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Abstract: For system identification under impulsive-noise environments, the gradient-based gen-
eralized maximum correntropy criterion (GB-GMCC) algorithm can achieve a desirable filtering
performance. However, the gradient method only uses the information of the first-order derivative,
and the corresponding stagnation point of the method can be a maximum point, a minimum point or
a saddle point, and thus the gradient method may not always be a good selection. Furthermore, GB-
GMCC merely uses the current input signal to update the weight vector; facing the highly correlated
input signal, the convergence rate of GB-GMCC will be dramatically damaged. To overcome these
problems, based on the Newton recursion method and the data-reusing method, this paper proposes a
robust adaptive filtering algorithm, which is called the Newton recursion-based data-reusing GMCC
(NR-DR-GMCC). On the one hand, based on the Newton recursion method, NR-DR-GMCC can use
the information of the second-order derivative to update the weight vector. On the other hand, by
using the data-reusing method, our proposal uses the information of the latest M input vectors to
improve the convergence performance of GB-GMCC. In addition, to further enhance the filtering
performance of NR-DR-GMCC, a random strategy can be used to extract more information from the
past M input vectors, and thus we obtain an enhanced NR-DR-GMCC algorithm, which is called the
Newton recursion-based random data-reusing GMCC (NR-RDR-GMCC) algorithm. Compared with
existing algorithms, simulation results under system identification and acoustic echo cancellation are
conducted and validate that NR-RDR-GMCC can provide a better filtering performance in terms of
filtering accuracy and convergence rate.

Keywords: generalized maximum correntropy; adaptive filtering algorithm; Newton recursion;
data-reusing; acoustic echo cancellation

1. Introduction

Adaptive filters have been widely used in different engineering fields. Typical ap-
plications include system identification, active noise control, acoustic echo cancellation
and channel equalization [1–4]. The adaptive filtering algorithms based on a mean square
error (MSE) criterion mainly include the family of least mean square (LMS) algorithm,
the tribe of affine projection (AP) algorithm and the class of least square algorithm [5–7].
Among them, the LMS algorithm is widely used because of its simple structure, low com-
putational complexity, and good convergence in smooth environments. However, the
above-mentioned MSE-based algorithms will have obvious filtering performance degrada-
tion in a non-Gaussian environment, especially in a noise environment with heavy-tailed
distribution in which the typical heavy-tailed distribution noises include Laplace noise,
Cauchy noise, mixed Gaussian noise, and alpha-stable distribution (α-SD) noise [8].

In order to enhance the ability of an adaptive filtering algorithm to suppress impulsive
noise and improve the robustness of algorithms, from the perspective of similarity measure-
ment, a series of nonlinear optimization criteria and/or cost functions have been proposed
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and applied to signal processing. Typical examples include the lp-norm with p ∈ [1, 2) [9],
the M-estimation theory [10], and the information theoretic learning (ITL) family [11]. More
details about robust adaptive signal processing schemes can be seen in a review article [12].
In the family of ITL criteria, thanks to all the even-order moment information of the er-
ror signal contained in the minimization of error entropy (MEE) [13] and the maximum
correntropy criterion (MCC) [14,15], they are widely used in robust signal processing and
machine learning. Generally speaking, the MCC criterion has a smaller computational
burden than that of the MEE criterion. Although correntropy can provide a generalized
similarity measure between two random variables, the Gaussian kernel function used
in the MCC criterion may not always be the best choice. Therefore, as an extension of
the MCC criterion, the correntropy criterion based on the generalized Gaussian density
function, usually called the generalized maximum correntropy criterion (GMCC), has been
proposed and widely used in the field of robust adaptive filtering [16–21]. Similar to the
LMS algorithm family, when the correlation degree of the input signal gradually increases,
the gradient-based generalized maximum correntropy criterion algorithm (GB-GMCC) will
have obvious convergence performance degradation. In addition, the gradient method can
only provide relevant first-order derivative information, which leads to certain deficiencies
in the filtering performance of corresponding algorithms.

The GB-GMCC algorithm has the disadvantage of a slow convergence rate in highly
colored input situations. In other words, the gradient method is not suitable for the
correlated inputs. There are many methods to overcome this issue. Examples include
affine projection, the recursive method [10], the subband method [22] and the data-reusing
method, etc. However, relatively speaking, the complexity of the data-reusing method is
usually lower. Therefore, we can consider it as a candidate method for solving the problem
introduced by the highly colored inputs. On the other hand, the first-order derivative
information may damage the convergence rate of GB-GMCC, therefore we can consider
the second-order derivative information to remedy such issues, that is to say, the Newton
recursion method can be a good choice to replace the gradient method.

A new robust adaptive filtering algorithm is proposed by the methods of data-reusing,
Newton recursion and GMCC. The new algorithm is called the Newton recursion-based
data-reusing generalized maximum correntropy criterion algorithm (NR-DR-GMCC). In
addition, to further improve the convergence rate and filtering accuracy of the NR-DR-
GMCC algorithm, based on the random data-reusing strategy, an enhanced version of
NR-DR-GMCC is derived and is named the Newton recursion-based random data-reusing
generalized maximum correntropy criterion algorithm (NR-RDR-GMCC). Some simu-
lation results under system identification and acoustic echo cancellation are conducted
and demonstrate that NR-RDR-GMCC can achieve a better filtering accuracy and faster
convergence rate than existing related algorithms in the α-SD noise environment. The main
contributions of this work are as follows:

• Based on the data-reusing and Newton recursion method, we propose the NR-DR-
GMCC algorithm, which is derived by maximizing the generalized correntropy. Based
on the data-reusing method, the information contained in the latest M input vectors
can be obtained to combat the negative influence of highly colored inputs. Using the
Newton recursion method, the second-order derivative information, i.e., the Hessian
matrix, can be explored. Thus, the Hessian matrix can be used to update the weight
vector leading to a faster convergence rate, thereby overcoming the disadvantage of
the gradient method that only considers the first-order derivative information.

• Inspired by the random strategy method, NR-RDR-GMCC can be derived by intro-
ducing a cache window with length C ≥ M into the NR-RDR-GMCC algorithm.
Compared with the NR-DR-GMCC algorithm, NR-RDR-GMCC has very similar com-
putational complexity except for requiring extra memory to contain C input vectors.
However, NR-RDR-GMCC can explore more historical information and avoid the
effects of consecutive large outliers through the cache window and use it to update the
weight, thereby improving the filtering performance of the NR-DR-GMCC algorithm.
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The rest of this paper is organized as follows. In Section 2, some preliminaries about
α-SD Noise, the GMCC criterion, and the Newton recursion method are reviewed. Sec-
tion 3 presents our proposed algorithms, namely, NR-DR-GMCC and NR-RDR-GMCC.
Simulation results are presented in Section 4. Finally, the conclusion is given in Section 5.

2. Preliminaries
2.1. Alpha-Stable Distribution Noise

In this paper, the impulsive noise can be simulated by α-SD, and the noise model can
construct the ubiquitous non-Gaussian noise with strong impulsive characteristics well [23].
The characteristic function of this model is defined as:

Φ(θ) =

{
exp

{
jδθ − λ|θ|α

[
1 + jς sgn(θ) tan απ

2
]}

, α 6= 1
exp

{
jδθ − λ|θ|

[
1 + jς sgn(θ) 2

π log |t|
]}

, α = 1
, (1)

where j2 = −1; α ∈ (0, 2] denotes a characteristic exponent measuring the thickness of the
tail of a distribution. The smaller the value of α, the thicker the tail of the corresponding
distribution, and the more significant the impulsive characteristics. When the value of α is
close to 2, the corresponding distribution is close to the Gaussian distribution; λ > 0 denotes
a dispersion parameter, which is similar to the variance of a Gaussian distribution; ς ∈
[−1, 1] means the symmetry parameter, which can define the inclination of the distribution;
and δ ∈ (−∞,+∞) denotes the location parameter. In general, when α = 2, ς = 0, α-SD is
equivalent to a Gaussian distribution. In this paper, for the sake of simplicity, the parameter
vector of α-SD is denoted as dT

α = [α, ς, δ, λ].

2.2. Generalized Maximum Correntropy Criterion

Correntropy measures the local similarity between two random variables X and Y [11],

Cσ(X, Y) = E[κσ(X, Y)] =
∫

κσ(x, y)dFX,Y(x, y), (2)

where E[·] stands for the expectation operator; FX,Y(x, y) denotes the joint distribution
function of X and Y; and κδ(·, ·) denotes a Gaussian kernel defined as:

κσ(x, y) = exp
(
−σ|x− y|2

)
, (3)

where σ > 0 means a kernel factor. In practice, the joint distribution FX,Y(x, y) is usually
unknown, and thus only a finite number of data {xn, yn}N

n=1 are used to derive the sample
estimator of (3) as

Ĉσ(X, Y) =
1
N

N

∑
n=1

κσ(xn, yn). (4)

From a probabilistic statistical point of view, the maximization of correntropy can
lead to the error producing the maximum probability density at the origin, and thus the
Equation (4) can be regarded as a nonlinear cost function, and it has been widely adopted
in the field of robust adaptive signal processing. However, the Gaussian kernel function
used in the estimation (4) may not always be the best choice. Therefore, other types of
kernel functions can be used to replace the Gaussian kernel, such as a kernel function based
on the generalized Gaussian density (GGD) function, i.e.,

κs,τ(x, y) = γs,t exp(−τ|x− y|s), (5)

where τ = t−s is the kernel parameter; s and t are positive numbers and present the
shape parameter and the scale factor, respectively; and γs,t = s/2tΓ

(
s−1) denotes the
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normalization constant with Γ(·) being the Gamma function. Injecting GGD into (4), a new
sample estimator can be obtained as

Ĉs,τ(X, Y) =
1
N

N

∑
n=1

κs,τ(xn, yn). (6)

In the field of robust adaptive signal processing, (6) is often referred to as generalized
correntropy. In applications such as regression analysis and classification studies, the
correntropy loss (C-loss) metric can be used in place of correntropy [24]. Inspired by this,
the generalized C-loss (GC-loss) function between the random variables X and Y can be
defined as

J(X, Y) = Ĉs,τ(0)−
1
N

N

∑
n=1

κs,τ(en), (7)

where en = xn − yn means the error information. Equation (7) shows that minimizing
GC-loss is equivalent to maximizing generalized correntropy, which is usually denoted as
GMCC and is widely used in the field of adaptive filtering [18,20,25].

2.3. Newton Recursion

Using the second-order Taylor formula to expand a continuous function f (x) at x0,

f (x) ≈ f (x0) + (x− x0)g(x0) +
1
2
(x− x0)H(x0), (8)

where g(x0) represents the gradient of f (x) at x0 and H(x0) is the gradient of g(x0) at x0.
Therefore, based on (8), we can obtain the gradient of f (x) with respect to x as

g(x) ≈ g(x0) + H(x0)(x− x0). (9)

Setting g(x) = 0, we obtain

x ≈ x0 − H(x0)
−1g(x0), (10)

which leads to the general form of the Newton recursion method [26],

xk+1 = xk − H(xk)
−1g(xk). (11)

This recursive method is often used to obtain approximate solutions of nonlinear
equations g(x) = 0. If g(x) is a real-valued function, then xk+1 represents the point where
the tangent y − g(xk) = H(xk)(x − xk) of the function g(x) at point xk intersects the x-
axis [27]. It is worth noting that when g(x) is a vector function, the H(x) becomes a Hessian
matrix and, in this case, the use of Newton recursion must ensure that the Hessian matrix
is positive definite.

3. The Proposed Algorithms
3.1. GB-GMCC

The following linear model is considered to reconstruct an unknown system such that
the output y(n) of a adaptive filter matches the desired signal d(n)

d(n) = u(n)Two + v(n), (12)

where u(n) = [u(n), u(n− 1), . . . , u(n− L + 1)]T denotes the input vector with length L;
wo = [wo

1, wo
2, . . . , wo

L]
T means the intrinsic weight vector of the unknown system; and

v(n) is the α-SD noise. For simplicity, the normalized constant γs,t in the GGD function
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is ignored, and the sample estimator in (6) is replaced by an instantaneous estimator to
establish the following cost function,

J(w) = exp(−τ|e(n)|s), (13)

where e(n) = d(n) − u(n)Tw denotes the estimation error and w = [w1, w2, . . . , wL]
T

means the estimated weight vector. Calculate the gradient of (13), and use the gradient
ascent method to obtain the weight vector update formula of the GB-GMCC algorithm as

w(n + 1) = w(n) + µ f (e(n))u(n), (14)

where
f (e(n)) = exp(−τ|e(n)|s)|e(n)|s−2e(n) (15)

denotes a nonlinear function of the error information; and µ > 0 stands for the learning
step size.

3.2. NR-DR-GMCC

Observing from (14), one can find that the GB-GMCC algorithm only uses the current
input vector u(n) to update the weight vector. Although this method has a lower compu-
tational complexity, it results in the slower convergence rate of the GB-GMCC algorithm
when facing the increment of the correlation of the input signal. This problem can be
overcome by using the data-reusing method, and thus the cost function in (13) can be
changed as

J(w) = exp(−τ‖e(n)‖s
s), (16)

where
e(n) = [e(n), e(n− 1), . . . , e(n−M + 1)]T (17)

represents an error vector consisting of M recent error signals and ‖·‖s
s means the s power

of `s-norm. In addition, the GB-GMCC algorithm updates the weight vector by using the
gradient ascent strategy, which only considers the first-order derivative information. When
all elements in the gradient are zero values, the stationary point of the gradient ascent
method may be a local maximum and/or a saddle point. In other words, the gradient
ascent method is an inefficient or even ineffective optimization method in some situations.
To this end, inspired by the Newton recursion strategy, we can derive a new generalized
maximum correntropy criterion algorithm as follows.

Let g(w) =
∂J(w)

∂w , and take the gradient of (16) with respect to w as

g(w) =
∂J(w)

∂w
= τs exp(−τ‖e(n)‖s

s)
n−M+1

∑
i=n

|e(i)|s−2e(i)u(i), (18)

where sgn(·) is a symbolic function. Further denoting ∂g(w)
∂w as H(w), we can obtain the

Hessian matrix as

H(w) = τs exp(−τ‖e(n)‖s
s)

τs

(
n−M+1

∑
i=n

|e(i)|s−2e(i)u(i)

)2

− (s− 1)
n−M+1

∑
i=n

u(i)u(i)T

. (19)
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Based on the following definitions, the g(w) and H(w) can be represented as more
compact formations as

g(w) = τs exp(−τ‖e(n)‖s
s)U(n)ϕ(n)

H(w) = τs exp(−τ‖e(n)‖s
s)
(

τsU(n)ϕ(n)ϕ(n)TU(n)T − (s− 1)U(n)U(n)T
)

U(n) = [u(n), u(n− 1), . . . , u(n−M + 1)]
ϕ(n) = b(n)� sgn(e(n))

b(n) =
[
|e(n)|s−1, |e(n− 1)|s−1, . . . , |e(n−M + 1)|s−1

]T

sgn(e(n)) = [sgn(e(n)), sgn(e(n− 1)), . . . , sgn(e(n−M + 1))]T

, (20)

where � is the Hartman product. Therefore, based on Newton recursion in (11), a weight
vector update formation of the Newton recursion-based data-reusing generalized maximum
correntropy criterion (NR-DR-GMCC) algorithm is derived as

w(n + 1) = w(n)− η
(
τsRu,ϕ(n)− (s− 1)Ru(n) + εI

)−1U(n)ϕ(n), (21)

where Ru,ϕ(n) = U(n)ϕ(n)ϕ(n)TU(n)T ; Ru = U(n)U(n)T is a covariance matrix of the
input matrix U(n); η > 0 is step-size; and ε > 0 denotes a small-valued smoothing factor.

3.3. NR-RDR-GMCC

Although the filtering performance of NR-DR-GMCC can be improved by digging
much information contained in the latest M input vectors, the computational complexity
of the algorithm will be increased when the data-reusing order M is large. Therefore, to
balance the computational burden and the good filtering performance, we further inject a
random strategy of data-reusing into the NR-DR-GMCC algorithm, and thus an enhanced
version of NR-DR-GMCC is obtained as follows.

Based on this, we can define the error vector as

er(n) =
[
e
(

r(1)n

)
, e
(

r(2)n

)
, . . . , e

(
r(M)

n

)]T
, (22)

which is composed of randomly selected error signals in which i ∈ [1, M], r(i)n denotes the
index of an interval [n− C + 1, n] and satisfies a 6= b → r(a)

n 6= r(b)n , where C > M is the
length of a cache window. Then, (16) can be modified as

J(w) = exp(−τ‖er(n)‖s
s). (23)

Based on some similar operations to (18) and (19), we can obtain a weight vector
update formation of theNewton recursion-based random data-reusing generalized maximum
correntropy criterion (NR-RDR-GMCC) algorithm as

w(n + 1) = w(n)− η
(

τsRr
u,ϕ(n)− (s− 1)Rr

u(n) + εI
)−1

Ur(n)ϕr(n), (24)

in which the following symbols are used

Ur(n) =
[
u
(

r(1)n

)
, u
(

r(2)n

)
, . . . , u

(
r(M)

n

)]
ϕr(n) = br(n)� sgn(er(n))

br(n) =
[∣∣∣e(r(1)n

)∣∣∣s−1
,
∣∣∣e(r(2)n

)∣∣∣s−1
, . . . ,

∣∣∣e(r(M)
n

)∣∣∣s−1
]T

sgn(er(n)) =
[
sgn
(

e
(

r(1)n

))
, sgn

(
e
(

r(2)n

))
, . . . , sgn

(
e
(

r(M)
n

))]T

Rr
u,ϕ(n) = Ur(n)ϕr(n)ϕr(n)

TUr(n)
T

Rr
u(n) = Ur(n)Ur(n)

T

. (25)
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Remarks: (1) Based on the data-reusing method, the NR-DR-GMCC algorithm can use
the latest M input information to update the weight equation, remitting the convergence
rate degradation problem of GB-GMCC due to the increased correlation of the input signal;
(2) In comparison with GB-GMCC only using the information of the first-order deriva-
tive, the NR-DR-GMCC algorithm can use the second-order information provided by the
Newton recursion method, and thus NR-DR-GMCC achieves faster convergence behavior;
(3) As an improved version of NR-DR-GMCC, the NR-RDR-GMCC algorithm uses a cache
window with length C > M to store the latest C input vectors. Then, to update the weight
vector, NR-RDR-GMCC randomly selects M input vectors from the cache window. Accord-
ing to the random data-reusing method, NR-RDR-GMCC obtains abundant error informa-
tion from the cache window and avoids the convergence loss caused by continuous outliers.
Furthermore, when the data-reusing order M is fixed, NR-RDR-GMCC does not have a sim-
ilar computational complexity to that of NR-DR-GMCC with data-reusing order M, but also
achieves a better filtering performance than NR-DR-GMCC. Moreover, observing from (12)
and (16), one can find that, when C = M, the NR-RDR-GMCC algorithm becomes the
NR-DR-GMCC algorithm. That is to say, NR-RDR-GMCC can be regarded as an effective
extension of NR-DR-GMCC. Algorithm 1 summarizes the pseudocode of the proposed algo-
rithms. Moreover, Figure 1 plots the schematic diagram of the data-reusing and the random
data-reusing methods, and shows the difference between these two methods, namely, the
data-reusing method only utilizes the latest M inputs, whereas the random data-reusing
method saves the latest C inputs and randomly selects M entries from these C inputs.

Algorithm 1: Pseudocode of Proposed Algorithms
1 Initialization: 0 < M < C, ε > 0, η > 0, s > 0, τ > 0, w(0) = 0

2 Computation:
3 for n > 0 do
4 if n ≤ M

5 i = n, u
(

r(i)n

)
= u(i)

6 else if M < n ≤ C

7 r(i)n ∈ [1, n]→ u
(

r(i)n

)
8 else n > C

9 r(i)n ∈ [n + C− 1, n]→ u
(

r(i)n

)
10 end if

11 Ur(n) =
[
u
(

r(1)n

)
, u
(

r(2)n

)
, . . . , u

(
r(M)

n

)]
12 er(n) = dr(n)−Ur(n)

Tw(n)

13 br(n) =
[∣∣∣e(r(1)n

)∣∣∣s−1
,
∣∣∣e(r(2)n

)∣∣∣s−1
, . . . ,

∣∣∣e(r(M)
n

)∣∣∣s−1
]T

14 sgn(er(n)) =
[
sgn
(

e
(

r(1)n

))
, sgn

(
e
(

r(2)n

))
, . . . , sgn

(
e
(

r(M)
n

))]T

15 ϕr(n) = br(n)� sgn(er(n))
16 Hr(w(n)) = τsUr(n)ϕr(n)ϕr(n)

TUr(n)
T − (s− 1)Ur(n)Ur(n)

T

17 gr(w(n)) = Ur(n)ϕr(n)
18 w(n + 1) = w(n)− η(Hr(w(n)) + εI)−1gr(w(n))
19 End for
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Figure 1. Schematic diagram of the data-reusing and the random data-reusing methods.

3.4. Computation Complexity Analysis

Different from the traditional GB-GMCC algorithm, the random strategy is applied in
NR-RDR-GMCC for efficiently reusing the past M input vectors, and thus our proposal
can extract more historical information supporting the weight vector update inspired by
Newton recursion. Although, compared with GB-GMCC algorithm, our proposed NR-
RDR-GMCC has a higher computational complexity, it is worthwhile since NR-RDR-GMCC
outperforms GB-GMCC in terms of filtering accuracy as will be shown in the simulation
results. It is worth noting that the matrix inverse involved in NR-RDR-GMCC can be
achieved with the help of some iterative optimization methods, thereby reducing the com-
putational complexity of the NR-RDR-GMCC algorithm [28]. In addition, Table 1 lists the
computational complexity of the proposed NR-RDR-GMCC and other related algorithms
per iteration in terms of multiplications and additions in which M represents the order of
data-reusing and/or projection, L stands for the tap length, Nτ,s

exp indicates the computa-
tional complexity associated with the nonlinear function exp

(
−τ|e(i)|s

)
|e(i)|s−1 [20], and

O(L3) is the computational burden required for the direct inverse of the square matrix in
the L× L dimension.

Table 1. Computational Complexity of Algorithms Per Iteration.

Algorithms Multiplications Additions

GB-GMCC MNτ,s
exp + 2L + 1 2ML + L

AP-GMCC MNτ,s
exp + 2ML + 2L + 1 2ML + L

APSA ML + 2L + K 2ML + L
APV M(2L + M + 7) + 1 2ML + L

MCC-APA O(L3) + (M + 2)L2 + Nτ,s
exp + 2(M + 1)L + 2 (M + L)L2 + (2M− 1)L + M− 1

NR-RDR-GMCC O(L3) + (M + 4)L2 + Nτ,s
exp + 3(M + 1)L + M (M + 1)L2 + (2M− 1)L + M

4. Simulation Results
4.1. System Identification

In order to evaluate the filtering performance of the NR-RDR-GMCC algorithm, we
consider the system identification problem represented in (12), where the unknown weight
vector wo is randomly generated and the tap length L = 32. Impulsive noise is modeled by
α-SD with the parameter vector dT

α = [1.5, 0, 0, 0.1]. The input signal u(n) is generated by a
zero-mean Gaussian noise with unit variance filtered by the following second-order system:

H(z) =
1 + 0.5z−1 + 0.81z−2

1− 0.59z−1 + 0.4z−2 . (26)
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To compare the filtering performance of competing algorithms, the normalized mean
square deviation (NMSD) is used, i.e.,

NMSD = 20 lg
(
‖w−wo‖
‖wo‖

)
; (27)

in addition, all NMSD simulation results are averaged over 100 independent experiments.
Firstly, in order to study the effect of the order M of data-reusing on the convergence

performance of the NR-RDR-GMCC algorithm, we set different M from ∈ {2, 4, 6, 8, 16, 32},
and the other parameters are fixed as C = 512, s = 1.5, τ = 0.0001, η = 0.005, and
ε = 0.0001. Figure 2 plots the corresponding NMSD curves. From Figure 2, we can
observe that: (1) When M is large, such as M = 32, the NR-RDR-GMCC algorithm does not
converge; (2) Under the premise of the convergence of NR-RDR-GMCC, by appropriately
increasing the M value, such as from 2 to 16, the convergence rate of NR-RDR-GMCC will
be significantly improved; (3) With some moderate values, such as M = 4, NR-RDR-GMCC
can achieve an acceptable convergence rate and the best filtering accuracy. Therefore,
for NR-RDR-GMCC, in practical applications, it is necessary to select a proper value of
M to make the trade-off among the computational complexity, filtering accuracy and
convergence rate.
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Figure 2. The NMSD curves of NR-RDR-GMCC with different values of M ∈ {2, 4, 6, 8, 16, 32}.

Secondly, we investigate the influence of the length of cache window C on the per-
formance of NR-RDR-GMCC. To this end, some values of C from {16, 32, 64, 128, 256, 512}
are set and other parameters are fixed as M = 16, s = 1.5, τ = 0.0001, η = 0.005 and
ε = 0.0001. The corresponding NMSD curves are plotted in Figure 3, which clearly shows
that: (1) The filtering accuracy of NR-RDR-GMCC can be enhanced by increasing the values
of C. In addition, with some large C values, such as C ∈ {256, 512}, the jitter behavior of
NR-RDR-GMCC can be restrained, thereby improving the stability of our proposed algo-
rithm; (2) When C = M = 16, NR-RDR-GMCC reduces to the NR-DR-GMCC algorithm.
However, compared to NR-RDR-GMCC with other large C values, the NR-DR-GMCC
algorithm realizes the fastest convergence rate at the cost of the worst accuracy. That is to
say, with some moderate C values, NR-RDR-GMCC can achieve a good balance between a
smaller misadjustment and a good convergence rate.
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Figure 3. The NMSD curves of NR-RDR-GMCC with different values of C ∈ {16, 32, 64, 128, 256, 512}.

Thirdly, we study the effect of the shape parameter s and kernel parameter τ on the
filtering accuracy of NR-RDR-GMCC. To this end, different s and τ values are considered
and other parameters are set as C = 512, M = 16, η = 0.005 and ε = 0.0001. Figure 4 shows
the steady-state NMSD (SS-NMSD) estimated by the last 100 NMSD for NR-RDR-GMCC
with respect to various values of s ∈ (0, 3) and τ ∈ (0.00001, 0.0002). From this figure we
can observe that: (1) With the same shape parameter s, different τ values lead to NR-RDR-
GMCC obtaining very similar filtering accuracy; (2) With the same kernel parameter τ,
different s values result in obvious steady-state behaviors of NR-RDR-GMCC. That is to
say, when s ∈ (1.0, 3.0), the filtering accuracy will gradually increase with the decrease
of s; when s = 1.0, the algorithm mutates into a divergent state; when s ∈ (0.0, 1.0), the
algorithm does not converge. In addition, to clearly show the filtering behavior, some
NMSD curves of NR-RDR-GMCC with τ ∈ {0.00001, 0.002} and s ∈ {1.5, 2.0, 2.5, 3.0} are
plotted in Figure 5. From this figure, we have the following observations: (1) When the
s parameter is same, in most cases, the NR-RDR-GMCC algorithms with τ = 0.00001 or
τ = 0.002 realize similar convergence behavior; (2) With the same τ parameter, NR-RDR-
GMCC can realize an enhanced convergence rate and filtering accuracy by decreasing the
values of s from 3.0 to 1.5.
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Figure 4. The steady-state NMSD results of NR-RDR-GMCC with different values of s ∈ (0, 3) and
τ ∈ (0.00001, 0.0002).

Finally, in order to verify the effectiveness of the proposed NR-RDR-GMCC algo-
rithm, some related algorithms, such as NR-DR-GMCC, GB-GMCC [19], affine projection
GMCC (AP-GMCC) [20], AP sign algorithm (APSA) [29], AP Versoria (APV) [30] and
MCC-APA [31], are considered in this part. For all algorithms, the smooth parameter or
regularization parameter ε = 0.001; for all GMCC based algorithms, s = 1.5, τ = 0.0001;
other parameter settings are experimentally tested so that the algorithms have similar
initial convergence rates. Table 2 lists the parameter setting. In addition, to further verify
the advantages of the GMCC criterion, this experiment also considers the special case of
s = 2.0 in the NR-RDR-GMCC algorithm; in other words, the NR-RDR-GMCC algorithm
reduces to an MCC-based NR-RDR algorithm. Furthermore, we change the unknown
weight vector from wo to −wo at the middle iterations to simulate system mutation and
explore the tracking performance of various algorithms. Figure 6 plots the corresponding
NMSD curves and reveals that: (1) Compared to the GB-GMCC algorithm, the NR-RDR-
GMCC (s = 1.5) algorithm has a very obvious advantage in terms of filtering accuracy
and convergence rate. In addition, irrespective of the mutation of system, in comparison
with other algorithms, the NR-RDR-GMCC (s = 1.5) algorithm achieves the comparable
convergence rate and the best filtering accuracy; (2) In this simulation, the NR-RDR-GMCC
(s = 2.0) algorithm is inferior to the other algorithms in terms of convergence rate and
steady-state misadjustment as shown in Table 2. That is to say, in some situations, to derive
some robust adaptive filtering algorithms, GMCC is better than MCC.
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Figure 5. The NMSD curves of NR-RDR-GMCC with different values of τ ∈ {0.00001, 0.002} and
s ∈ {1.5, 2.0, 2.5, 3.0}.

Table 2. Parameter Setting And Steady-State NMSD Results In System Identification.

Algorithms η M C Radius Kernel Width SS-NMSD (dB)
r σ wo −wo

GB-GMCC 0.004 - - - - −20.9597 −20.8324
AP-GMCC 0.005 16 - - - −20.7933 −20.6320

APSA 0.006 16 - - - −22.1333 −22.0104
APV 0.005 16 - 10 - −20.4574 −20.2859

MCC-APA 0.005 16 - - 10 −19.1079 −18.7148
NR-DR-GMCC 0.002 16 16 - - −21.2425 −20.7102

NR-RDR-GMCC 0.005 16 512 - - −23.8190 −23.5575
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Figure 6. The NMSD curves of competing algorithms with dT
α = [1.5, 0, 0, 0.1].

4.2. Acoustic Echo Cancellation

To further compare the filtering behaviors of the mentioned algorithms, a typical
application, i.e., acoustic echo cancellation (AEC), is also considered in this work. Under
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the condition of double-ended voice, in this part, two kinds of environmental noises are
considered, namely: (1) the noise v(n) being impulsive and (2) the noise v(n) not being
impulsive. In all trials, a Gaussian background noise with a signal-to-noise ratio of 60 dB
was considered. The echo paths wo

1 and wo
2 [32] involved in this experiment and the voice

input signal are shown in Figures 7 and 8, respectively, where the signal sample rate was
set to 8 kHz. To simulate the system mutation, the echo path was abruptly changed from
wo

1 to wo
2 at the 7000-th iteration. Except where otherwise mentioned, for all algorithms, the

data-reusing order or projection order is M = 16, the regularization parameter or smooth
parameter is ε = 0.0001, and for GMCC-based algorithms the kernel factor is τ = 0.001.
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Figure 7. Two acoustic finite impulse responses with L = 128: (a) wo
1; (b) wo

2.
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Figure 8. Speech signals: (a) Far-end; (b) Near-end.

4.2.1. Without Impulsive Noise

In order to compare the acoustic echo cancellation filtering performance of the NR-
RDR-GMCC algorithm and other related algorithms in an environment without impulsive
noise, based on various experimental tests, Table 3 lists the remaining parameters’ setting
to realize a similar initial convergence rate. Figure 9 plots the corresponding NMSD curves.
From this figure, we can see that: (1) Due to the interference of near-end voice, the NR-
RDR-GMCC algorithm and other related algorithms have a slightly jitter phenomenon
after convergence; (2) Without interference of impulsive noise, NR-RDR-GMCC is superior
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to other algorithms in terms of convergence rate and filtering accuracy before or after
system mutation.

Table 3. Parameter Setting and Steady-State NMSD Results in AEC without Impulsive Noise.

Algorithms Parameters SS-NMSD (dB)
wo

1 wo
2

GB-GMCC η = 0.05, s = 1.7 −18.4309 −14.3984
AP-GMCC η = 0.10, s = 1.7 −22.5124 −22.3412

APSA η = 0.06 −21.1401 −20.5691
APV η = 0.05 −28.0652 −27.7924

MCC-APA η = 0.50 −37.9557 −38.9585
NR-RDR-GMCC η = 0.10, C = 256, s = 1.7 −40.8235 −41.9047
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Figure 9. The NMSD curves of various algorithms in ACE without impulsive noise interference.

4.2.2. With Impulsive Noise

In this part, we use the Bernoulli–Gaussian distribution model to obtain the impulsive
noise, i.e., v(n) = b(n)vg(n), where b(n) is the Bernoulli process with the probability
density model P{b(n) = 1} = Pr = 0.001. Before the system mutation, vg(n) is a zero-
mean Gaussian noise with a variance of 151. After system mutation, the variance of vg(n)
becomes 110. For all algorithms, Table 4 lists the remaining parameters’ setting to realize a
similar initial convergence rate. The corresponding NMSD curves are plotted in Figure 10,
which shows that, although some impulsive noises may have a negative effect on the
filtering performance of the considered algorithms, our proposed NR-RDR-GMCC still
achieves the smallest steady-state misadjustment before or after the mutation of the system.
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Table 4. Parameter Setting and Steady-State NMSD Results in AEC under Impulsive Noise.

Algorithms Parameters SS-NMSD (dB)
wo

1 wo
2

GB-GMCC η = 0.15, s = 1.6 −3.6680 −3.5960
AP-GMCC η = 0.20, s = 1.6 −6.2958 −7.1930

APSA η = 0.30 −8.3213 −8.0550
APV η = 0.10 −11.7331 −11.6527

MCC-APA η = 0.10 −2.4777 −3.6380
NR-RDR-GMCC η = 0.10, C = 256, s = 1.6 −15.6412 −17.2785
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Figure 10. The NMSD curves of various algorithms in ACE under an impulsive noise environment.

5. Conclusions

The traditional GB-GMCC algorithm has a degradation of convergence performance
when facing highly colored input signals. In this work, to overcome this issue, the NR-
DR-GMCC algorithm was derived by using the data-reusing method and the Newton
recursion method. In addition, to further avoid the influence of continuous large outliers in
the output signal and extract more historical data, a cache window is considered to collect
the latest C input vectors, and then M input vectors in the cache window are randomly
selected to derive an enhanced version of NR-DR-GMCC, namely, NR-RDR-GMCC. From
a mathematical point of view, when the cache window length C is equal to the data-reusing
order M, NR-RDR-GMCC can be converted to the NR-DR-GMCC algorithm, and thus
the former can be regarded as a good extension of the latter. The system identification
simulation results show that the NR-RDR-GMCC algorithm has a better filtering accuracy
and a faster convergence rate than the corresponding AP-type algorithm and GB-GMCC.
Furthermore, in acoustic echo cancellation applications, the NR-RDR-GMCC algorithm has
obvious advantages over other related algorithms in terms of steady-state misalignment.
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