Metropolis Monte Carlo algorithm [32] to solve the equilibrium
configuration of the model. Details of the algorithm are given in the Appendix A.1. Each
step of the algorithm consists of N site updates. Initially, the system is allowed to settle
into an equilibrium state. During this process, known as thermalization, no recordings
are taken. In our implementation, this stage lasts 10,000 steps. Then, 2000 consecutive
configurations of the model, separated by one step of the algorithm, are recorded. We used
3 Ising models of size N = 10, 000 with their T parameter set, respectively, at Tlow = 2.0,
Tcrit = 2.3 and Thigh = 3.0.

It should be noted that the critical temperature for the Ising model in 2 dimensions has
been computed analytically [33]; however, the exact solution Tcrit ≈ 2.2691 is only valid at
the thermodynamic limit when the infinite lattice is considered. In numerical simulations
with finite systems, an approximate critical temperature Tcrit = 2.3 is used.

We have tested models of different N, obtaining qualitatively similar dynamics. Sta-
tistical tools that we implemented to characterize the dynamics of the model dictate that
a system with large N, as specified above, has to be used to obtain reliable estimates
of parameters.

2.3. Dynamic Correlations

Our approach of constructing graphs of dynamic correlations to compare unrelated
systems from a statistical standpoint was influenced by a seminal paper [19] that used such
an approach to compare brain dynamics inferred from resting state fMRI recordings with the
Ising model at different temperatures. Thus, we tried to keep methodological consistency
whenever it was possible. It should be understood that no direct correspondence between
the structure of the Ising model and that of the honeybee colony is implied. The Ising
model was used in our research solely as a vehicle to simulate critical phenomena: we
believe that the systems we compared are so disparate that under normal circumstances, no
statistically significant similarities would be found in their dynamics. Consequently, when
such similarities are evident, then they are indicative of the critical phenomena present in
both systems, not of the structural similarity between them.

To construct correlation networks, we treated each site of the Ising model and each
bee as a node, while edges were inferred from correlations between the activity of different
nodes (i.e., either between the kinetic energy time-series of individual bees or between the
time-series of spins of different lattice sites of the Ising Model). Correlations were computed
using Pearson’s correlation r coefficient (5), which captures the degree of linear correlation
between the two time-series. Nodes were connected with edges when correlation exceeds
some predefined threshold p. It is noteworthy that r is high only if both time-series exhibit
similar dynamics, fluctuating from their respective mean values in a coordinated manner.
For a pair of quiescent or stochastic time-series, r would be similarly low.

r(x, y) =
E[(x− µx)(y− µy)]

σ(x)σ(y)
(5)

A meaningful way to compare networks that have very different provenance is to
scan a range of p values for each of the networks at hand, while simultaneously computing
networks’ average degree 〈k〉. Then, comparisons could be made between networks of
similar 〈k〉. Figure 2 illustrates this approach for Ising networks at 3 different temperatures
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and for the network derived from the correlations between the kinetic energy time-series of
bees during 1 day. The exemplifying case of 〈k〉 ≈ 60 is used.

After constructing correlation networks for different systems, we investigated their
degree distributions and other network metrics. The crucial step was to assess if the degree
distribution of the system follows power-law. It has been brought up by the statistical
community [34] that often methods used to characterize power-law relationships do not
stand up to mathematical scrutiny. Conclusions on the nature of distribution based on
examining the shape of the distribution or fitting data points with linear regression are
often erroneous. The most reliable approach is to use maximum-likelihood to estimate the
parameters of the distribution [35] and compare candidate power-law to other common
heavy-tailed distributions. We followed the aforementioned methodology in our research;
some nuances and supplementary information are contained in the Appendix B.2.

Figure 2. Dependence of the mean degree 〈k〉 on the threshold p used for binarisation. The dashed
line shows a specific degree chosen to compare different networks, black circles indicate resultant
relations between 〈k〉 and p.

2.4. Temporal Analysis

Correlation-based network analysis elucidates the degree of correlation between
time-series of different nodes. However, previous research concerning both neurological
recordings [36] and computational models [37] which are known to exhibit critical behavior
showed that such time-series exhibit significant autocorrelations—patterns of activity at one
timestep significantly influence activity at a lagged time interval. An established method
to quantitatively characterize the degree of autocorrelation in the time-series is the Hurst
exponent H [38].

It is a scalar metric that ranges from 0 to 1. For random walks and patterns of the
Brownian motion, in which successive timesteps are completely independent, H ≈ 0.5. Such
processes are called memoryless. Values of H close to 1 imply significant positive autocorrela-
tions in the data, while values of H between 0 and 0.5 imply a negative autocorrelation.

Several approaches to computing H all have different pros and cons. We adapted a
simplified methodology initially developed for stock market analysis [39] and rigorously
tested our implementation on synthetic data. We transformed the mean kinetic energy
time-series Kmean(t) into the time-series of cumulative deviations from the mean value µk
using (6).

Ksum(t) =
i=t

∑
i=1

Kmean
i − µk (6)
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Subsequently, for all elements of the transformed series, we computed variance be-
tween elements at time t and time t + τ for a sequence of lags τ.

Var(τ) = 〈(Ksum
t+τ − Ksum

t )2〉 (7)

For the Brownian motion and other memoryless processes, variance was linearly
dependent on lag: Var(τ) ∝ τ. However, when autocorrelations were present, this relation
acquired an anomalous exponent: Var(τ) ∝ τH . We computed H by solving for the relation
between log(Var(τ)) and log(τ).

3. Results
3.1. Model Graphs

Figure 3 depicts degree distributions of correlation networks created using the Ising
model at 3 different temperatures as well as an illustrative degree distribution for the
correlation network computed using the kinetic energy time-series of bees recorded during
one solar day. Earlier work used an analogous approach to compare fMRI correlation
networks with the Ising model at T = Tcrit [19].

Several methods have been used to analyze criticality in neural data. We chose to
use the network approach for our initial test for a number of reasons. Firstly, unlike fMRI
voxels or neurons, bees could move freely inside the hive. Thus, methods which rely on
measuring spatially localized activity, for example, the local field potentials in different
areas of the neural tissue, would be challenging to apply to the bee data. Using correlations
between the kinetic energy time-series of individual bees allowed for us to circumvent this
difficulty, while still generating results compatible with the Ising model.

From Figure 3, it is evident that the degree distribution of the Ising model at the critical
temperature and degree distribution of the bee correlation matrix share a similar long-tailed
structure, regardless of the mean degree chosen for comparison. In contrast, at T = low
and T = Thigh, the Ising model has a strikingly different degree distribution. We chose to
display only one day’s worth of kinetic energy measurements, yet we analyzed multiple
days from different trials and acquired similar degree distributions for all of them. This full
set of results is presented in Appendix Figure A2.

Besides these striking visual similarities, several key statistical characteristics are
shared by the Ising model and the bee hive in the vicinity of the critical point, but are
notably absent when T = Tlow or T = THigh. As shown in Table 1, the Ising model at
T = Tcrit is best described by a power-law distribution, while at low and high temperatures,
the best fit for the data is a log-normal distribution. Different power-law exponents,
as well as the different numbers of nodes, explain the somewhat different shape of degree
distribution for the Ising model at T = Tcrit and the bee hive; however, general features of
heavy-tailed distributions are evident in both cases.

Table 1. Characteristics of degree frequency distributions for various correlation networks. For log-
normal distributions, the mean µ and standard deviation σ are given. Truncated power-law
distributions are characterized by the power-law exponent α and xmin . The latter specifies the
minimum x value of the data for which the power-law holds. All networks have a matching mean
degree 〈k〉 ≈ 110.

System Distribution Family Parameters of the
Distribution

Ising Model, T = Tlow Log-normal µ = 4.12, σ = 0.132
Ising Model, T = Tcrit Truncated power law α = 1.99, xmin = 2
Ising Model, T = Thigh Log-normal µ = 3.58, σ = 0.225

Bee Hive Truncated power law α = 3.49, xmin = 3
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Figure 3. Degree distributions for the correlation networks. Each bin of the histogram corresponds
to the frequency of nodes with a given degree. Panels (a–c) depict the degree distributions of the
Ising networks at T = 2, T = 2.3 and T = 3. Panel (d) depicts an illustrative degree distribution
computed using bee hive activity during 1 solar day, from sunrise to sunset. For each network, three
representative values of 〈k〉 are plotted.

3.2. Network Metrics

Networks can be characterized by a number of other metrics, which account not only
for the number of edges per node but also for the intertwined structure of the connections.
Table 2 presents the most common [40] metrics computed for the correlation networks of
the Ising model and different bee hives recorded during the experiment. Thresholds are set
for all networks to have similar mean degrees. Additional information about the metrics
we used is given in Appendix A.2 and supplementary tables describing the same networks
with different thresholds and different mean degrees are available in Appendix A.2.

In order to compute characteristics such as average path length L, it is necessary for
the network to be fully connected. Bee correlation networks have a significant number
of isolated nodes, although the majority of nodes always belong to an interconnected
component of significant size, regardless of the threshold value. The Ising model always
remains fully connected at T = Tlow and T = Thigh. Interestingly, isolated sub-graphs begin
to appear in the network at T = Tcrit when threshold p is set to a higher value.
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We extracted the largest component from the networks and used it to compute the
metrics. Thus, 〈k〉 can vary within reasonable limits. A common technique in the study
of networks is to compare the network at hand with a random graph [40]. For each of
the networks, we created an ensemble of equivalent random Erdős–Rényi graphs and
computed their average characteristics as a reference.

Table 2. Network metrics computed for the giant components of correlation graphs of the Ising model
(T) and bee hive (Trial). N—number of nodes, 〈k〉—mean degree, C—average clustering coefficient,
L—average path length, D—diameter of the network. Crand, Lrand, Drand refer to the metrics computed
on ensemble of Erdős–Rényi graphs with N and 〈k〉 identical to the original network.

N 〈k〉 C L D Crand Lrand Drand

T = Thigh 10,000.0 111.51 0.09 2.04 3.0 0.02 1.98 3.0
T = Tcrit 10,000.0 109.65 0.56 3.7 14.0 0.02 1.99 3.0
T = Tlow 10,000.0 107.26 0.08 2.03 3.0 0.02 1.98 3.0
Trial 5 1166.0 110.32 0.63 1.91 4.0 0.19 1.81 2.0
Trial 4 1138.0 109.28 0.5 1.81 3.0 0.19 1.81 2.0
Trial 3 1137.0 110.95 0.52 1.81 3.0 0.19 1.81 2.0
Trial 2 1097.0 114.12 0.71 2.05 7.0 0.21 1.79 2.0
Trial 1 946.0 111.74 0.61 1.8 4.0 0.24 1.76 2.0

It can be noted that the correlation networks of the bee hive and of the Ising model at
the critical temperature have much higher average clustering C than both their random
equivalents and the correlation networks of Ising model at low and high temperatures.
The average path length L in these clustered networks is generally somewhat higher than
in the random networks, but considerably lower than if the graph had been a regular
lattice with high clustering. Such a graph structure, which combines high clustering
characteristics of lattice-like networks with a relatively low average path length of random
graphs is known as the small-world network [41].

3.3. Temporal Correlations

As noted earlier, the critical state manifests itself not only through spatial correlations
but also in increased autocorrelations within the time-series. We computed the Hurst
exponent H to assess the presence of autocorrelations. High values of H imply that the
system which generated the time-series is in the vicinity of the critical state. The mean
magnetization M time-series of the Ising model is characterized by a high value of H only
when T is close to Tcrit [37]. A common technique is to compare the time-series generated
by the system of study with another time-series generated by a computational model which
is known to exhibit critical behavior. For example, such a technique was used to show that
temporal patterns of blackouts in the USA exhibit characteristics of the critical state [42].

Figure 4 exhibits different Hurst exponents computed for the Ising model at different
temperatures, and an exemplifying case of the Hurst exponent computed for the Kmean
of the bee hive during a single solar day. H computed for other days shows only minor
differences and each H value is always significantly higher than 0.5. This is indicative
of long-term correlations within the time-series. As a sanity check we also computed H
for randomly permuted mean kinetic energy time-series and, as it would be expected of
essentially random data, we found that H ≈ 0.5. The Ising model only displays high H
values at T = Tcrit, which is consistent both with previous research on the model and with
the established connection between autocorrelations and criticality [37,42].
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Figure 4. Hurst exponents for magnetization time-series of the Ising model and Kmean time-series
of the bee hive. The main pane shows the slopes of the Hurst exponents for different time-series
in relation to each other. Inset panes (a–d) demonstrate how well H values fit the data. Note that
although H values for Tlow and Thigh are considerably lower than for critical systems, their exact
values are not given because they could be misleading for memory-less time-series.

4. Discussion
4.1. Key Finding and Their Implications

In our work, we analyzed a dataset of bee trajectories in a way that allowed us to
compare empirical data to a well-studied model. Such an approach has been previously
used (e.g., [19]) to show that key dynamical characteristics of the human brain at its
resting state exhibit a notable resemblance to the Ising model when the latter is in the
vicinity of the critical state. Long-range temporal autocorrelations are also considered a
hallmark of criticality in the Ising model and the neural time-series [43]. With some minor
differences, which are to be expected given the different nature of the data, our analysis of
bee correlation networks yielded remarkably similar results, namely similarity to the Ising
model at T = Tcrit and lack thereof at low and high temperatures.

First, our observations are confirmed by the rigorous statistical analysis of the degree
distributions. Second, the analysis of the correlation networks showed that certain charac-



Entropy 2022, 24, 1840 11 of 20

teristics, most notably clustering and path length, are comparable between the network
of bee correlations and critical state of the model, but are drastically different otherwise.
Third, analysis of the mean parameters Kmean and M showed that recordings of the av-
erage activity of both the bee hive and the Ising model at critical states are marked with
considerable autocorrelations within the time-series.

These similarities in the dynamics of the systems become even more noteworthy
when we consider that in structural terms, both the Ising model and the human brain
are drastically different from the bee hive. In the context of our analyses, differences in
spatial structure are particularly important. The two-dimensional Ising model possesses
only nearest-neighbor interactions, while the human brain is characterized by intricate
connection patterns on the macro and micro levels. Although correlation networks are
obtained solely from dynamics, one would expect them to be strongly influenced by
the underlying spatial structure. The bee hive is quite different because the nodes of its
correlation matrix represent agents largely unhindered by constraints in movement and
interaction. Despite these dissimilarities, functional constraints on behavior are shared by
the systems in question to a degree that precludes the appearance of dynamical similarities
by mere chance. We believe that they signal a shared systemic property—the critical state,
whose influence on the systems’ dynamics goes beyond specific structural constraints.

One potential concern with our comparative analysis is the choice of running the
Ising model on a 2D grid, thereby imposing a local interaction constraint on the system.
Alternatively, we could have implemented the model on a complete graph, in which all
lattice sites are connected. Intuitively, that might seem a better approximation of the bee
hive, with highly mobile agents. Empirical research and modeling studies of flocks and
schools have demonstrated that in such systems, an ubiquitous strategy of the individual
agents is to align their behavior with that of the nearby neighbors [44–46]. Information,
however, could propagate through the whole system seemingly unencumbered by the
prevalence of local connections. Such behavior is a clear mark of critical state. We do not
have definitive information that bees follow such an alignment pattern inside the hive,
yet the remarkable ability of the 2D Ising model with only local interaction to emulate a
high-level description of bee hive dynamics, implies that a similar mechanism could be
in play.

4.2. Critical Brains and Critical Swarms

Our results provide evidence in support of what we could call a “critical colony“
hypothesis. As we had summarized earlier in Section 1.2, being in a critical state provides
benefits to a system’s cognitive ability, to an extent that it can be argued that such a state
is not simply advantageous, but even necessary. At the same time, there are convincing
arguments in Section 1.1 for the claim that social insects are endowed with a sort of collective
cognitive capacity, which, despite their entirely different mode of organization, shares key
similarities with the capacities of vertebrate brains. Thus, we suggest that the benefits that
the critical state brings would be desirable characteristic for both of these systems.

Previous research showed that hallmarks of the critical state are observable in swarm-
ing midges [3] and flocking birds [2]. Moreover, previous research on the same bee dataset
found that the time-series of the Kmean of the bee hive exhibits bursts of activity, signif-
icantly exceeding the average level, which is interspersed with quiescent periods [30].
The distribution of waiting times between these bursts abides by the power-law distribu-
tion. The authors did not discuss criticality as such, but it is noteworthy that this kind of
distribution is also found to be the case for “avalanches” in the Back–Wisenfield sandpile
model, a famous model of self-organized criticality [47], and for the patterns of the neural
activity recorded in the cortical slices of mice [18] in vitro.

One of the benefits of the critical state in neural networks is that it enables an easier
spread and integration of information. Our findings show that the correlation graphs of bee
activity exhibit distinct small-world structures and contain hubs—nodes with exceptionally
high degrees. A similar organization emerges in the Ising model when T = Tcrit. Such
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network properties are also known to enhance the integration of information and facilitate
the spreading of signals. In the human brain, there is a similar structural organization
of cortical wiring [48,49]. The bee hive and the critical Ising model lack such structural
constraints, yet their functional connectivity is remarkably similar. Uncovering such
network structures in the functional correlations of the bees suggests that this type of
organization is not only ubiquitous in the brain but is fundamental to the functionality of
any cognitive system.

It is worth highlighting important differences between our work and the corpus of
research that concerns hallmarks of criticality in the swarm dynamics, as well as with
the studies employing tools of network science to study eusocial insects [5,50]. The most
notable dissimilarity with the latter is that most studies focused on social networks, con-
structed by observing species-specific means of communication, such as trophallaxis in
bees and attenuation in ants. Such contacts, important as they are, only constitute a fraction
of individuals’ total activity, and they arguably account only for a portion of the total
informational exchange that takes place inside the colony. Significant correlations between
the kinetic energy time-series of individuals and highly specific degree distributions of the
correlation graph, in our view, reflect features of the social system underlying collective
cognition in the hive, aided by its critical state.

Hallmarks of critical behavior in collective entities, when studied empirically, were
investigated in freely-moving agents: flocking birds or swarming midges. Thus, it is
possible to argue that observed features, such as long-range velocity correlations, were
begotten by the spatial order the organisms maintained and are transient in nature.

The movement data we analyzed were acquired when bees were locked inside the
hive and provided with sustenance. They were under no pressure to maintain a specific
movement order, as they would have been during swarming, or to move at all, in fact.
Given these conditions, it is plausible that the hallmarks of the critical state revealed by our
analysis would be observed only if such a state is inherent to the system, much like it is to the
human brain at its resting state. Indeed, brain resting-state networks have been proposed to
reflect a process of “constant inner state of exploration” that optimizes the system for a given
impending input, thus influencing perception and cognitive processing [51,52]. It is exciting
to consider the possibility that the colonies of eusocial insects exhibit a similar process.

5. Conclusions and Future Work

Our findings indicate that the honey bee colony inside the hive is a critical system.
However, further work is required to ascertain the generalized conjecture that colonies
of eusocial insects are critical in support of collective cognition. It is crucial to analyze
other datasets to confirm that hallmarks of the kind we observed are ubiquitous across
bee species and to analyze other eusocial insects, such as ants and termites. Other compu-
tational models of the critical state, such as the Ising model on a complete graph or the
XY model with continuous spin dynamics [17] could also be compared with empirical
data. Moreover, criticality manifests itself on different levels. We focused on temporal
and spatial correlations; however, other aspects, for example the behavior of the system
during coarse-graining, should also be considered. Another interesting direction for future
research is to explore how the critical state is related to the hives’ normal daytime activity,
such as foraging and swarming, as well as how it is modulated by environmental factors,
for example by the day–night cycle. If our hypothesis is on the right track, we should find
that increased evidence of criticality in the hives’ resting state is associated with improved
collective decision making, such as more efficient foraging behavior.

Comparing high-level descriptions of different systems could shed light on general
dynamical patterns of cognitive systems that are imperceptible when the focus is too narrow.
Analysis of system-level properties such as criticality is a particularly promising approach
in this regard. However, much ink has been spilled by some of the best scientific minds in
debating the validity of the critical brain hypothesis and the debate is still not settled [53].
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Evidence from other fields, such as provided here, could tip the scales in this debate toward
a more widespread acceptance.
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Appendix A. Algorithms and Metrics

Appendix A.1. Monte-Carlo Algorithm

Metropolis Monte-Carlo Algorithm is commonly used to computationally solve for
the equilibrium configuration of the Ising model. This approach assumes that the system is
submerged in the heat bath of temperature T. Steps of the algorithm are summarized below.

1. Initialize the model with random configuration of spins.
2. Select random site and flip its spin.
3. Compute the energy of the new configuration using (4), than compute energy differ-

ence with the previous configuration δE = Enew − Eold.
4. If δE ≤ 0 accept the change.
5. Otherwise, if δE > 0

i Compute transition probability w = e− δE
kT .

ii Generate a random number r in the unit interval.
iii Accept the change if r ≤ w.

6. Return to step 1.

Appendix A.2. Network Metrics

To concisely characterize network topology, several common metrics are used [40].
Clustering quantifies the propensity of nodes in the network to cluster together i.e., how
likely it is that neighbors of a node would also be connected amongst each other. For a graph
G described by an adjacency matrix A, local clustering coefficient Ci can be computed using
Equation (A1), and average clustering C is simply the mean (A2) of the local clustering
coefficients for each node of the network.

Ci =
1

ki(ki − 1) ∑
j,k

Aij Ajk Aki (A1)

ki − degree o f a node

C =
1
n

n

∑
i=1

Ci (A2)

The average path length is the mean number of steps required to traverse from one node to
another. If the shortest distance between any two nodes, vi and vj, is defined as d(vi, vj),
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then the average distance for all possible pairs on nodes in the networks could be computed
using (A3).

L =
1

n(n− 1) ∑
i 6=j

d(vi, vj) (A3)

In our work, we computed all possible short paths using Dijkstra’s algorithm and then
found an average L for the whole network. The final metric we used was the diameter of
the network D, which is equal to the longest possible short path.

Appendix B. Supplementary Data

Appendix B.1. Supplementary Graphs

Figure A1. Histogram of degree distributions for the Ising model at different temperatures, as well
as for the correlation network of the bee hive. Data presented in this graph are identical to Figure 3,
however, logarithmic binning is used.
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Figure A2. Degree distribution for correlation networks. Panels (a–d) depict different trials using
different hives. Methods used to generate the depicted degree distributions are identical to those
used to produce Figure 3.

Figure A3. Illustrative images depicting the bee correlation network and equivalent random network.
Mean degrees 〈k〉 and average clustering coefficients C are given below each image pane. Low mean
degrees, and thus, sufficiently high threshold values have been used for clarity of visualization.

Appendix B.2. Log-Likelihood Tables

Fitting a power-law to an empirical distribution is a task that requires due caution.
The most rigorous approach developed requires comparing hypothetical power-law fit with
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other candidate long-tailed distributions [34]. Most important of them is the exponential
distribution; however, log-normal and stretched exponential (Weibull) should also be
considered. Furthermore, using different thresholds to binarise the correlation matrices
could also affect the characteristics of resultant degree distribution. Thus, to provide a
comprehensive view of our analysis below, we present the table of log-likelihood tests for
the different datasets used in our work.

Log-likelihood Tables A1–A4 summarize the results of the statistical tests for different
systems thresholding at various mean degrees. Each case is tested against three candidate
distributions: exponential, log-normal and Weibull. Possible log-normal distributions
are restricted to those with positive mean mu, otherwise, one would have to assume the
possibility of a node having a negative degree. For each test, two values are generated:
log-likelihood ` and p-value p. ` > 0 implies that the power-law distribution is preferred,
` < 0 signifies that another candidate distribution provides a better fit to the data. p
indicates the statistical significance of the uncovered relationship. Careful examination of
the provided summary tables allows us to conclude that although in some cases the Ising
model at T = Tlow could exhibit a power-law relationship, in the overwhelming majority of
cases, such a relationship exists only in the vicinity of the critical point of the Ising model.
A similar summary judgment illuminates the presence of clear power-law scaling in the
degree distribution of bee correlations.

Table A1. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the bee hive and the Ising model thresholding at different mean degrees.
Part 1.

Mean Degree 〈k〉 ≈ 20.0 〈k〉 ≈ 27.5 〈k〉 ≈ 50.0
Log-Likelihood, p-Value ` p ` p ` p

Model Distribution

T = Tlow Exponential 14.0710 0.0224 9.7538 0.1672 −0.1100 0.0539
Log-normal 5.5999 0.0000 5.0950 0.0185 −1.6257 0.3173
Weibull 1.9843 0.1524 −0.3715 0.8911 −1.7395 0.2904

T = Tcrit Exponential 160.9710 0.0000 269.4061 0.0000 296.9442 0.0000
Log-normal 7.7403 0.0000 10.8814 0.0000 14.2553 0.0000
Weibull 4.2434 0.0000 4.9645 0.0000 6.5738 0.0000

T = Thigh Exponential −3.4572 0.5225 7.9102 0.4883 −0.1400 0.0288
Log-normal 0.5453 0.8520 0.5159 0.8926 −2.5385 0.1892
Weibull −4.2745 0.2793 −7.1229 0.1479 −3.1692 0.1353

Bee Hive Exponential 68.3686 0.0040 109.4801 0.0061 118.1101 0.0035
Log-normal 5.5905 0.0696 8.0556 0.1236 10.2539 0.1191
Weibull 1.1172 0.1596 1.3214 0.2896 1.8727 0.1386



Entropy 2022, 24, 1840 17 of 20

Table A2. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the bee hive and the Ising model thresholding at different mean degrees.
Part 2.

Mean Degree 〈k〉 ≈ 60.0 〈k〉 ≈ 90.0 〈k〉 ≈ 110.0
Log-Likelihood, p-Value ` p ` p ` p

Model Distribution

T = Tlow Exponential −0.1507 0.0336 −0.2025 0.0005 −0.6169 0.0000
Log-normal −1.9751 0.2443 −5.3950 0.0348 −9.5480 0.0161
Weibull −2.2142 0.1969 −5.8917 0.0221 −10.4566 0.0152

T = Tcrit Exponential 335.6884 0.0000 353.2331 0.0000 330.8069 0.0000
Log-normal 18.0843 0.0000 20.5435 0.0000 20.3117 0.0000
Weibull 6.7255 0.0000 7.7506 0.0000 8.8427 0.0000

T = Thigh Exponential −0.1408 0.0057 −27.3007 0.0000 −0.2165 0.0316
Log-normal −3.9967 0.0747 −13.9405 0.0325 −2.0616 0.2600
Weibull −4.7758 0.0521 −29.7762 0.0002 −2.9617 0.1781

Bee Hive Exponential 114.6828 0.0014 92.1413 0.0017 79.2483 0.0006
Log-normal 13.1142 0.0297 11.4028 0.0448 11.5063 0.0243
Weibull 2.2617 0.0898 1.6717 0.1223 1.7065 0.0941

Table A3. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the different bee hives during different trials. Part 1.

Mean Degree 〈k〉 ≈ 60.0 〈k〉 ≈ 90.0 〈k〉 ≈ 110.0
Log-Likelihood, p-Value ` p ` p ` p

Model Distribution

Trial 1 Exponential 35.2344 0.0057 11.1576 0.0029 2.6810 0.1226
Log-normal 1.9488 0.5026 1.8850 0.1182 0.5636 0.0446
Weibull −0.0331 0.9416 0.2664 0.3008 0.2525 0.0030

Trial 3 Exponential 26.0145 0.0000 3.3355 0.0999 0.0021 0.9967
Log-normal 1.7951 0.1321 1.3102 0.0007 0.4929 0.0104
Weibull 0.7285 0.0249 0.6027 0.0002 −0.0046 0.9910

Trial 4 Exponential 12.8372 0.0037 −0.0114 0.4864 0.2154 0.7090
Log-normal 1.2979 0.1088 −0.1651 0.7009 0.2560 0.0932
Weibull 0.4883 0.0046 −0.2188 0.6598 0.0524 0.5102

Trial 5 Exponential 72.9602 0.0000 43.4732 0.0001 11.1195 0.0029
Log-normal 9.4708 0.0086 4.8933 0.1093 1.6425 0.0999
Weibull 0.9996 0.1582 0.3480 0.3929 0.3398 0.0002

Table A4. Log-likelihood ratios with their respective p-values computed for degree distributions of
correlation networks of the different bee hives during different trials. Part 2.

Mean Degree 〈k〉 ≈ 20.0 〈k〉 ≈ 27.5 〈k〉 ≈ 50.0
Log-Likelihood, p-Value ` p ` p ` p

Model Distribution

Trial 1 Exponential 42.0251 0.0122 39.4696 0.0006 37.1392 0.0000
Log-normal −0.5323 0.7987 3.6085 0.1000 6.6321 0.0018
Weibull −0.5369 0.4757 0.6376 0.2998 1.2888 0.0250

Trial 3 Exponential 51.6177 0.0000 47.7674 0.0000 23.9114 0.0000
Log-normal 2.2136 0.2228 1.8331 0.3150 2.6847 0.0234
Weibull 0.4194 0.1938 0.3688 0.3130 0.6090 0.0022

Trial 4 Exponential 16.3384 0.0003 17.4676 0.0000 12.4347 0.0018
Log-normal 0.6153 0.3228 1.1261 0.1393 0.7740 0.1541
Weibull 0.3341 0.1844 0.3577 0.0760 0.4721 0.0631

Trial 5 Exponential 58.6767 0.0000 76.2392 0.0001 80.6464 0.0000
Log-normal 5.7597 0.0110 4.8574 0.1337 9.6371 0.0113
Weibull 1.2528 0.0668 0.4872 0.4708 1.1838 0.1514
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Appendix B.3. Networks Metrics

In this section, we provide some supplementary information on networks metrics.
Methods are identical to those used in Section 3.2, however, a different combination of
mean degrees and thresholds was used.

Table A5. Supplementary Table on network metrics, part 1.

N 〈k〉 C L D Crand Lrand Drand

T = Tlow 10,000.0 27.77980 0.10345 2.79937 4.0 0.00552 2.72503 4.0
T = Thigh 10,000.0 27.33960 0.22436 2.86948 4.0 0.00566 2.73211 4.0
T = Tcrit 9990.0 27.56977 0.52762 7.71826 31.0 0.00571 2.72821 4.0
Trial 4 1135.0 27.06872 0.33549 2.44105 5.0 0.04775 2.02390 3.0
Trial 3 1135.0 26.84141 0.32411 2.49355 5.0 0.04734 2.02858 3.0
Trial 5 1066.0 29.88555 0.49939 2.74393 7.0 0.05540 1.97709 3.0
Trial 1 879.0 29.36177 0.41123 2.54526 8.0 0.06622 1.95331 3.0
Trial 2 783.0 39.68199 0.67767 2.52859 12.0 0.10136 1.89870 3.0

Table A6. Supplementary Table of network metrics, part 2.

N 〈k〉 C L D Crand Lrand Drand

T = Tcrit 10,000.0 50.16580 0.55841 5.44477 20.0 0.01022 2.35186 3.0
T = Tlow 10,000.0 48.71740 0.08564 2.50541 4.0 0.00942 2.37342 3.0
T = Thigh 10,000.0 49.54980 0.12720 2.53886 4.0 0.00945 2.36108 3.0
Trial 5 1138.0 52.04218 0.52962 2.36404 6.0 0.09158 1.90867 3.0
Trial 4 1138.0 48.77768 0.39881 2.10649 4.0 0.08457 1.91453 3.0
Trial 3 1137.0 48.68338 0.41045 2.13271 4.0 0.08617 1.91448 3.0
Trial 2 934.0 60.53426 0.66733 2.43440 9.0 0.12875 1.87055 2.0
Trial 1 933.0 51.37835 0.48489 2.22992 7.0 0.11022 1.88991 3.0
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