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1. Introduction

Integrals and derivatives of arbitrary (non-integer and integer) orders form a general-
ization of standard calculus of integrals and derivatives of integer orders (see books [1–5]
and handbooks [6,7]). These operators were proposed by famous mathematicians such as
Riemann, Liouville, Grünwald, Letnikov, Sonine, Marchaud, Weyl, Riesz, Hadamard and
others [8–10]. Fractional integrals and derivatives have a wide application in physics and
mechanics to describe processes and systems with non-locality, memory, distributed lag and
scaling [11–13], various anomalous behaviors and phenomena, including the relaxation–
oscillation phenomena, [14,15], the diffusion-wave phenomena [14,16], the anomalous
relaxation [17–19] and anomalous growth [19,20], and the anomalous diffusion and anoma-
lous transport [21–25].

There are various interpretations of the fractional integrals and derivatives [26–34]
such as geometric interpretations [35–38] and [39–42], physical interpretations [39–42]
and [30–34], economic interpretations [43,44], probabilistic interpretations [45–49], informa-
tion interpretation [50] and some others.

The so-called Hadamard fractional integrals were proposed by Jacques S. Hadamard [51]
in 1892. These operators and their properties are described in [4] (pp. 110–120), (see also
Sections 18.3, 23.1 of [1] and [52]). The Hadamard-type fractional integral (HTFI) and
fractional differential (HTFD) operators were first suggested by Paul L. Butzer, Anatoly
A. Kilbas and Juan J. Trujillo in 2002 [53,54]. These operators can be called the Butzer–
Kilbas–Trujillo operators. The properties of the HTFD and HTFI operators are described
in papers [53–59]. Caputo-type modifications of the Hadamard fractional derivatives are
considered in [60–62]. The Hadamard fractional calculus is also considered in [63–65]. The
application of fractional differential equations with Hadamard operators in probability
theory is proposed in article [64,66]. The HTFI and HTFD operators to describe dynamics
with non-local scaling is suggested in [67]. The Hadamard-type fractional integrals and
derivatives with respect to functions are proposed in work [68] in 2021. If the function is
equal to the integration variable Ψ(x) = x, then these operators have the form of the HTFI
and HTFD operators.
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In the proposed paper, an entropy interpretation of Hadamard-type fractional inte-
grals with respect to functions is proposed. It will be shown that these operators can be
interpreted as generalized cumulative entropy. In Section 2, the Hadamard-type fractional
integral and differential operators are defined. In Section 3, cumulative and fractional
entropies as generalizations of standard continuous (differential) entropy are discussed. In
Section 4, entropy interpretation of the Hadamard-type fractional integral and differential
operators is considered. A brief conclusion is given in Section 5.

2. Hadamard-Type Fractional Operators
2.1. Hadamard-Type Fractional Integrals

Let us give a definition of space that is used for the Hadamard-type fractional integrals.

Definition 1. The space Xp
q (a, b) with q ∈ R and p ≥ 1 is the weighted Lp-space with the

power weight, which consists of those complex-valued Lebesgue measurable functions X(t) on (a, b)
for which

||X||Xp
q
=

(ˆ b

a

dτ

τ
|τqX(τ)|p

)1/p

< ∞. (1)

In particular, when q = 1/p, the space Xp
q (a, b) coincides with the space Lp(a, b), i.e., Xp

1/p(a, b) =
Lp(a, b).

The HTFI operator of the order α > 0 is given by the following definition [53,54].

Definition 2. The Hadamard-type fractional integral (HTFI) operator of the order α > 0 is defined
by the expression

J
α,β
a,x [t] f (t) =

1
Γ(α)

ˆ x

a

dt
t

(
t
x

)β(
ln

x
t

)α−1
f (t), (2)

where β ∈ R, x ∈ (a, b), a > 0.

The operator Jα,β
a,x is bounded in the space Xp

q (a, b), where β ∈ R, β > q, p ≥ 1, a > 0
(see Theorem 2.1 in [54] (p.1194)).

For α = m ∈ N, operator (2) has [54] (p. 1191) the form

J
m,β
a,t [t] f (t) = x−β

ˆ x

a

dx1

x1

ˆ x1

a

dx2

x2
. . .
ˆ xm−1

a
tβ f (t)

dt
t

=

1
(m− 1)!

ˆ x

a

(
t
x

)β (
ln

x
t

)m−1
f (t)

dt
t

. (3)

Integral operator (2) with β = 0 is called the Hadamard FI, which was proposed by
Jacques S. Hadamard [51] in 1892. These operators and their properties are described in [4],
pp. 110–120 (see also Sections 18.3, 23.1 of [1,52]).

2.2. Hadamard-Type Fractional Differential Operator

Let us give a definition of space ACm
S,β[a, b] that is used for the Hadamard-type frac-

tional differential operators [54] (p.1193).

Definition 3. The space ACm
S,β[a, b] consists of functions f (x) on [a, b] that have Sk

x(xβ f (x)) for

k = 1, ...m− 1, and Sm−1
x (xβ f (x)) is absolutely continuous on [a, b], where Sx = x d/dx.

Let us define the differential operator of integer order m ∈ N in the form

Dm,β
x f (x) = x−βSm

x

(
xβ f (x)

)
= x−β

(
x

d
dx

)m (
xβ f (x)

)
. (4)
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Let us give the definition of the HTFD operator (for example, see Section 18.3 in [1,4]
(pp. 11–112)).

Definition 4. The Hadamard-type fractional differential (HTFD) operator of the order α ∈ [m−
1, m), m ∈ N is defined by the expression

D
α,β
a,x [t] f (t) = Dm,β

x J
m−α,β
a,x [t] f (t) = (5)

1
Γ(m− α)

x−β

(
x

d
dx

)m
xβ
ˆ x

a

dt
t

(
t
x

)β(
ln

x
t

)m−α+1
f (t),

where Jm−α,β
a,x is the HTFI operator, x > a > 0.

The operator Dα,β
a,x exists almost everywhere on the space ACm

S,β(a, b). This statement
is proved as Theorem 3.2 in [54] (p. 1198).

For α = m ∈ N, the HTFD operator is the integer-order differential operator [4] (p.
112), in the form

D
m,β
a,x f (x) = Dm,β

x f (x). (6)

Operator (5) with β = 0 is called the Hadamard fractional differential operators [4]
(pp. 110–120), and [52]. For β = 0, and α = m ∈ N, the HTFD operator is the differential
operator of scaling (dilation) of the integer order

Dm,0
a,x f (x) = Sm

x f (x) =

(
x

d
dx

)m
f (x). (7)

Definition 5. The Caputo-type of the HTFD operator of the order m− 1 ≤ α < m is defined as

CD
α,β
a,x [t] f (t) = J

m−α,β
a,x [t]Dm,β

t f (t) = (8)

1
Γ(m− α)

ˆ x

a

dt
t

(
t
x

)β(
ln

x
t

)m−α+1
(

t−β

(
t

d
dt

)m
tβ

)
x f (t),

where Jm−α,β
a,x is the HTFI operator, x > a > 0.

2.3. Hadamard-Type FI and FD Operators with Respect to Function

Let us give a definition of space that is used for the Hadamard-type fractional integrals
with respect to function. This definition gives conditions under which the Hadamard-
type fractional integral operator Jα,β

Ψ,a,x[t] with respect to a function Ψ(x) is bounded in a
particular function space Xp

Ψ,q(a, b). The space Xp
Ψ,q(a, b) is defined in [68] following [53,54]

for the Hadamard-type fractional calculus.

Definition 6. Let q ∈ R and 1 ≤ p ≤ ∞. The space Xp
Ψ,q(a, b) is defined to consist of all Lebesgue

measurable functions f : [a, b]→ R, for which ‖ f ‖Xp
Ψ,q

< ∞, where the norm is defined by

|| f ||Xp
Ψ,q

=

(ˆ b

a

∣∣{Ψ(x)}q f (x)
∣∣p Ψ′(x)

Ψ(x)
dx

) 1
p

for q ∈ R, 1 ≤ p < ∞, (9)

and
|| f ||X∞

Ψ,q
= sup

x∈[a,b]

(
{Ψ(x)}q| f (x)|

)
, for q ∈ R. (10)
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If we consider q = 1/p and Ψ(x) = x, then the space Xp
Ψ,q(a, b) coincides with the

space Lp(a, b) with

‖ f ‖p =

(ˆ b

a
| f (x)|pdx

) 1
p

for 1 ≤ p < ∞,

and
‖ f ‖∞ = sup

x∈[a.b]
| f (x)|.

Let us give a definition of the HTFI with respect to function.

Definition 7. Let α > 0, and β ∈ R. Let f (x) be an integrable function defined on [a, b] in
R and Ψ(x) ∈ C1([a, b]) be a positive increasing function such that Ψ(x) > 0 and Ψ(1)(x) =
dΨ(x)/dx > 0 for all x ∈ [a, b].

Then, the Hadamard-type fractional integral of f (x) with respect to Ψ(x) with order α and
parameter β is defined as

J
α,β
Ψ,a,x[t] f (t) =

1
Γ(α)

ˆ x

a

(
Ψ(t)
Ψ(x)

)β(
ln

Ψ(x)
Ψ(t)

)α−1

f (t)
Ψ(1)(t)

Ψ(t)
dt, (11)

where f (x) ∈ Xp
Ψ,q(a, b) and β > q.

In paper [68], Theorem 4.2 states that for a positive increasing function Ψ(x) and for
any β ≥ q, the Hadamard-type fractional integral operator of any positive order α > 0 and
parameter β ≥ q with respect to Ψ(x) is well-defined on the space Xp

Ψ,q(a, b).

Theorem 1. Let α > 0, 1 ≤ p ≤ ∞, and β ≥ q in R, and Ψ(x) be a positive increasing function.
Then, the operator Jα,β

Ψ,a,x[t] is bounded in the space Xp
Ψ,q(a, b) with β ≥ q, and∥∥∥Jα,β

Ψ,a,x[t] f (t)
∥∥∥

Xp
Ψ,q

≤ C ‖ f ‖Xp
Ψ,q

, (12)

where the constant C is defined by

C =


1

Γ(α + 1)

(
ln

Ψ(b)
Ψ(a)

)α

for β = q,

1
Γ(α)

(β− q)−αγ

(
α, (β− q) ln

Ψ(b)
Ψ(a)

)
for β > q,

(13)

where γ(α, z) is the incomplete gamma function (see Section 9 in [69] (pp. 134–142)).

This theorem was proved in paper [68].

Let us define the Hadamard-type fractional differential operator of f (x) with respect
to another function Ψ(x).

Definition 8. Let n = [α] + 1, where n − 1 ≤ α < n. The Riemann–Liouville type of the
Hadamard-type fractional differential operator of f (x) with respect to Ψ(x) of the order α > 0 and
parameter β ∈ R, is defined by the equation

D
α,β
Ψ,a,x[t] f (t) = Dn,β

Ψ,x J
n−α,β
Ψ,a,x [t] f (t), (14)

where x ∈ [a, b]. The Caputo type of HTFD with respect to Ψ(x) is defined as

D
α,β
Ψ,a,x[t] f (t) = J

n−α,β
Ψ,a,x [t] Dn,β

Ψ,t f (t), (15)
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where Dn,β
Ψ is the derivative of the integer order n ∈ N in the form

Dn,β
Ψ,x = (Ψ(x))−β

(
Ψ(x)

Ψ(1)(x)
d

dx

)n(
(Ψ(x))β f (x)

)
. (16)

To give sufficient conditions for the existence of the HTFD operator Dα,β
Ψ,a,x with respect

to a function Ψ(x), the function space ACn
δΨ ,β[a, b] for β ∈ R, and Ψ(x), which is a positive

increasing function, should be defined. The space ACn
δΨ ,β[a, b] is defined as

ACn
δΨ ,β[a, b] =

{
h(x) : [a, b]→ R :

(
Ψ(x)

Ψ(1)(x)
d

dx

)n−1 (
(Ψ(x))β h(x)

)
∈ AC[a, b]

}
(17)

where AC[a, b] is the set of absolutely continuous functions on [a, b], which coincides with
the space of primitives of Lebesgue measurable functions (see [1] (p. 3), and [4] (p. 2)). The
condition f (x) ∈ AC[a, b] means that the function f (x) can be represented as

f (x) = c +

ˆ x

a
g(t) dt, where

ˆ b

a
|g(t)| dt < ∞, (18)

and c is a constant.
Theorem 4.7 of [68] gives sufficient conditions for the existence of the Hadamard-type

fractional differential operator of a function with respect to another function.

Theorem 2. Let Ψ(x) be an increasing positive function on [a, b] ⊂ R, and f (x) ∈ ACn
δΨ ,β[a, b],α >

0, n = [α] + 1, β ∈ R, .
Then, the Hadamard-type fractional differential operator Dα,β

Ψ,a,x[t] f (t) of f (x) with respect to
Ψ(x) exists almost everywhere on [a, b].

The proof of this theorem is given in [68].
Let us note the following special cases.

• For β = 0, we obtain the Hadamard fractional operators with respect to Ψ(x).
• For β = 0 and Ψ(x) = x, we obtain the Hadamard fractional integral and differen-

tial operators.
• For β = 0 and Ψ(x) = ex, we obtain the Riemann–Liouville and Caputo fractional

integrals and derivatives.
• For β = 0 and Ψ(x) = exσ

, we obtain the Erdelyi–Kober-type fractional integrals and
derivatives (fractional operators with respect to xσ.

• For β = 0 and Ψ(x) = eg(x), we obtain the Riemann-Liouville and Caputo fractional
operators of a function with respect to another function g(x).

In this paper, the Hadamard-type fractional integral and differential operators of a
function with respect to another function are considered as the main object for entropy
interpretations. The interpretation of HTFI and HTFD operators are special cases of the
interpretation of the HIFI and HTFD operators of a function with respect to function
Ψ(x) = x.

3. Entropy and Its Generalizations

Entropy is one of the basic concepts that play an important role in statistical mechanics
and information theory [70]. The most widely used forms of entropy were proposed by
Boltzmann and Gibbs for the statistical mechanics [71] and by Shannon for the information
theory [72–75]. Later, certain generalized entropies such as the Renyi entropy [76] and the
Tsallis entropy [77–79] were considered. The following two types of generalizations of
entropy should also be noted. These are the so-called cumulative entropies and fractional
entropies, which are discussed below.
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3.1. Cumulative Entropies

As is well known, the standard approach to the description of information, which
is related to a non-negative absolutely continuous random variable X, is based on the
continuous entropy (differential entropy) of X defined by the equation

H(X) = −
ˆ ∞

0
ρ(t) ln ρ(t) dt, (19)

where ln(z) is the natural logarithm, and ρ(x) is the probability density function (PDF) of
X. Entropy (19) can be represented as the mathematical expectation in the form

H(X) = E[− ln ρ], (20)

where

E[A(X)] =

ˆ ∞

0
A(t) dF(t) =

ˆ ∞

0
A(t) ρ(t) dt, (21)

and F(t) = P(X ≤ t) is the cumulative distribution function

F(x) =

ˆ x

0
ρ(t) dt. (22)

Cumulative entropy [80–85] is one of the modifications of the standard differential
entropy (19). In works [80–82], the cumulative distribution function (CDF) of a random
variable is proposed instead of probability density function (PDF). This approach gives an
alternative measure of uncertainty that extends Shannon entropy to random variables with
continuous distributions. This measure is called the cumulative residual entropy (CRE). In
works [80–82], the cumulative residual entropy (CRE) is defined in the form

E(X) = −
ˆ ∞

0
P(X > t) ln P(X > t) dt, (23)

where P(X > t) = 1− P(X ≤ t) is the probability that random variable X takes a value
greater than t, and the cumulative distribution function (CDF) is F(t) = P(X ≤ t).

Let us note the main features of CR entropy in terms of its application from the point
of view of authors of [80–82]:
Firstly, E(X) is more general than the Shannon entropy in that its definition is valid in the
continuous and discrete domains.
Secondly, E(X) possesses more general mathematical properties than the Shannon entropy.
Thirdly, E(X) can be easily computed from sample data, and these computations asymptot-
ically converge to the true values.
The properties of the cumulative residual entropy are given in works [80–83,85].

In paper [86] (see also [83,84]), the dynamic cumulative residual entropy was proposed.
The CRE for the residual lifetime distribution with the survival function

Fx(t) =
F(t)
F(x)

, (24)

where F(x) = 1 − F(x), and F(x) = P(X ≤ x) is defined by the equation

E(X, t) = −
ˆ ∞

x
Fx(t) ln Fx(t) dt = −

ˆ ∞

x

F(t)
F(x)

ln
(

F(t)
F(x)

)
dt. (25)

Di Crescenzo and Longobardi [87] proposed and studied the cumulative entropy (CE),
which is defined by the equation

CE(X) = −
ˆ ∞

0
F(t) ln F(t) dt, (26)
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and its dynamic version. The dynamic cumulative entropy is defined (see Equation (28)
in [87]) in the form

CE(X, x) = −
ˆ x

0
Fx(t) ln Fx(t) dt = −

ˆ x

0

F(t)
F(x)

ln
(

F(t)
F(x)

)
dt, (27)

where F(t) = P(X ≤ t) is the cumulative distribution function (CDF), and

Fx(t) =
F(t)
F(x)

. (28)

Note that this entropy looks like the differential entropy (19). The main difference is that
the probability P(X ≤ t) is used instead of P(X > t) . This means that CE(X) ≥ 0, which is
not true for standard entropy (19).

Properties of the cumulative entropy in past lifetimes are available in [83,87,88]. In
paper [89] (see also [90]), the authors propose a cumulative Tsallis entropy (CTE) measure
and its dynamic version.

Remark 1. In order to be able to represent the cumulative entropies as some mathematical expecta-
tions, Equations (26) and (27) should be modified. To do this, the cumulative entropy can be defined
by the equations

CE(X) = −
ˆ ∞

0
F(t) ln F(t) dF(t). (29)

The dynamic cumulative entropy can be defined as

CE(X, x) = −
ˆ x

0
Fx(t) ln Fx(t) dFx(t), (30)

where Fx(t) is defined by Equation (28), and

dFx(t) =
d
dt

(
F(t)
F(x)

)
dt. (31)

Using the standard mathematical expectation in the form

E[A(X)] =

ˆ ∞

0
A(t) dF(t), (32)

Equation (29) can be represented as

CE(X) = −E[F ln F]. (33)

Remark 2. It should be noted that the cumulative entropies, which are defined by Equations (29) and (30),
can be generalized to obtain two-parameter cumulative entropies in the form

CEα,β(X) =

ˆ ∞

0
(F(t))β−1 (− ln F(t))α−1 dF(t), (34)

where α > 0 and β > 0. The dynamic cumulative entropy can be defined as

CEα,β(X, x) =

ˆ x

0
(Fx(t))

β−1 (− ln Fx(t))
α−1 dFx(t) =

ˆ x

0

(
F(t)
F(x)

)β−1 (
− ln

(
F(t)
F(x)

))α−1

dFx(t), (35)
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where α > 0 and β > 0. Values (34) and (35) can be called the cumulative fractional entropies,
which can be considered as a cumulative form of the fractional entropies. Some currently known
fractional entropies are briefly described in the next subsection.

3.2. Fractional Entropies

Using the fractional calculus, various generalizations of entropy are proposed (see re-
view [91]). Let us note some extensions and fractional generalizations of the standard entropy.

In 2012 article [92], one-parameter fractional entropy was proposed in the form of the
fractional integral equation

Sα
x(X) = − Iα

0,x[t]
(

ρ(t) ln ρ(t)
)

=

ˆ x

0

(x− t)α−1

Γ(α)
ρ(t) ln ρ(t) dt =

ˆ x

0

(x− t)α−1

Γ(α)
ln ρ(t) dF(t), (36)

where the operator Iα
a,x[t] is the left-side Riemann–Liouville integral [4] (pp. 69–70).

Ubriaco in a 2009 paper [93] proposed the one-parameter fractional entropy. The
continuous (differential) analogue of the Ubriaco fractional entropy can be written in the
following form

SU(X) =

ˆ ∞

0
ρ(t)(− ln ρ(t))α dt =

ˆ ∞

0
(− ln ρ(t))α dF(t), (37)

where α ∈ (0, 1]. The Ubriaco entropy is thermodynamically stable [93] and obeys the same
properties as the Shannon entropy, with the exception of additivity. If α = 1, Equation (37)
gives standard entropy (19).

Wang in [94] proposed one-parameter fractional entropy in the context of the incom-
plete information theory. The continuous (differential) entropy analogue of the fractional
Wang entropy can be written as

SW(X) = −
ˆ ∞

0
(ρ(t))β ln ρ(t) dt = −

ˆ ∞

0
(ρ(t))β−1 ln ρ(t) dF(t). (38)

The β-expectation 〈A〉β has been also considered

〈A〉β =

ˆ ∞

0
A(t)

(
ρ(t)

)β
dt, (39)

which characterizes incomplete normalization 〈A〉β = 1.
Two-parameter fractional entropy was suggested in 2014 by Radhakrishnan, Chin-

narasu, and Jambulingam [95]. A continuous (differential) entropy analogue of the RCJ
fractional entropy can be written in the form

SRCJ(X) =

ˆ ∞

0
(ρ(t))β (− ln ρ(t))α dt =

ˆ ∞

0
(ρ(t))β−1(t) (− ln ρ(t))α dF(t), (40)

where α ∈ (0, 1], and β > 0. For β = 1, Equation (40) gives Equation (37). In the limit,
when α = 1, Equation (40) reduces to expression (38). For α = β = 1, Equation (40) gives
standard Equation (19).

4. Interpretation of Hadamard-Type Fractional Operators
4.1. Equation of HTFI Operator in Convenient Form

Equation (11), which defines the HTFI operator of function f (x) with respect to the
function Ψ(x), can be rewritten in the form

J
α,β
Ψ,a,x[t] f (t) =

1
Γ(α)

ˆ x

a
f (t)

(
Ψ(t)
Ψ(x)

)β−1(
− ln

Ψ(t)
Ψ(x)

)α−1 ( Ψ(t)
Ψ(x)

)(1)

t
dt, (41)
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where x ∈ [a, b], and (
Ψ(t)
Ψ(x)

)(1)

t
=

d
dt

(
Ψ(t)
Ψ(x)

)
. (42)

Let us define the function

Fx(t) =
Ψ(t)
Ψ(x)

, (43)

where a ≤ t ≤ x < b. Then, Equation (41) can be represented in the form

J
α,β
Ψ,a,x[t] f (t) =

1
Γ(α)

ˆ x

a
f (t) (Fx(t))

β−1(− ln Fx(t))
α−1 dFx(t), (44)

where x ∈ [a, b].
Equations (41) and (44) can be used to formulate possible interpretations of the

Hadamard-type fractional integral and differential operators. Two types of interpreta-
tions are distinguished. The first interpretation intends to consider the function Fx(t),
which is defined by Equation (43), as a cumulative distribution function. In this interpreta-
tion, the basic representation of the HTFI operators is given by Equation (44). The second
interpretation considers the function Ψ(t) as a cumulative distribution function. In this
interpretation, the basic representation of the HTFI operators is described by Equation (41).

Let us write out separately the properties of the function Ψ(t), due to the definition
of the fractional integral operator, and additional properties that allow us to consider the
functions Ψ(t) or/and Fx(t) as cumulative distribution functions.

4.2. Properties of Functions Ψ(x) and Fx(t) used in HTFI Operator

In Definition 7, the following properties of the function Ψ(x) are used in [68]:

(1) Continuously differentiable function:

Ψ(t) ∈ C1[a, b]. (45)

(2) Positive function:
Ψ(t) > 0 for all t ∈ [a, b]. (46)

(3) Increasing function:
Ψ(1)(t) > 0 for all t ∈ [a, b]. (47)

Using the properties of the function Φ(x), for which HTFI is defined, one can describe
properties of the function (43). Using properties of Ψ(x), one can prove that function (43)
has the following properties:

(1) Continuously differentiable function:

Fx(t) ∈ C1[a, b]. (48)

(2) Positive function:
Fx(t) > 0, for all t ∈ [a, b]. (49)

(3) Increasing function:
d
dt

Fx(t) > 0, for all t ∈ [a, b]. (50)

(4) The limit on the left is equal to one:

lim
t→x−

Fx(t) = 1. (51)

The above properties of the function Ψ(x) proposed in paper in [68] can be slightly
weakened for our purposes.
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Let (a, b), where−∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real line R, and
let α > 0 and β ∈ R. Note that the function f (x) is assumed to be an integrable function
such that f (x) ∈ Xp

Ψ,q(a, b), where 1 ≤ p ≤ ∞. Therefore, one can use β ≥ q. In addition,
let Ψ(x) be an increasing and positive monotone function on (a, b], having a continuous
derivative Ψ(1)(x) on (a, b), and Ψ(1)(x) 6= 0 for a < x < b.

In addition, to use function (43) as the cumulative distribution function, we should
consider only such functions Ψ(x) for which Fx(t) is considered to be a cumulative distri-
bution function.

4.3. Characteristic Properties of Cumulative Distribution Function

Let (R,B(R)) be the real line with the system B(R) of Borel sets. Let P = P(A) be a
probability measure defined on the Borel subset A of the real line R. If A = (−∞, x], where
x ∈ R, then

F(x) = P(−∞, x] (52)

is called the cumulative distribution function.
The following proposition describes basic properties of the cumulative distribu-

tion function.

Proposition 1. Let F(x) be a distribution function of a random variable X.
Then, F(x) satisfies the following properties:
I. Monotonicity: F(x) is a nondecreasing function. If x1 < x2, then F(x1) ≤ F(x2).
II. Behavior at infinities

lim
x→−∞

F(x) = 0, (53)

lim
x→∞

F(x) = 1. (54)

III. Right-continuity: F(x) is a continuous function on the right and has a limit on the left at
each x ∈ R.

lim
x→x0+

F(x) = F(x0). (55)

Proposition 1 is proved in [96] (p. 185), and in book [97] (p. 34).
One can formulate a theorem inverse to Proposition 1. This theorem shows what

properties a function must have in order to be a cumulative distribution function.

Theorem 3. Let F = F(x) be a function on the real line R, which satisfies conditions I, II, and III.
Then, there exists a unique probability (measurable) space (R,B(R), P) and a random variable X
such that

P(X ≤ x) = F(x), (56)

P(a < X ≤ b) = P(a, b] = F(b) − F(a) (57)

for all a, b such that −∞ ≤ a < b < ∞.

Theorem 3 is proved in book [97] (p. 35), as Theorem 3.2.1. Theorem 3 is also described
in [96] (p. 185), as Theorem 1.

As a result, one can state that every function F(x) on the real line R, which satisfies
conditions I, II, and III, is a cumulative distribution function.

4.4. Cumulative Fractional Entropy

Let Ψ = Ψ(x) be a function on the real line R, which satisfies conditions I, II, and III.
Consider a cumulative distribution function Ψ(x), for which the conditions of the existence
of the HTFI operator are satisfied.

Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real line
R, and let α > 0 and β ∈ R, such that β > q. In addition, let Ψ(x) be an increasing and
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positive monotone function on (a, b], having a continuous derivative Ψ(1)(x) on (a, b),
and Ψ(1)(x) 6= 0 for a < x < b. As a result, one can formulate the following definition.

Definition 9. Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real line
R. Let Ψ(t) be a function, for which the following properties are satisfied:

(1) Continuously differentiable function:

Ψ(t) ∈ C1(a, b). (58)

(2) Positive function:
Ψ(t) > 0 for all t ∈ (a, b). (59)

(3) Increasing function:
Ψ(1)(t) > 0 for all t ∈ (a, b). (60)

(4) The limit on the right is zero:
lim

t→a+
Ψ(t) = 0. (61)

(5) The limit on the left is equal to one:

lim
t→b−

Ψ(t) = 1. (62)

The set of such cumulative distribution functions will be denoted by the symbol C1
Ψ(a, b).

Let us give definitions of a cumulative fractional entropy and a dynamic cumulative
fractional entropy, which are expressed through the HTFI operators.

Definition 10. Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real line
R, and let α > 0 and β ∈ R, such that β > q.

Let a cumulative distribution function F(x) = Ψ(x) belong to the set C1
Ψ(a, b), and let a

function f (x) belong to the space Xp
Ψ,q(a, b), where 1 ≤ p ≤ ∞.

Then, there is a cumulative fractional entropy that is defined by equation

H
α,β
F,a,b[ f ] =

1
Γ(α)

ˆ b

a
f (t) (F(t))β−1(− ln F(t))α−1 dF(t). (63)

Then, there is a dynamic cumulative fractional entropy that is defined by equation

Hα,β
F,a,x[ f ] = J

α,β
F,a,x[t] f (t) =

1
Γ(α) F(x)

ˆ x

a
f (t)

(
F(t)
F(x)

)β−1(
− ln

F(t)
F(x)

)α−1

dF(t), (64)

where a < x < b, a ≤ t ≤ x.

Using Theorem 1, one can obtain as a corollary the following proposition.

Proposition 2. Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real
line R.

Let F(x) = Ψ(x) be a cumulative distribution function that belongs to the set C1
Ψ(a, b), and

α > 0, 1 ≤ p ≤ ∞, β ∈ R.
Then, cumulative fractional entropy (63) and dynamic cumulative fractional entropy (64) are

bounded, if f (x) belongs to the space Xp
Ψ,q(a, b) and β ≥ q.

The proposed cumulative fractional entropy and dynamic cumulative fractional en-
tropy can be considered as a fractional generalizations of cumulative entropy (26) and
dynamic cumulative entropy (27), which are proposed by Di Crescenzo and Longobardi
in [87].
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Note that for α = β = 2 and f (x) = 1 with a = 0 and b = ∞, Equation (63) gives
the cumulative entropy (26), which are proposed by Di Crescenzo and Longobardi in [87],
in which dt is replaced by dF(t).

Note that for α = β = 2 and f (x) = 1, Equation (64) with a = 0 can be expressed
through the dynamic cumulative entropy (27), which are proposed by Di Crescenzo and
Longobardi in [87], in which dt is replaced by dF(t).

Remark 3. In Definition 10, the HTFI operators are used to proposed new types of entropy.
Equations (63) and (64) contain a function f (x) in addition to the cumulative distribution function
F(x) and the probability density function ρ(x) in the form dF(x) = ρ(x) dx. In order for
Equations (63) and (64) to define generalizations of the concept of entropy, it is necessary to
characterize the function f (x). As the simplest example, the unit function f (x) = 1 can be
considered as a function f (x). In this case, Equations (63) and (64) give generalizations of already
known entropies.

In the general case, there are three following types of functions f(x).
(I) The case when f (x) is a function of the cumulative distribution function F(x), i.e., f (x) =

f (F(x)). For example,
f (F(t)) = (F(t))γ−1 (− ln F(t))δ−1. (65)

where γ > −α with α > 0, and δ > −β > with β > q.
(II) The case when f (x) is a function of the cumulative distribution function F(x), i.e., f (x) =

f (ρ(x)). For example,
f (ρ(t)) = (ρ(t))γ−1 (− ln ρ(t))δ−1. (66)

where γ > −1 and δ ≥ 0, or

f (ρ(t)) = − lnq ρ(t) = − (ρ(t))q−1 − 1
q− 1

, (67)

where q ≥ 0.
(III) The case when f (x) is a function of a function g(x) that can be considered as a functional

parameter providing properties, the implementation of which allows Equations (63) and (64) to be
interpreted as a generalization of the concept of entropy. As a simple example of such a function, one
can consider constants, i.e., g(x) = λ. The function g(x) can the cumulative distribution function
or the probability density function of another system.

One can consider combinations of these types of functions, that is, consider functions of the
form f (t) = f (F(t), ρ(t), g(t)).

The dependence of the introduced generalizations of the concept of entropy on some function
f (x) opens up additional possibilities and expands the list of possible characteristics of systems in
statistical physics, information theory and quantum theory.

Remark 4. Using cumulative distribution function (43), one can define cumulative fractional
entropy in the form

Hα,β
F,0,x[ f ] =

1
Γ(α)

ˆ x

0
f (t) (Fx(t))

β−1(− ln Fx(t))
α−1 dFx(t), (68)

where x ∈ [a, b], α > 0 and β > 0. Therefore, one can see that

Hα,β
F,0,x[ f ] = H

α,β
Fx ,0,x[ f ] (69)

Remark 5. To simplify the notation, the entropy density function can be defined. Let us define
the function

Sα,β
F (t) = (F(t))β−1 (− ln F(t))α−1, (70)
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where α > 0 and β > 0. Note that function (70) can be interpreted as a fractional cumulative
entropy density.

Using function (43), one also can define the function

Sα,β
F (t, x) = (Fx(t))

β−1 (− ln Fx(t))
α−1, (71)

where α > 0 and β > 0. Note that

Sα,β
F (t, b) = Sα,β

F (t), (72)

if F(x) ∈ C1
Ψ(a, b), i.e., F(b) = 1.

For the special case α = β = 1, function (70) has the form S1,1
F (t) = 1. For the special case

α = β = 2, function (70) has the form

S2,2
x (t) = − Fx(t) ln Fx(t). (73)

Equation (64) can be written as the mathematical expectation of the density of the cumulative
entropy and function f (t) in the form

H
α,β
F,a,b[ f ] = E

[
f (t) Sα,β

F (t)
]
. (74)

For the special case α = β = 1, we have

H1,1
F,a,b[ f ] = E[ f (t)]. (75)

Let us note the following special cases. For β = 0, the cumulative fractional entropies
are described by the Hadamard fractional operators with respect to Ψ(x). For β = 0 and
Ψ(x) = x, the cumulative fractional entropies are represented by the Hadamard fractional
integral and differential operators. In this case, the uniform distribution of the interval [0, 1]
can be considered.

Definition 11. Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real line
R, and let α > 0, n = [α] + 1 and β ∈ R.

Let a cumulative distribution function F(x) = Ψ(x) belong to the set C1
Ψ(a, b).

Then, there is a dual cumulative fractional entropy that is defined by equation

DH
α,β
F,a,b[ f ] = H

α,β
F,a,b[D

m,β
t f (t)], (76)

where Hα,β
F,a,b is defined in (63).

Then, there is a dual dynamic cumulative fractional entropy that is defined by equation

DHα,β
F,a,x[ f ] = Hα,β

F,a,x[D
m,β
t f (t)], (77)

where a < x < b, a ≤ t ≤ x, Hα,β
F,a,x is defined in (64).

Here, Dm,β
t is the differential operator of integer order that is defined by Equation (4).

Using Theorem 2, one can obtain as a corollary the following proposition.

Proposition 3. Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real
line R.

Let α > 0, n = [α] + 1, β ∈ R, and F(x) = Ψ(x) be a cumulative distribution function that
belongs to the set C1

Ψ(a, b).
Then, the dual cumulative fractional entropy (76) and the dual dynamic cumulative fractional

entropy (76) exist almost everywhere on [a, b], if f (x) ∈ ACn
δΨ ,β[a, b].
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4.5. Examples

For an example of the dependence of fractional cumulative entropy on the function
f (x), the following proposition and equations can be used.

Proposition 4. For ν > 0, α > 0 and β ∈ R, the following relations hold:

J
α,β
Ψ,c,x[t]

{
(Ψ(t))−β

(
ln

Ψ(t)
Ψ(c)

)ν−1
}

=
Γ(ν)

Γ(ν + α)
(Ψ(x))−β

(
ln

Ψ(x)
Ψ(c)

)ν+α−1

, (78)

D
α,β
Ψ,a,x[t]

{
(Ψ(t))−β

(
ln

Ψ(t)
Ψ(c)

)ν−1
}

=
Γ(ν)

Γ(ν− α)
(Ψ(x))−β

(
ln

Ψ(x)
Ψ(c)

)ν−α−1

. (79)

Proposition 4 is proved in work [68] as Proposition 3.13.

Using the Proposition 4, one can obtain the following property of the cumulative
fractional entropy.

Proposition 5. Let (a, b), where −∞ ≤ a < b ≤ +∞ is a finite or infinite interval of the real line
R. Let F(t) = Ψ(t) be a cumulative distribution function, which belongs to the set C1

Ψ(a, b).
For a < c < b, ν > 0, α > 0 and β ∈ R, the dynamic cumulative fractional entropy is given

by the equation

Hα,β
F,c,x[ f ] =

Γ(ν)
Γ(ν + α)

(F(x))−β

(
ln

F(x)
F(c)

)ν+α−1

, (80)

if

f (t) = (F(t))−β

(
ln

F(t)
F(c)

)ν−1

, (81)

where t > a

For the case Ψ(t) = t, Equation (2).7.21 of Property 2.25 (see [4] (p. 113)) gives
the equations

J
α,β
Ψ,a,x[t] tν = (β + ν)−α xν. (82)

D
α,β
Ψ,a,x[t] tν = (β + ν)α xν. (83)

Proposition 6. Let (a, b), where −∞ < a < b < +∞ is a finite interval of the real line R.
Let F(t) = Ψ(t) = t/b be a cumulative distribution function of the uniform distribution on

the interval [0, b], which belongs to the set C1
Ψ(a, b).

For ν > 0, α > 0 and β ∈ R, the dynamic cumulative fractional entropy is given by
the equation

Hα,β
F,0,x[t

ν] = (β + ν)−α xν. (84)

Let us give some properties of the cumulative fractional entropy (76) and the dynamic
cumulative fractional entropy (76).

H
α,β
F,a,b[λ1 f1(t) + λ2 f2(t)] = λ1 H

α,β
F,a,b[ f1(t)] + λ2 H

α,β
F,a,b[ f2(t)], (85)

H
α,β
F,a,b[g(t) F(t)] = H

α,β+1
F,a,b [g(t)], (86)

H
α,β
F,a,b[g(t) ln F(t)] = −H

α+1,β
F,a,b [g(t)], (87)

H
α,β
F,a,b[g(t) F(t) ln F(t)] = −H

α+1,β+1
F,a,b [g(t)], (88)

H
α,β
F,a,b[g(t) (F(t))γ (− ln F(t))δ] = H

α+γ,β+δ
F,a,b [g(t)], (89)



Entropy 2022, 24, 1852 15 of 18

where γ > −α with α > 0, and δ > −β with β > q.
These properties can easily be proven using the determination of cumulative fractional

entropy. Properties (86)–(88) are particular cases of property (89). Similar properties hold
for the dynamic cumulative fractional entropy.

5. Conclusions

Interpretations of fractional integral and differential operators of non-integer order
can play an important role for new applications of this tool in various fields of science. In
this paper, an interpretation of Hadamard-type fractional integral and differential operators
is proposed. It has been proved that such operators of integration and differentiation of one
function with respect to another function can be considered as some type of cumulative
fractional entropy. The concept of entropy plays an important role in information theory
and statistical physics. The proposed interpretation opens up new possible applications of
Hadamard-type fractional integral and differential operators in these sciences.

In this paper, only the interpretation of fractional operators is proposed. Important
questions, which are not considered in this paper, are detailed studies of the properties of
the proposed family of cumulative fractional entropies. In this case, the results obtained in
the framework of the fractional Hadamard calculus can be used.

In conclusion, one can see that the proposed generalizations of the concept of entropy
can be extended to the case of nonlocal probability theory by using general fractional
probability density functions and general fractional cumulative distribution functions,
which are proposed in [98,99].
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