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Abstract: Large subduction-zone earthquakes generate long-lasting and wide-spread aftershock
sequences. The physical and statistical patterns of these aftershock sequences are of considerable
importance for better understanding earthquake dynamics and for seismic hazard assessments and
earthquake risk mitigation. In this work, we analyzed the statistical properties of 42 aftershock
sequences in terms of their temporal evolution. These aftershock sequences followed recent large
subduction-zone earthquakes of M ≥ 7.0 with focal depths less than 70 km that have occurred
worldwide since 1976. Their temporal properties were analyzed by investigating the probability
distribution of the interevent times between successive aftershocks in terms of non-extensive sta-
tistical physics (NESP). We demonstrate the presence of a crossover behavior from power-law (q
6= 1) to exponential (q = 1) scaling for greater interevent times. The estimated entropic q-values
characterizing the observed distributions range from 1.67 to 1.83. The q-exponential behavior, along
with the crossover behavior observed for greater interevent times, are further discussed in terms of
superstatistics and in view of a stochastic mechanism with memory effects, which could generate the
observed scaling patterns of the interevent time evolution in earthquake aftershock sequences.

Keywords: subduction zones; megathrust earthquakes; aftershock sequences; interevent times;
superstatistics; Tsallis entropy

1. Introduction

Megathrust faults, which bring together the surfaces of overthrusting and underthrust-
ing plates in subduction zones, host the largest earthquakes on Earth. The downward
motion of the subducting plate can generate exceptionally larger earthquakes with magni-
tudes even greater than Mw 7, releasing tremendous amounts of seismic energy that can
have devastating repercussions across wide geographic regions. These large earthquakes
generate prolonged aftershock sequences, which may last days to months or even years [1–
6]. Not only can the mainshock of a megathrust earthquake cause extensive damages to
many structures in its vicinity and the loss of lives, but the aftershocks that follow may also
have destructive consequences. As a result, emergency preparedness and planning must
include the effects of aftershocks on susceptible sectors of society and infrastructure [1–4].
This is achieved by estimating the parameters of various well-established empirical laws for
aftershock sequences following major mainshocks in a specific seismogenic region [6–8]. In
a subduction zone, the intense friction between the descending and overriding plates may
generate shallow, intermediate, or deep earthquakes, which may occur both within the de-
scending and overriding plates as well as along the interface between the two plates [9,10].
The magnitudes of such earthquakes vary greatly, depending on the sorts of boundaries
that cause them. Almost all major earthquakes occur along boundaries of convergence
or transform. Megathrust earthquakes are the most devastating events, with magnitudes
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reaching or exceeding Mw 9.0 in some cases. As a result, a deeper understanding is crucial
for earthquake physics and earthquake early warning systems. Aftershock sequences
following megathrust earthquakes can raise the level of seismic risk, even in distant areas
far away from the mainshock’s fault zone.

To this aim, the aftershock sequences of significant subduction-zone earthquakes with
magnitudes greater than 7.0 that occurred between 1976 and 2020 were investigated, with
a focus on their temporal distributions in view of the ideas of statistical physics. The
statistical physics approach expresses the basic principles of the evolution of seismicity
using the universal principle of entropy. In particular, we used the non-extensive statistical
physics (NESP) framework, which provides a generalization of the ordinary Boltzmann–
Gibbs (BG) statistical physics [11–17]. The main advantage of using NESP is that all length
correlations and memory effects are considered in the temporal evolution of seismicity,
including BG statistical physics as a particular case [18–22]. In this work, the temporal
scaling characteristics of major subduction zone aftershock sequences in terms of NESP
were studied by estimating the probability distribution of the interevent times between
successive aftershocks and its non-additive entropic parameter (q) [12,18,23–29]. We show
that the observed probability distributions present a universal behavior with a crossover
from power-law (q 6= 1) to exponential (q = 1) scaling at longer interevent times.

2. Materials and Methods

Non-extensive statistical physics (NESP), based on the generalization of BG statistics,
is an appropriate method to describe complex systems with (multi)fractality, long-range
interactions, and long-term memory effects, resulting in power-law asymptotic behavior
that is widely observed in nature [12,30–40]. Central to NESP is the expression of Tsallis
entropy (Sq) [12,31–33], which is given as

Sq = kB
1−∑ pq(X)

q− 1
, (1)

in terms of a fundamental parameter’s probability distribution (p(X)). In the present work, X
is the interevent time (T), i.e., the time interval between successive aftershock events [35,41],
and kB is Boltzmann’s constant. The q parameter is the so-called entropic index, which
signifies the degree of non-additivity in the system [12]. For the particular case of q = 1,
Sq = SBG and the BG entropy is recovered. Despite the fact that Sq and SBG have many
similarities, such as non-negativity, expansibility, and concavity, there is a major difference
between the two formalisms. The BG entropy is additive, meaning that the entropy of a
coupled system is equal to the sum of the entropies of its constituent components, whereas
the Tsallis entropy (Sq) (with q 6= 1) is non-additive [12,18,30,42,43]. Tsallis entropy satisfies
the following condition for any two probabilistically independent systems, A and B:

Sq(A + B) = Sq(A) + Sq(B) +
(q− 1)

kB
Sq(A)Sq(B), (2)

In particular, q < 1 corresponds to superadditivity, and q > 1 corresponds to subaddi-
tivity, while the right-hand side of Equation (2) disappears when q = 1, so it corresponds to
the additivity characteristics [12,24,44–56].

If X is a physical parameter that characterizes the system, such as earthquake in-
terevent times (T), the probability distribution (p(T)) is determined using the Lagrange
multipliers method by maximizing the entropy under suitable constraints [12]. Using the
previous approach, Equation (1) leads to the probability distribution function

p(T) =

[
1− (1− q)

(
T
T q

)] 1
1−q

Zq
=

expq
(
−T/Tq

)
Zq

, (3)
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where Zq is the q-partition function

Zq =
∫ ∞

0
expq

(
−T/Tq

)
dT, (4)

and Tq is a generalized scaled interevent time. The nominator of Equation (3) is the
q-exponential function, which is defined as [12]

expq(X) = [1 + (1− q)X]
1

1−q , (5)

for 1 + (1− q)X ≥ 0, while in other cases expq(X) = 0.
The cumulative distribution function P(> T) = N(> T)/No, where N(>T) is the

number of interevent times with values greater than T and No, their total number, is
estimated as [24]

P(> T) = expQ(−T/T∗), (6)

which has the mathematical form of a q-exponential function with T∗ = TqQ and
q = 2− (1/Q). The inverse function of the Q-exponential function is the so-called Q-
logarithmic function, which is defined as [24]

lnQP(> T) =
P(> T)1−Q − 1

1−Q
, (7)

From Equation (7), it follows that lnQP(> T) = − T
T∗ , indicating a straight line with

slope −1/T∗.

3. Data Selection and Analysis

Herein, the statistical properties of the temporal evolution of aftershock sequences that
followed large subduction-zone earthquakes worldwide during the last few decades are
presented. The analyzed earthquakes occurred in various subduction zones all around the
edge of the Pacific Ocean, Canada, Alaska, Russia, Indonesia, and Japan (Figure 1). We used
42 aftershock sequences generated by mainshocks of Mw 7.0 and greater with focal depths
less than 70 km that occurred from January 1976 to July 2020 and were located at a maximum
distance of 100 km from the main event. The aftershock catalogues were extracted from
the United States Geological Survey (USGS) database [48]. To create the catalogues of the
aftershock sequences, an elliptical region with a maximum distance of 100 km from the
mainshock was selected for each main event, based on the distribution of aftershocks, to
designate a probable aftershock zone. Then, all earthquake events that occurred within
this region, for a maximum period of two years after the mainshock, were included in the
catalogue. Once the catalogues were defined, the frequency–magnitude distribution was
used to estimate the completeness magnitude (Mc) of each aftershock sequence [49,50]. The
catalogues that were analyzed consisted of at least 100 events. Ultimately, the final list
included 42 mainshocks and their aftershock sequences (see Table 1).

Figure 1 depicts the geographical locations of the 42 studied mainshocks that occurred
in subduction zones around the world. The event indexes correspond to the number of each
mainshock in Table 1, which are listed chronologically from the oldest to the most recent.
The parameters of each mainshock and its aftershock sequence, along with the entropic
parameter (q), were calculated for the interevent time distribution and are presented in
Table 1, along with the parameter Tc, which marks the crossover points between the
non-additive and additive behavior in each aftershock sequence.
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Figure 1. (a) Geographical distribution of the 42 subduction-zone earthquakes that were studied. The
event indexes correspond to those listed in Table 1, while the dashed lines represent the subduction
zones. The details of earthquakes located on the dashed squares are extracted in panels (b,c).
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Table 1. Summary of the results for the 42 subduction zone aftershock sequences. Mc is the completeness
magnitude of each catalogue, N is the number of aftershocks, q the entropic index of the interevent time
distribution, Tq is the generalized scaled interevent time, and Tc is the critical interevent time, where a
crossover from NESP to BG statistical mechanics appeared (see the text for details).

Index
Number Date Epicenter

(Lat, Lon)
Depth
(km)

Duration
(days)

Mainshock
Magnitude (Mw) Mc N qT Tq (s) Tc (s)

1 14 January 1976 −28.43, −177.66 33.00 346 8.0 5.4 101 1.78 4444 4 × 105

2 19 August 1977 −11.14, 118.23 23.30 649 8.3 5.3 124 1.69 3750 5 × 105

3 20 October 1986 −27.93, −176.07 50.40 732 7.7 5.3 103 1.74 1579 10 × 105

4 4 October 1994 43.60, 147.63 68.20 248 8.3 5.2 219 1.72 472 2 × 105

5 16 August 1995 −5.51, 153.64 45.60 89 7.7 5.2 100 1.77 2791 4 × 105

6 3 December 1995 44.82, 150.17 25.90 333 7.9 5.2 138 1.83 200 2 × 105

7 4 June 2000 −4.73, 101.94 43.90 719 7.9 5.2 162 1.82 1636 3 × 105

8 16 November 2000 −4.56, 152.79 24.00 357 8.0 5.5 165 1.73 822 5 × 105

9 23 June 2001 −17.28, −72.71 29.60 710 8.4 5.2 109 1.79 250 20 × 105

10 25 September 2003 42.21, 143.84 28.20 708 8.3 5.1 110 1.78 4000 6 × 105

11 26 December 2004 3.09, 94.26 28.60 692 9.0 5.1 356 1.69 3063 3 × 105

12 28 March 2005 1.67, 97.07 25.80 709 8.6 5.1 210 1.83 667 2 × 105

13 3 May 2006 −20.39, −173.47 67.80 713 8.0 5.0 100 1.75 22,500 3 × 105

14 17 July 2006 −10.28, 107.78 20.00 186 7.7 5.3 133 1.67 433 0.2 × 105

15 1 April 2007 −7.79, 156.34 14.10 687 8.1 5.2 115 1.81 2692 8 × 105

16 12 September 2007 −3.78, 100.99 24.40 722 8.5 5.1 174 1.83 833 1 × 105

17 11 February 2009 3.92, 126.81 23.90 699 7.2 5.2 126 1.81 346 20 × 105

18 29 September 2009 −15.13, −171.97 12.00 728 8.1 5.2 228 1.83 1500 1 × 105

19 7 October 2009 −11.86, 166.01 41.70 695 7.8 5.1 154 1.80 1600 4 × 105

20 27 February 2010 −35.98, −73.15 23.20 720 8.8 5.0 190 1.76 6098 3 × 105

21 11 March 2011 37.52, 143.05 20.20 717 9.1 5.0 435 1.74 26,316 1 × 105

22 6 July 2011 −29.22, −175.83 32.50 364 7.6 5.1 140 1.71 6286 4 × 105

23 11 April 2012 2.35, 92.82 45.60 359 8.6 5.2 129 1.80 286 8 × 105

24 30 August 2013 51.54, −175.23 29.00 724 7.0 4.8 133 1.80 224 10 × 105

25 12 April 2014 −11.35, 162.24 27.30 411 7.6 4.9 177 1.75 173 60 × 105

26 19 April 2014 −6.64, 154.67 43.40 722 7.5 4.7 107 1.83 776 2 × 105

27 15 November 2014 1.98, 126.37 45.00 664 7.1 4.6 119 1.81 472 3 × 105

28 29 March 2015 −5.18, 152.59 37.60 719 7.5 4.7 245 1.71 2857 2 × 105

29 16 September 2015 −31.57, −71.67 22.40 575 8.3 4.6 213 1.78 222 6 × 105

30 28 May 2016 −56.24, −26.94 68.00 616 7.2 4.9 107 1.78 3333 3 × 105

31 1 September 2016 −37.36, 179.15 19.00 580 7.0 4.7 166 1.74 263 3 × 105

32 13 November 2016 −42.74, 173.05 15.10 648 7.8 4.9 144 1.72 556 50 × 105

33 8 December 2016 −10.68, 161.33 40.00 479 7.8 5.0 100 1.72 278 10 × 105

34 8 September 2017 15.02, −93.90 47.40 737 8.2 4.8 252 1.74 921 3 × 105

35 23 January 2018 56.00, −149.17 14.10 437 7.9 4.5 113 1.81 367 2 × 105

36 5 December 2018 −21.95, 169.43 10.00 670 7.5 4.8 166 1.78 217 1 × 105

37 20 December 2018 55.10, 164.70 16.60 662 7.3 4.6 131 1.78 435 8 × 105

38 14 May 2019 −4.05, 152.60 10.00 573 7.6 4.9 103 1.86 411 4 × 105

39 15 June 2019 −30.64, −178.10 46.00 530 7.3 4.8 217 1.75 2250 3 × 105

40 14 November 2019 1.62, 126.42 33.00 364 7.1 4.8 191 1.82 143 2 × 105

41 18 June 2020 −33.29, −177.86 10.00 102 7.4 4.9 121 1.72 694 0.6 × 105

42 22 July 2020 55.07, −158.60 28.00 138 7.8 4.2 207 1.69 313 0.5 × 105

For each aftershock sequence, the cumulative interevent time distribution was esti-
mated, and the corresponding fitting with the Q-exponential function, up to the value
Tc, provided the Q and q parameter values. We noted that, for large values of T, with
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T > Tc, a deviation from the Q-exponential function was observed (e.g., Figure 2a). In
addition, the Q-logarithmic function of P(>T) as a function of the interevent times (T) was
plotted using the Q value estimated in the previous analysis. Then, the range of interevent
times where lnQP(>T) vs. T was a straight line, given by Equation (8), was defined with
its correlation coefficient. The deviation from the linearity at Tc indicated the crossover
between NESP and BG statistical physics. Furthermore, the evolution of the interevent
times (T) as a function of time (t) since the main event further indicated that, in short time
scales after the mainshock, the main driving mechanism is governed by NESP, while, as the
aftershock sequence evolves at T > Tc, the system is governed by BG statistical mechanics.
The aforementioned earthquake statistical analysis and processing was carried out for all
major earthquake aftershock sequences listed in Table 1, with results consistent with the
previous analysis for all aftershock sequences, indicating a universal behavior in their
temporal evolution.

Figure 2. (a) The cumulative distribution function of the interevent times for the 2004 Mw 9.0 Sumatra–
Andaman Islands Earthquake. The magenta line is the Q-exponential function fitting with q = 1.69.
(b) The Q-logarithmic function of P(>T) as a function of the interevent times (T), where the dashed
line is the Q-exponential function fitting with q = 1.69, exhibiting a correlation coefficient of 0.9923.
The deviation from linearity suggests a Tc value close to 3 × 105 s. (c) The evolution of interevent
times (T) as a function of the time (t) since the main event. The Tc value is indicated by the red
dashed line.
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In Table 1, the results of the analysis of the 42 subduction zone aftershock sequences
are summarized. For each aftershock sequence, the entropic index (q) of the interevent
time distribution, along with the generalized scaled interevent time (Tq) and the critical
interevent time (Tc), are presented. In the following section, we present some characteristic
cases referring to the strongest events during the last few decades: the 2004 Mw 9.0 Sumatra–
Andaman Islands Earthquake and the 2011 Mw 9.1 Great Tohoku (Japan) Earthquake. The
corresponding results for the other aftershock sequences listed in Table 1 are provided in
the Supplementary Materials.

3.1. The 2004 Mw 9.0 Sumatra–Andaman Islands Earthquake

The Mw 9.0 Sumatra earthquake, which occurred on 26 December 2004 at a focal
depth of 30 km, was the fourth largest earthquake recorded since 1900. It originated from
thrust faulting between the meeting point of the Indian plate and the Burma micro-plate.
According to the USGS database, 356 aftershocks occurred with magnitudes greater than
Mw 5.1 in a period of two years after the mainshock. One of the greatest disasters recorded
in human history was brought on by the tsunami generated by the mainshock. More than
283,000 people were killed in total, while the severeness and impact of the earthquake
were demonstrated by the fact that the tsunami crossed the Pacific and Atlantic Oceans
and was recorded in New Zealand as well as along the west and east coasts of South and
North America. Tsunamis continued to occur in Mozambique, South Africa, Australia, and
Antarctica. The mainshock even caused eruptions in a mud volcano at Baratang, Andaman
Islands, on 28 December 2004 [51,52].

The cumulative distribution function of the interevent times for the 2004 Mw 9.0
Sumatra–Andaman Islands Earthquake was fitted for T < Tc with the Q-exponential func-
tion for q = 1.69 (Figure 2). The corresponding Q-logarithmic function of P(>T), as a function
of the interevent times for q = 1.69, was fitted by a straight line, as given by Equation (8),
with a correlation coefficient of 0.9923. The deviation from linearity was observed at a Tc
value close to 3 × 105 s, indicating the crossover point between NESP and BG statistical
physics. Furthermore, the evolution of the interevent times (T) as a function of the time (t)
since the main event is presented in Figure 2c. The Tc value (red dashed line in Figure 2c)
indicates that the majority of interevent times in the early period following the mainshock
had T values less than Tc, suggesting that the Tsallis entropic mechanism was predominant
in the immediate part of the aftershocks’ evolution. As time evolved, some of the character-
istics of the early aftershock sequence, such as that of the long-range memory related to
NESP, were less predominant and the BG statistical physics recovered (i.e., q = 1).

3.2. The 2011 Mw 9.1 Great Tohoku (Japan) Earthquake

The Mw 9.1 Tohoku earthquake, which occurred on 11 March 2011, was generated by
thrust faulting at the boundary of the subduction zone between the Pacific and North Amer-
ican plates. It was located close to Honshu, on Japan’s northeast coast. This earthquake
was preceded by many strong foreshocks that occurred over a period of two days prior to
the mainshock, starting on March 9 with an Mw 7.2 earthquake and continuing the same
day with three more earthquakes greater than Mw 6.0. Additionally, during the period of
two years after the mainshock, 435 aftershocks of magnitudes equal or greater than Mw
5.0 occurred. The mainshock generated a tsunami reaching heights up to 40.5 m, with a
devastating impact on Japan’s northern island coastal areas, before spreading all over the
Pacific coasts of North and South America, from Alaska to Chile. The event’s destructive
tsunami waves are estimated to have contributed to 19,759 fatalities and 6242 injuries. The
Fukushima nuclear power plant was damaged as a result of the tsunami, which led to
significant radioactive pollution [52,53].

The cumulative distribution function of the interevent times, presented in Figure 3a,
presented similar characteristics as the previous case of the Mw 9.0 Sumatra earthquake.
For T < Tc, it was fitted by a Q-exponential function with q = 1.74 (Figure 3a), while
the corresponding Q-logarithmic function of P(>T) presented a correlation coefficient of
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0.9828 for T values up to Tc (Figure 3b). The deviation from linearity was observed at a Tc
value close to 1 × 105 s, indicating the crossover point between NESP and BG statistical
physics (Figure 3c).

Figure 3. (a) The cumulative distribution function of the interevent times (T) for the 2011 Mw 9.1
Great Tohoku (Japan) Earthquake. The magenta line is the Q-exponential function fitting with q = 1.74.
(b) The Q-logarithmic function of P(>T) as a function of the interevent times (T). The dashed line is
the Q-exponential function fitting with q = 1.74, presenting the correlation coefficient of 0.9828. The
deviation from linearity suggests a Tc value close to 1 × 105 s. (c) The evolution of the interevent
times (T) as a function of the time (t) since the main event. The Tc value is indicated by the red
dashed line.

Since the results have demonstrated that P(>T) = expQ (−T/T*) for T < Tc, we intro-
duced a new variable, x = T/Tc, for which x < 1 suggests the range where the Tsallis entropic
mechanism is predominant, while x > 1 is related to the exponential roll-off in the tail of the
distribution. In Figure 4, the cumulative interevent time distributions are presented for all
aftershock sequences listed in Table 1. For all analyzed aftershock sequences, a deviation
from the Q-exponential function existed for x > 1 (i.e., T > Tc). It is straightforward that
P(>x) = expQ(−x/x*), where x* = T*/Tc. An inspection of Figure 4 suggested that for
0.01 < x < 1 a power-law scaling range was observed for all aftershock sequences, with an
average slope of 0.33, which corresponds to a value of q ≈ 1.75, in general agreement with
the range of q values reported in Table 1.
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Figure 4. The cumulative interevent time distributions for all analyzed aftershock sequences as
functions of T/Tc. For all sequences, a deviation from the Q-exponential function is presented
for T/Tc > 1.

4. Discussion

In the present work, the temporal patterns of major subduction zone aftershock se-
quences that occurred from 1976 to 2020 were analyzed in terms of non-extensive statistical
physics. We observed that in all cases a Q-exponential function described the cumulative
distribution P(>T) of the aftershock interevent times for short timescales, while for large val-
ues of T (T > Tc), where Tc was a critical crossover interevent time between the non-additive
and additive behavior, a deviation from the Q-exponential function appeared. For each
aftershock sequence, the entropic parameter (q) was estimated by fitting a Q-exponential
function to the observed data up to a value near Tc. Thus, the applicability of non-extensive
statistical physics to the cumulative distribution functions of interevent times and the
presence of a crossover behavior from power-law (q 6= 1) to exponential (q = 1) scaling for
greater interevent times was demonstrated. The latter implies a sub-additive process with
q-values greater than one, supporting the concept of long-range memory in the temporal
evolution of aftershocks for T < Tc. Furthermore, most of the estimated non-extensive
q-values that characterized the observed distributions were within the range of 1.67–1.83.

The observed deviation from the Q-exponential function for longer interevent times
can be described as the superposition of two aftershock mechanisms. The first mechanism,
described by Tsallis entropy, was dominant for interevent times with T < Tc, whereas the
second, characterized by an exponential function, became evident for T > Tc. To incorporate
a crossover from anomalous (q 6= 1) to normal BG (q = 1) statistical physics, we introduced
the generalization presented in [54,55] where

dp(T)
dT

= −β1 p−
(

βq − β1
)

pq, (8)

whose solution is

p(T) = C
[

1−
βq

β1
+

βq

β1
e(q−1)β1T

]1/1−q
, (9)

where C is a normalization factor and p(T) decreases monotonically with increasing T for
positive βq and β1. As a result, in the case where (q− 1)β1� 1, Equation (9) is approximated
with a q-exponential, p(T) ≈ Cexpq

(
−T/Tq

)
, where Tq = 1/βq, whereas for (q − 1)β1 � 1,

the asymptotic behavior of the probability distribution p(T) ∝
(

β1
βq

)1/(q−1)
e−β1T is an

exponential function, where Tc = 1/(q− 1)β1 is the crossover point between the non-
additive and additive behavior [11,32].
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The q-exponential scaling behavior of interevent times for T < Tc can be originated
from a simple mechanism, namely a gamma-distributed allocated parameter (β) of the local
Poisson process, and may be used to explain the interevent time distribution in aftershock
sequences. The Tc value indicated that in the early aftershock period the majority of
interevent times had T values lower than Tc and their distributions were described by
NESP, while properties such as long-range memory, associated with NESP, became less
prominent as the system relaxed and the BG statistical physics recovered [56–61].

The q-exponential behavior of the interevent times can further be viewed in terms of
superstatistics, which are based on a superposition of ordinary local equilibrium statistical
mechanics with a suitable intensive parameter (β) that varies as a gamma distribution on a
reasonably wide temporal scale and is supplementary to NESP [19,23,61–65].

Then, a superstatistical approach for the interevent times of the earthquake aftershock
sequences can be used, where the local Poisson process p(T|β) = βe−βT with β as an
intensive fluctuating parameter has a particular value denoted by the equation p(T|β). On
a long time scale, this parameter is distributed with the probability density (f (β)) [19,62–66].
Then, the probability distribution (p(T)) is given as:

p(T) =
∫ ∞

0
f (β)βe−βTdβ, (10)

In the case where the probability density of β is given by a gamma distribution:

f (β) =
1

Γ(n/2)

(
n

2β0

)n/2
β

n
2−1exp

(
− nβ

2β0

)
, (11)

the integral (10) can easily be evaluated [67] and p(T) ≈ C(1 + B(q− 1)T)1/(1−q) is ob-
tained, which is exactly the result estimated in the frame of NESP, with q = 1 +

( 2
n+2
)

and
B = 2β0/(2− q) [23]. Since the q value was in the range of 1.67–1.81, it suggested that the
system was derived by a low number of degrees of freedom, possibly close to one.

This implied that a stochastic mechanism with memory effects can be the driving
mechanism in the temporal evolution of an aftershock sequence. In agreement with [68] (see
also [59]), we may consider the following stochastic differential equation for the evolution
of seismicity:

dT = −γ(T − 〈T〉)dt + ϕ
√

T Wt, (12)

where the temporal occurrence of earthquakes is represented by the interevent time series
(T) after some time (t). The latter stochastic equation manifests two parts controlling the
evolution of seismicity. The first deterministic part aims to keep the seismic rate (R) stable to
the typical value of R = 1/<T>, according to a restoring constant (γ) that represents the rate
of relaxation to the mean waiting time (<T>). The second stochastic part represents memory
effects in the evolution of seismicity. The stochastic term Wt is the standard Wiener process
following a Gaussian distribution with a zero mean and unitary variance that mimics the
microscopic effects in the evolution of interevent times in the aftershock sequence. Due to
its random sign, Wt leads to an increase (Wt > 0) or decrease (Wt < 0) in T. We note that
large values of T provoke large amplitudes in the stochastic term, leading to an increase or
decrease in T, depending on the sign of Wt. The term ϕ adds some noise to the process and
can be expressed as a function of the mean interevent time (<T>) and the restoring constant
(γ) as ϕ =

√
2γ〈T〉.

The stochastic differential equation given in Equation (12) is a classic example of
multiplicative noise, further known in statistics as the Feller process [67,69].

To determine the evolution of the interevent time series (T) after some time (t), given by
the probability distribution f (T,t), we can write the corresponding Fokker–Planck equation
for Equation (12) [70,71]:

∂ f (T, t)
∂t

=
∂

∂T
[γ(T − 〈T〉) f (T, t)] +

∂2

∂T2 [T〈T〉γ f (T, t)], (13)
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The stationary solution of the latter Fokker–Planck equation, Equation (13), is the
distribution [70]:

p(T/〈T〉) = f (T) =
1
〈T〉 e

− γ
〈T〉 T , (14)

In this case, Equation (14) provides the conditional probability of T, given <T>.
Furthermore, we can consider local fluctuations in the seismic rate (R = 1/<T>), which

are associated with non-stationarities in the evolution of the earthquake activity over time
scales much larger than γ−1, which is necessary for Equation (12) to reach stationarity. In
this case, local fluctuations in the mean interevent time (<T>) appear, and we may assume
that these fluctuations follow the stationary gamma distribution:

f (〈T〉) =
( 1

λ )
δ

Γ[δ]
〈T〉−(1+δ)e−

1
λ〈T〉 , (15)

The marginal probability of T, independent of <T>, is then given by [68]:

p(T) =
∫ ∞

0
p(T/〈T〉) f (〈T〉)d〈T〉, (16)

Performing the integration, we obtain the solution for varying <T>:

p(T) =
λΓ[1 + δ]

Γ[δ]
(1 + λT)−(1+δ), (17)

By further carrying out the changes in the variables:

λ =
q− 1

To
and δ =

1
q− 1

− 1 =
2− q
q− 1

(18)

and considering the q-exponential function given in Equation (3), Equation (12) can be
written as [26,68]:

p(T) =
(q− 1)Γ

(
1

q−1

)
ToΓ
[

1
q−1 − 1

] expq

(
− T

To

)
(19)

The last equation, Equation (19), is the q-generalized gamma function [68], and the
last term on the right-hand side has the exact form of the q-exponential function given
in Equation (3). Equation (19) was derived by the stochastic model, Equation (12), for a
varying mean interevent time (<T>), i.e., non-stationary earthquake activity.

5. Conclusions

In order to statistically analyze the temporal patterns of aftershock sequences in
major subduction zones, we examined the interevent time distribution for each sequence.
The NESP approach to the interevent time distribution indicated a system in anomalous
equilibrium, with a crossover behavior from anomalous (q > 1) to normal (q = 1) statistical
physics for greater interevent times. The range of the non-extensive parameter (qT) for
all analyzed sequences was between 1.67 and 1.83. The models used in the analysis fit
the observed distributions rather well, indicating the usefulness of NESP in investigating
such phenomena. Finally, the superstatistical approach led us to the conclusion that
significant non-additive characteristics and a high-level organizational structure describe
the earthquake aftershock sequences that occurred in subduction zones [55].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24121850/s1.
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