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Abstract: Harmonic oscillators with multiple abrupt jumps in their frequencies have been investigated
by several authors during the last decades. We investigate the dynamics of a quantum harmonic
oscillator with initial frequency ω0, which undergoes a sudden jump to a frequency ω1 and, after
a certain time interval, suddenly returns to its initial frequency. Using the Lewis–Riesenfeld
method of dynamical invariants, we present expressions for the mean energy value, the mean
number of excitations, and the transition probabilities, considering the initial state different from the
fundamental. We show that the mean energy of the oscillator, after the jumps, is equal or greater than
the one before the jumps, even when ω1 < ω0. We also show that, for particular values of the time
interval between the jumps, the oscillator returns to the same initial state.

Keywords: Lewis–Riesenfeld method; quantum harmonic oscillator; abrupt jumps

1. Introduction

The quantum harmonic oscillator potential with time-dependent parameters is relevant
in modeling several problems in physics, and it has been investigated [1–9]. For example,
the interaction between a spinless charged quantum particle and a time-dependent external
classical electromagnetic field can be studied through a harmonic potential whose frequency
depends explicitly on time [4,10–13], and this is used to model the quantum motion of this
particle in a trap [14–19]. In the context of quantum electrodynamics, this potential is useful,
for instance, to describe the free electromagnetic field in nonstationary media [8,9,20]. In
the context of shortcuts to adiabaticity, time-dependent quantum oscillators have also
been considered [21–26]. Other applications are found in relativistic quantum mechanics,
quantum field theory, dynamical Casimir effect, and gravitation [27–33].

A particular case of a quantum harmonic oscillator with time-dependent parameters
that shows sudden frequency jumps is investigated, for instance, in refs. [21,23,24,34–41].
Under such jumps (or any time dependence in the parameters), a classical oscillator in
its ground state remains in the same state, whereas a quantum oscillator can become
excited [35]. Moreover, the wave functions of quantum harmonic oscillators with time-
dependent parameters describe squeezed states [5,9,42], For example, a sudden change
in the oscillation frequency of 85Rb atoms in the vibrational fundamental state of a one-
dimensional optical lattice generates squeezed states [43]. The description of squeezed
states is relevant, for instance, in the implementation of schemes for noise minimization in
quantum sensors, which increases their sensitivity (see, for instance, ref. [44] and references
therein). Subtle points involving the squeezed states for the model of two frequency jumps
were investigated, for instance, by Tibaduiza et al. in ref. [40], where the solution for this
case was obtained via algebraic method.

In the present paper, we investigate the dynamics of a quantum harmonic oscillator
with initial frequency ω0 that undergoes a sudden jump to a frequency ω1 and, after a
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certain time interval, suddenly returns to its initial frequency. Instead of using the algebraic
method used in ref. [40], here, we use the Lewis–Riesenfeld (LR) method of dynamical
invariants. The LR method [2–4] enables the calculation of the exact wave function of
a system subjected, for instance, to a harmonic oscillator potential with time-dependent
parameters, such as mass and frequency [5,42,45]. Using this method, we show that the
results for the squeeze parameters, the quantum fluctuations of the position and momentum
operators, and the probability amplitude of a transition from the fundamental state to an
arbitrary energy eigenstate coincide with those found in ref. [40]. In addition, using the
same LR method, we also obtain expressions for the mean energy value and for the mean
number of excitations (which were not calculated in ref. [40]), as well as for the transition
probabilities considering the initial state different from the fundamental (which generalizes
the formula found in ref. [40]).

The paper is organized as follows. In Section 2.1, we review some results of the
application of the LR method to the quantum harmonic oscillator with time-dependent
frequency. In Section 2.2, we define the squeezing parameters and, from these and
the oscillator wave function obtained via the LR method, we determine the quantum
fluctuations of the position, momentum and Hamiltonian operators, the mean number
of excitations, and the transition probabilities between different states. In Section 3, we
apply the results of previous sections to the model of ref. [40] and analyze their physical
implications. In Section 4, we present our final remarks.

2. Analytical Method
2.1. The Wave Function of the Harmonic Oscillator via Lewis–Riesenfeld Method

Let us consider the one-dimensional Schrödinger equation for a system whose Hamiltonian
Ĥ(t) explicitly depends on time [46–48],

ih̄
∂Ψ(x, t)

∂t
= Ĥ(t)Ψ(x, t). (1)

According to the LR method [2–5,9,42], given an invariant Hermitian operator Î(t) which
satisfies

∂ Î(t)
∂t

+
1
ih̄
[
Î(t), Ĥ(t)

]
= 0, (2)

a particular solution Ψn(x, t) of Equation (1) is

Ψn(x, t) = exp[iαn(t)]Φn(x, t), (3)

in which Φn(x, t) are the eigenfunctions of Î(t), found from

Î(t)Φn(x, t) = λnΦn(x, t), (4)

with λn being time-independent eigenvalues of Î(t) and αn(t) phase functions, obtained
from the equation

dαn(t)
dt

=
∫ +∞

−∞
dx Φ∗n(x, t)

[
i

∂

∂t
− 1

h̄
Ĥ(t)

]
Φn(x, t). (5)

The general solution Ψ(x, t) of Equation (1) is

Ψ(x, t) =
∞

∑
n=0

CnΨn(x, t), (6)

where the time-independent coefficients Cn depend only on the initial conditions.
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Specifically, for a time-dependent one-dimensional harmonic oscillator with mass
m0, whose time dependence is contained purely in its oscillation frequency ω(t), the
Hamiltonian is given by

Ĥ(t) =
p̂2

2m0
+

1
2

m0 ω(t)2 x̂2, (7)

where x̂ and p̂ are position and momentum operators, respectively, with [x̂, p̂] = ih̄. An
operator Î(t) associated with Equation (7) is [4,5,9,42]

Î(t) =
1
2

{[
x̂

ρ(t)

]2
+ [ρ(t) p̂−m0ρ̇(t)x̂]2

}
, (8)

wherein ρ(t) is a real parameter which is the solution of the Ermakov–Pinney equation [49–52]

ρ̈(t) + ω(t)2ρ(t) =
1

m2
0ρ(t)3

. (9)

The eigenfunctions of Î(t), given by Equation (8), are

Φn(x, t) =
1√
2nn!

Φ0(x, t)Hn

[
x

h̄
1
2 ρ(t)

]
, (10)

where Hn are the Hermite polynomials of order n [53] , λn = (n + 1/2)h̄, and

Φ0(x, t) =
[

1
πh̄ρ(t)2

] 1
4

exp
{

im0

2h̄

[
ρ̇(t)
ρ(t)

+
i

m0ρ(t)2

]
x2
}

. (11)

From Equation (5), the functions αn(t) are given by

αn(t) = −
1

m0

(
n +

1
2

) ∫ t

0

dt′

ρ(t′)2 . (12)

Thus, from Equations (3), (10) and (12), the wave function Ψn(x, t) associated with the
Hamiltonian (7) is

Ψn(x, t) =
1√
2nn!

exp
[
− i

m0

(
n +

1
2

) ∫ t

0

dt′

ρ(t′)2

]
Φ0(x, t)Hn

[
x

h̄
1
2 ρ(t)

]
. (13)

For the case in which the frequency is always constant (ω(t) = ω0), the solution of
Equation (9) is ρ(t) = ρ0, where [4,6,42]

ρ0 =
1√

m0ω0
. (14)

Therefore, Equation (13) falls back to the wave function of a harmonic oscillator with
time-independent mass and frequency, Ψ(0)

n (x, t), given by [46–48]

Ψ(0)
n (x, t) =

1√
2nn!

(m0ω0

πh̄

) 1
4

exp
[
−i
(

n +
1
2

)
ω0t− m0ω0x2

2h̄

]
Hn

[(m0ω0

h̄

) 1
2 x
]

. (15)

2.2. Squeeze Parameters, Quantum Fluctuations, Mean Number of Excitations, and
Transition Probability

As discussed in refs. [5,9,42,54], the quantum states of the time-dependent oscillator,
characterized by the wave function Ψn(x, t) (Equation (13)), are squeezed. Thus, we can
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define the squeeze parameter r(t) and the squeeze phase φ(t), which specify the squeezed
state, in terms of the parameter ρ(t) [55]:

r(t) = cosh−1


[

m2
0ρ̇(t)2 + ρ(t)−2 + 2m0ω0 + m2

0ω2
0ρ(t)2

4m0ω0

] 1
2
, (16)

φ(t) = cos−1

{
1 + m0ω0ρ(t)2 − 2 cosh2[r(t)]

2 sinh[r(t)] cosh[r(t)]

}
, (17)

with r(t) ≥ 0 and 0 ≤ φ(t) ≤ 2π. From Equation (13), one can also obtain the expected
value of a given observable Ô(t) in the state Ψn(x, t) as

〈Ô(t)〉(n, t) =
∫ +∞

−∞
dx Ψ∗n(x, t) Ô(t)Ψn(x, t), (18)

which, from Equations (16) and (17), can be written in terms of r(t) and φ(t). For the
operators x̂ and p̂, one has [56]:

〈x̂〉(n, t) = 〈 p̂〉(n, t) = 0, (19)

〈x̂2〉(n, t) =
(

n +
1
2

)
h̄

m0ω0

{
cosh2[r(t)] + sinh2[r(t)] + 2 sinh[r(t)]

× cosh[r(t)] cos[φ(t)]
}

, (20)

〈 p̂2〉(n, t) =
(

n +
1
2

)
m0ω0h̄

{
cosh2[r(t)] + sinh2[r(t)]− 2 sinh[r(t)]

× cosh[r(t)] cos[φ(t)]
}

, (21)

where it follows, from Equations (7), (20), and (21), that

〈Ĥ(t)〉(n, t) =
〈 p̂2〉(n, t)

2m0
+

1
2

m0 ω(t)2〈x̂2〉(n, t). (22)

From Equations (19)–(21), one finds the variances of the operators x̂:

〈[∆x̂]2〉(n, t) = 〈x̂2〉(n, t)− [〈x̂〉(n, t)]2, (23)

and p̂:

〈[∆ p̂]2〉(n, t) = 〈 p̂2〉(n, t)− [〈 p̂〉(n, t)]2, (24)

which implies the uncertainty relationship

〈[∆x̂]2〉(n, t)〈[∆ p̂]2〉(n, t) ≥
(

n +
1
2

)2
h̄2{cosh4[r(t)] + sinh4[r(t)]− 2 sinh2[r(t)]

× cosh2[r(t)] cos[2φ(t)]
}

. (25)

Due to the time dependence of the frequency, one can also determine the mean number
of excitations 〈N̂〉(n, t) that a system, subjected to this potential, can undergo. This is given
by [57–59]

〈N̂〉(n, t) = n + (2n + 1) sinh2[r(t)]. (26)

For the fundamental state n = 0, one finds 〈N̂〉(0, t) = sinh2[r(t)], a result that agrees with
refs. [33,56] for vacuum squeezed states. This means that a system, even in the fundamental
state, could be excited due to the temporal variations in its frequency. The system subjected
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to the time-dependent harmonic potential can also make transitions between different states,
since time-dependent potentials induce quantum systems to make transitions [46–48]. Let
us consider that the system is initially at a stationary state Ψ(0)

m (x, t = 0) with frequency
ω0 and, due to a modification in its frequency from ω0 to ω(t), it evolves to a new state
Ψm(x, t) (Equation (13)). In this way, the probability to find the system in the state Ψ(0)

n (x, t)
(Equation (15)), is given by [46–48]

P(t)m→n =

∣∣∣∣∫ +∞

−∞
dx Ψ∗(0)n (x, t)Ψm(x, t)

∣∣∣∣2. (27)

Using Equations (13) and (15), one can find that P(t)m→n = 0 for odd values of |n−m|,
and [57,60]

P(t)m→n =
2m+n min(m, n)!2{sinh[r(t)]}|n−m|

m!n! cosh[r(t)]

×


n+m

2

∑
k= |n−m|

2

( n+m
2
k

)( n+m+2k−2
4

n+m
2

)
k!(

k− |n−m|
2

)
! coshk[r(t)]


2

, (28)

for even values of |n−m|, where min(m, n) is the smallest value between m and n. Note
that the fact that Equation (28) is nonzero only for even values of |n−m| is related to the
parity of the harmonic potential [61]. From Equations (26) (making n = 0) and (28), we can
relate the probability P(t)m→n to the mean number of excitations in the fundamental state
〈N̂〉(0, t):

P(t)m→n =
2m+n min(m, n)!2

[
〈N̂〉(0, t)

] |n−m|
2

m!n!
[
〈N̂〉(0, t) + 1

] 1
2

×


n+m

2

∑
k= |n−m|

2

( n+m
2
k

)( n+m+2k−2
4

n+m
2

)
k!(

k− |n−m|
2

)
!
[
〈N̂〉(0, t) + 1

] k
2


2

. (29)

It follows that if the mean number of excitations in the fundamental state is nonzero, then
the oscillator will have nonzero probabilities of making transitions between different energy
levels. When we consider m = n = 0 in Equation (28) (or in Equation (29)), one has the
probability of persistence in the fundamental state, and, as a consequence, one can also
obtain the probability of excitation, given by 1−P(t)0→ 0 [40].

3. Oscillator with Two Frequency Jumps

Now, we apply the formulas shown in Section 2 to investigate the model discussed in
ref. [40], namely an oscillator with

ω(t) =


ω0, t < 0,
ω1, 0 < t < τ,
ω0, t > τ,

(30)

in which ω0 and ω1 are constant frequencies, and τ is the length of the time interval
between the frequency jumps.
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3.1. Solution and General Behavior of the ρ(t) Parameter

Due to the form of Equation (30), the ρ(t) parameter can be written as

ρ(t) =


ρ0, t < 0,
ρ1(t), 0 < t < τ,
ρ2(t), t > τ,

(31)

where ρ0 is given in Equation (14), and ρ1(t) and ρ2(t) are calculated next.

3.1.1. Interval 0 < t < τ

For the interval 0 < t < τ, the equation to be solved is

ρ̈1(t) + ω2
1ρ1(t) =

1
m2

0ρ1(t)3
, (32)

with the conditions [6]

ρ1(t = 0) =
1√

m0ω0
, ρ̇1(t = 0) = 0. (33)

The general solution for ρ1(t) is of the form [50,51]

ρ1(t) =
[
A1 sin2(ω1t) + B1 cos2(ω1t) + 2C1 sin(ω1t) cos(ω1t)

] 1
2 , (34)

and the relationship between the constants A1, B1, and C1 is

A1B1 − C2
1 =

1
m2

0ω2
1

. (35)

Then, applying conditions (33) to Equation (34) and using relation (35), we obtain

ρ1(t) =

[
ω0 sin2(ω1t)

m0ω2
1

+
cos2(ω1t)

m0ω0

] 1
2

. (36)

3.1.2. Interval t > τ

In the interval t > τ, the Ermakov–Pinney equation has the form

ρ̈2(t) + ω2
0ρ2(t) =

1
m2

0ρ2(t)3
. (37)

The general solution of Equation (37) is

ρ2(t) =
[
A2 sin2(ω0t) + B2 cos2(ω0t) + 2C2 sin(ω0t) cos(ω0t)

] 1
2 , (38)

with the constants A2, B2, and C2 determined from the relationship

A2B2 − C2
2 =

1
m2

0ω2
0

, (39)

and the conditions for continuity

ρ1(t = τ) = ρ2(t = τ), ρ̇1(t = τ) = ρ̇2(t = τ). (40)
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Using Equations (36), (38), (39), and (40) results in

A2 =
1

m0ω3
0ω2

1

{
ω2

0ω2
1 +

[
(ω4

0 −ω4
1) sin2(ω0τ)−ω2

0ω2
1 + ω4

1
]

sin2(ω1τ)

+2ω0ω1(ω0 −ω1)(ω0 + ω1) sin(ω0τ) cos(ω0τ) sin(ω1τ) cos(ω1τ)
}

, (41)

B2 =
1

m0ω3
0ω2

1

{
ω2

0ω2
1 +

[
(ω4

1 −ω4
0) sin2(ω0τ)−ω2

0ω2
1 + ω4

0
]

sin2(ω1τ)

−2ω0ω1(ω0 −ω1)(ω0 + ω1) sin(ω0τ) cos(ω0τ) sin(ω1τ) cos(ω1τ)
}

, (42)

C2 =
1

m0ω3
0ω2

1

{[
(ω2

0 + ω2
1) sin(ω0τ) cos(ω0τ) sin(ω1τ)− 2ω0ω1(sin2(ω0τ)

−1/2) cos(ω1τ)
]
(ω0 −ω1)(ω0 + ω1) sin(ω1τ)

}
. (43)

3.1.3. General Behavior

The general solution for the ρ(t) parameter is given by Equation (31), with ρ0, ρ1(t)
and ρ2(t) given by Equations (14), (36), (38), (41), (42), and (43). From these equations, it
can be seen that the ρ(t) parameter is a periodic function of time. Moreover, even when the
frequency returns to its initial value ω0, this parameter will still, in general, be a periodic
function of time. However, if we define τu = uπ/ω1 (u > 0), and make τ = τl , where l ∈ N,
the ρ(t) parameter returns to ρ0 (Equation (14)), which means that although the oscillator
feels the effect of the change in its frequency when it jumps from ω0 to ω1, if the frequency
returns to ω0 at τ = τl , for t > τl , the oscillator behaves as if nothing happened. In other
words, if τ = τl , the abrupt change in the frequency is imperceptible to the oscillator when
t > τl . On the other hand, when τ = τl+1/2, the ρ(t) parameter reaches its maximum value.
The behavior of ρ(t) is shown in Figure 1.

0 1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

ω0t

ρ
t τ 5π/6

τ = 59π/62

τ = π

Figure 1. General behavior of ρ(t), as a function of ω0t, with ω1 = 3ω0 and different values of τ

(we consider, for simplicity, m0 = ω0 = 1 and h̄ = 1 in arbitrary units). For τ = [τl+1/2]l=2 = 5π/6,
we note that the amplitude of oscillation for the ρ(t) parameter is maximum. For τ = 59π/62, the
amplitude of oscillation is intermediate. Finally, when τ = [τl ]l=3 = π, there is no oscillation at all,
and it follows that ρ(t) becomes time independent.

3.2. Squeeze Parameters

Because the frequency varies abruptly, squeezing occurs in the system [35,36,40]. Thus,
now, we calculate the parameters r(t) and φ(t) associated with the model in Equation (30).
We show that our results for these parameters agree with those found in ref. [40] via an
exact algebraic method.
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3.2.1. Parameter r(t)

The parameter r(t) for any time interval is given by

r(t) =


0, t < 0,
r1(t), 0 < t < τ,
r2(t), t > τ.

(44)

Note that r(t < 0) = 0 because the frequency of the oscillator is time-independent in this
interval. Using Equation (36) in Equation (16), we obtain, for the interval 0 < t < τ, the
squeezing parameter r1(t), where

r1(t) = cosh−1

{√
1 +

(
ω2

1 −ω2
0

2ω0ω1

)2

sin2(ω1t)

}
, (45)

which is a result that agrees with the one found in ref. [40]. For the interval t > τ, using
Equation (38) in Equation (16), we find that r2(t), with

r2(t) = r1(τ), (46)

this also agrees with ref. [40]. Note that for τ = τl , one has r2(t) = 0. In Figure 2 (also
found in ref. [40]), one can see the behavior of r(t) for some values of τ.

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

ω0t

r
t) = 5π 6

τ 59π 62

τ π

Figure 2. Behavior of the squeeze parameter r(t) as a function of ω0t, where ω1 = 3ω0 (we consider
ω0 = 1 in arbitrary units).

3.2.2. Parameter φ(t)

The squeeze phase φ(t) for any time interval has the form

φ(t) =


undefined, t < 0,
φ1(t), 0 < t < τ,
φ2(t), t > τ,

(47)

where φ(t) for t < 0 is undefined because there is no squeeze in this interval. Using
Equations (36) and (45) in Equation (17), we obtain that the squeeze phase for the interval
0 < t < τ, φ1(t) is given by

φ1(t) = cos−1


(
ω4

0 −ω4
1
)

sin2(ω1t)√[
4ω2

0ω2
1 +

(
ω2

1 −ω2
0
)2 sin2(ω1t)

](
ω2

1 −ω2
0
)2 sin2(ω1t)

, (48)
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which also agrees with ref. [40]. To calculate the squeeze phase in the interval t > τ, the
reasoning is analogous, simply substituting Equations (38) and (46) into Equation (17).

From Figure 3, it can be seen that the squeezing phase will continue to vary in time,
even for t > τ.

0 1 2 3 4 5 6 7

0

π

π

2

π

4

3π

4

ω0t

ϕ
t τ = 5π/6

τ = 59π/62

τ = π

Figure 3. Behavior of the squeeze phase φ(t) as a function of ω0t, where ω1 = 3ω0 (we consider
ω0 = 1 in arbitrary units).

Due of this time dependence, the fluctuations of the x̂ and p̂ operators will continue
to depend on time in this interval, as we see later in Section 3.3 (see Equations (23) and
(24)). Another point to be observed in Figure 3 concerns the behavior of the squeezing
phase in the interval t > τ, when τ = τl (in the specific case of Figure 3, τl = π). Since
the squeeze parameter r2(t) (Equation (46)) is zero in this case, the system is no longer
squeezed. Consequently, the squeeze phase is undefined for τl . Therefore, its effect on the
system will be negligible because there will be no more squeezing.

3.3. Quantum Fluctuations

The variance of the x̂ operator for any time interval is given by

〈[∆x̂]2〉(n, t) =


〈[∆x̂]20〉(n), t < 0,
〈[∆x̂]21〉(n, t), 0 < t < τ,
〈[∆x̂]22〉(n, t), t > τ,

(49)

where [46]

〈[∆x̂]20〉(n) =
(

n +
1
2

)
h̄

m0ω0
. (50)

Substituting Equations (45) and (48) into (23), we find, for the x̂ operator in the interval
0 < t < τ,

〈[∆x̂]21〉(n, t) =

[
ω2

0
ω2

1
sin2(ω1t) + cos2(ω1t)

]
〈[∆x̂]20〉(n), (51)

which is in agreement with refs. [35,40]. For the interval t > τ, the procedure is analogous,
using Equations (16), (17), and (38) in Equation (23). In Figure 4, we show the behavior of
〈[∆x̂]2〉(n, t) for n = 0.



Entropy 2022, 24, 1851 10 of 19

0 1 2 3 4 5 6 7

0

1

2

3

4

ω0t

〈
Δ
x 
2
〉
0
,t

τ 5π/6

τ = 59π/62
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Figure 4. Behavior of the 〈[∆x̂]2〉(n, t) for n = 0 as a function of ω0t, where ω1 = 3ω0 (we consider,
for simplicity, m0 = ω0 = 1 and h̄ = 1 in arbitrary units).

Similarly, for the variance of the p̂ operator, we have

〈[∆ p̂]2〉(n, t) =


〈[∆ p̂]20〉(n), t < 0,
〈[∆ p̂]21〉(n, t), 0 < t < τ,
〈[∆ p̂]22〉(n, t), t > τ,

(52)

being [46]

〈[∆ p̂]20〉(n) =
(

n +
1
2

)
h̄m0ω0. (53)

Through Equations (24), (45), and (48), we find, for the interval 0 < t < τ, the expression [35,40]

〈[∆ p̂]21〉(n, t) =

[
ω2

1
ω2

0
sin2(ω1t) + cos2(ω1t)

]
〈[∆ p̂]20〉(n). (54)

To calculate the variance of the operator p̂ in the interval t > τ, we must use Equations (16),
(17), and (38) in Equation (24). The general behavior of 〈[∆ p̂]2〉(n, t), when n = 0, is
schematized in Figure 5.

0 1 2 3 4 5 6 7

0

1

2

3

4

ω0t

〈
Δ
p 
2
〉
0
,t

τ 5π/6

τ = 59π/62

τ = π

Figure 5. Behavior of the 〈[∆ p̂]2〉(n, t) for n = 0 as a function of ω0t, where ω1 = 3ω0 (we consider,
for simplicity, m0 = ω0 = 1 and h̄ = 1 in arbitrary units).
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Thus, it is direct to see that the uncertainty relation between these operators in the
interval 0 < t < τ has the form

〈[∆x̂]21〉(n, t)〈[∆ p̂]21〉(n, t) ≥ 〈[∆x̂]20〉(n)〈[∆ p̂]20〉(n)
{

1 +
[(

ω2
1 −ω2

0
ω0ω1

)
sin(ω1t)

× cos(ω1t)
]2
}

, (55)

and the uncertainty relation for the interval t > τ is obtained in a similar way. Clearly,
when ω1 = ω0, the uncertainty relation (Equation (55)) falls back to the uncertainty relation
of a time-independent oscillator [46]. Furthermore, the uncertainty relation for an oscillator
with time-independent frequency is also reobtained when τ = τl , as shown in Figure 6.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

ω0t

〈
Δ
x 
2
〉〈
Δ
p 
2
〉
0
,t

τ 5π/6

τ = 59π/62

τ = π

Figure 6. Behavior of the 〈[∆x̂]2〉(n, t)〈[∆ p̂]2〉(n, t) for n = 0 as a function of ω0t, where ω1 = 3ω0

(we consider, for simplicity, m0 = ω0 = 1 and h̄ = 1 in arbitrary units).

The results found by us (via the LR method) given in Equations (45), (46), (48), (51),
and (54) are in agreement with those found in ref. [40]. Hereafter, we use the LR method to
obtain new results concerning the model given in Equation (30).

3.4. Mean Energy

The expected value of the Hamiltonian operator is identified as the mean energy of
the system, that is, E(n, t) = 〈Ĥ(t)〉(n, t). The mean energy for the model in Equation (30)
can be written as

E(n, t) =


E0(n), t < 0,
E1(n, t), 0 < t < τ,
E2(n, t), t > τ,

(56)

wherein [46]

E0(n) =
(

n +
1
2

)
h̄ω0. (57)

For the interval 0 < t < τ, through Equations (22), (51), (54), and (57), we find that
the mean energy is time-independent, given by

E1(n, t) =
1
2

(
1 +

ω2
1

ω2
0

)
E0(n). (58)
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When ω1 = ω0, Equation (58) reduces to E1(n, t) = E0(n), as expected. Note that for
ω1/ω0 < 1, E1(n, t) < E0(n), whereas for ω1/ω0 > 1, we have E1(n, t) > E0(n). When
ω1 = 0, which means that the system is free in interval 0 < t < τ, we have E1(n, t) =
E0(n)/2. This can also be obtained by making ω0 � ω1, which leads to E1(n, t) ≈ E0(n)/2.

For the interval t > τ, from Equations (16), (17), (22), (38), and (57), we have that the
mean energy E2(n, t) is given by

E2(n, t) =
[

1 +
1
2

(
ω2

1 −ω2
0

ω0ω1

)2

sin2(ω1τ)

]
E0(n). (59)

Note that Equation (59) is independent of t, and E2(n, t) ≥ E0(n), even for ω1 < ω0. The
behavior of the ratio E2(n, t)/E0(n) is illustrated in Figure 7.

E2/E0

1

3

5

7

9

11

13

Figure 7. Ratio E2(n, t)/E0(n) as a function of ω0τ and ω1/ω0. The dashed line corresponds to
ω1 = ω0. The dotted lines correspond to τ = τl . The dot–dashed lines correspond to τ = τl+1/2.

For ω1 = ω0 (dashed line in Figure 7), Equation (59) recovers E2(n, t) = E0(n), as
expected. Furthermore, for τ = τl (dotted lines in Figure 7), Equation (59) also gives
E2(n, t) = E0(n). In particular, the energy of this system is maximized when τ = τl+1/2
(dot–dashed lines in Figure 7). For ω1/ω0 → 0, we obtain E2(n, t) =

(
1 + ω2

0τ2/2
)
E0(n).

Moreover, from Equations (46) and (59), we obtain

E2(n, t) =
{

2 cosh2[r2(t)]− 1
}

E0(n). (60)

Thus, while there is squeeze, E2(n, t) > E0(n). Therefore, the squeezing caused by the
frequency jumps results in an increase in the mean energy of the oscillator with respect to
its initial energy E0(n).

It is interesting to investigate the behavior of E2(n, t)/E1(n, t). Unlike the ratio
E2(n, t)/E0(n), which is such that E2(n, t)/E0(n) ≥ 1, the ratio E2(n, t)/E1(n, t) can be
lesser than, equal to, or greater than one, as shown in Figure 8. More specifically, for
ω1/ω0 < 1, we have E2(n, t)/E1(n, t) > 1, and when ω1/ω0 → 0, we find E2(n, t) =(
2 + ω2

0τ2)E1(n, t). For ω1/ω0 > 1, the ratio E2(n, t)/E1(n, t) oscillates between zero and
one (see Figure 8). We highlight that, besides the trivial case ω1 = ω0, there are other values
of the ratio ω1/ω0 that result in E2(n, t) = E1(n, t).
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Figure 8. Ratio E2(n, t)/E1(n, t) as a function of ω1/ω0. For ω1/ω0 < 1, E2(n, t)/E1(n, t) > 1,
whereas for ω1/ω0 > 1, E2(n, t)/E1(n, t) ≤ 1.

3.5. Mean Number of Excitations

The mean number of excitations, 〈N̂〉(n, t), for the model in Equation (30), is given by

〈N̂〉(n, t) =


〈N̂〉0(n), t < 0,
〈N̂〉1(n, t), 0 < t < τ,
〈N̂〉2(n, t), t > τ,

(61)

where [46]

〈N̂〉0(n) = n. (62)

Given this, for the interval 0 < t < τ, by means of Equations (26) and (45), we have

〈N̂〉1(n, t) = n +

(
n +

1
2

)[
1
2

(
ω2

1 −ω2
0

ω0ω1

)2

sin2(ω1t)
]

. (63)

We remark the time dependence in 〈N̂〉1(n, t), whereas the mean energy in the interval
0 < t < τ (Equation (58)) is time-independent.

For the interval t > τ, through Equations (26) and (46), we obtain 〈N̂〉2(n, t), given by

〈N̂〉2(n, t) = 〈N̂〉1(n, τ). (64)

We also remark that for τ = τl , the behavior of the system returns to that of the
time-independent oscillator found before the frequency jumps, i.e, 〈N̂〉2(n, t) = 〈N̂〉0(n).
We highlight that there is excitation even for n = 0, which means that, under jumps in its
frequency, a quantum oscillator initially in its ground state can become excited (a classical
oscillator in its ground state would remain in the same state). In addition, excitation can
also occur when ω1/ω0 < 1, as shown in Figure 9.
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Figure 9. Some examples of mean number of excitations 〈N̂〉2(0, t) that an oscillator could undergo
as a function of ω1/ω0 for different values of ω0τ.

Using Equations (59) and (64), we can also write E2(n, t) as

E2(n, t) =
[
〈N̂〉2(n, t) +

1
2

]
h̄ω0, (65)

which has the same structure as the expression for the energy eigenvalues of a time-
independent oscillator (see Equation (57)). The time evolution of 〈N̂〉(0, t), given by
Equation (61) for n = 0, is shown in Figure 10.

0 1 2 3 4 5

0.0

0.5

1.0

1.5

ω0t

〈N
〉
0
,t

τ 5π/6

τ = 59π/62

τ = π

Figure 10. Mean number of excitations 〈N̂〉(0, t) as a function of ω0t for different values of τ, where
ω1 = 3ω0 (we consider ω0 = 1 in arbitrary units).

3.6. Transition Probability

The general transition probability, P(t)m→n, for the model in Equation (30), is given
by

P(t)m→n =


δm,n, t < 0,
P1(t)m→n, 0 < t < τ,
P2(t)m→n, t > τ,

(66)
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with δm,n being the Kronecker delta. Using Equations (28) and (45) (or Equations (29) and
(63) with n = 0), we find, for the interval 0 < t < τ, P1(t)m→n, whose expression is

P1(t)m→n =
2m+n min(m, n)!2

[(
ω2

1−ω2
0

2ω0ω1

)
sin(ω1t)

]|n−m|

m!n!
[
1 +

(
ω2

1−ω2
0

2ω0ω1

)2
sin2(ω1t)

] 1
2

×


n+m

2

∑
k= |n−m|

2

( n+m
2
k

)( n+m+2k−2
4

n+m
2

)
k!(

k− |n−m|
2

)
!
[
1 +

(
ω2

1−ω2
0

2ω0ω1

)2
sin2(ω1t)

] k
2


2

, (67)

for even values of |n − m|, and P(t)m→n = 0 for odd values of |n − m|. Since the r1(t)
parameter (Equation (45)) in this interval is explicitly time-dependent, consequently, the
transition probability m→ n will also depend.

For the interval t > τ, using Equation (46) in Equation (28) (or Equations (29) and (64)
with n = 0), we see that the result is

P2(t)m→n = P1(τ)m→n. (68)

Thus, even when the frequency returns to ω0 after an instant τ, one can find a nonzero m→
n transition probability, depending on the value of τ. It is noticeable from Equation (67)
that P(t)m→n = P(t)n→m, with such symmetry being a consequence of the parity of the
potential in Equation (7) [61]. The behavior of P(t)1→n is illustrated in Figures 11 (for
τ = 3τ1/2) and 12 (for τ = τ1). In Figure 11, as n increases, P(t)1→n decreases. We
highlight that for t > τ = τ1 in Figure 12, P(t)1→1 = 1 or, in other words, the oscillator
remains in its same initial state.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

ω0t


t
1
→
n m=1 → n=1

m=1 → n=3

m=1 → n=5

m=1 → n=7

Figure 11. Behavior of P(t)1→n, as a function of ω0t, with ω1 = 2ω0 and τ = 3τ1/2 = 3π/4 (we
consider ω0 = 1 in arbitrary units).
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Figure 12. Behavior of P(t)1→n, as a function of ω0t, with ω1 = 2ω0 and τ = τ1 = π/2 (we consider
ω0 = 1 in arbitrary units).

In addition, for m = 0, Equation (68) gives

P2(t)0→ n =

n!
(

ω2
1−ω2

0
2ω0ω1

)n
sinn(ω1τ)

2n
( n

2 !
)2
[

1 +
(

ω2
1−ω2

0
2ω0ω1

)2
sin2(ω1τ)

] n+1
2

, (69)

where n = 0, 2, 4, . . . , recovering one of the results found in ref. [40]. Thus, Equation (68)
generalizes the result for the transition probability found in ref. [40]. By also making n = 0
in Equation (69), we find the probability of the oscillator of persisting in the fundamental
state, and the probability of the oscillator being excited, after the frequency returns to ω0,
which is given by 1−P2(t)0→ 0.

4. Final Remarks

Using the Lewis–Riesenfeld method, we investigated the dynamics of a quantum
harmonic oscillator that undergoes two abrupt jumps in its frequency (Equation (30)). We
reobtained the analytical formulas of ref. [40] for the squeeze parameters (Equations (45),
(46), and (48)), the quantum fluctuations of the position (Equation (51)) and momentum
(Equation (54)) operators, and the probability amplitude of a transition from the fundamental
state to an arbitrary energy eigenstate (Equation (69)). We also obtained expressions
for the mean energy value (Equations (58) and (59)), the mean number of excitations
(Equations (63) and (64)) (which were not calculated in ref. [40]), and for the transition
probabilities considering the initial state different from the fundamental (Equations (67)
and (68)) (which generalizes the formula found in ref. [40]).

We found that, as expected, the mean energy of the system is independent of time in
each one of the intervals: t < 0, 0 < t < τ, and t > τ. Moreover, we showed that the mean
energy of the oscillator after the jumps is equal or greater than that before these jumps, even
when ω1 < ω0. We also obtained, for t > τ 6= τl , a non-null value for the mean number of
excitations when the oscillator starts in the fundamental state (Equations (58) and (59) with
n = 0), which means that, under the jumps in its frequency, a quantum oscillator, initially
in the ground state, can become excited. We showed that transitions between arbitrary m
and n states only occur if |n−m| is an even number. We highlighted that, for t > τ 6= τl
and a fixed value of m, as n increases, P(t)m→n decreases. Finally, we showed that, for
t > τ = τl , P(t)m→n = δm,n, so that the oscillator returns to the same initial state (this
generalizes, for any initial state m, the result found in ref. [40] for m = 0).
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