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Abstract: The recent global COVID-19 pandemic has revealed that the current healthcare system
in modern society can hardly cope with the increased number of patients. Part of the load can be
alleviated by incorporating smart healthcare infrastructure in the current system to enable patient’s
remote monitoring and personalized treatment. Technological advances in communications and
sensing devices have enabled the development of new, portable, and more power-efficient biomedical
sensors, as well as innovative healthcare applications. Nevertheless, such applications require
reliable, resilient, and secure networks. This paper aims to identify the communication requirements
for mass deployment of such smart healthcare sensors by providing the overview of underlying
Internet of Things (IoT) technologies. Moreover, it highlights the importance of information theory
in understanding the limits and barriers in this emerging field. With this motivation, the paper
indicates how data compression and entropy used in security algorithms may pave the way towards
mass deployment of such IoT healthcare devices. Future medical practices and paradigms are
also discussed.

Keywords: biomedical; smart healthcare; Internet of Things; image compression; entropy; emerging
technologies; applications; security

1. Introduction

Technological advancements in the production of microelectronic components and
wireless communications have enabled a myriad of new applications such as smart energy
control, industrial IoT, smart agriculture, smart health, etc. One of the areas that has been
shown to offer huge promises is smart healthcare. Initially, the focus was put on fitness
tracking devices such as smart watches. Since then, new types of non-invasive miniature
physiological sensors emerged, such as the electrocardiogram (ECG), oxygen saturation,
blood pressure, etc. By building upon the initial momentum of fitness applications, these
new devices allowed the wider usage of smart health applications in the general population.
The recent coronavirus pandemic has proven that the world was not prepared for such
a disastrous event. It has shown that remote healthcare applications are needed more
than ever, especially in situations where hospitals cannot admit an increasing number of
patients where many were treated in a home environment or temporary hospital. Due to
unpredictable illness evolution, it is necessary to always have timely information about a
patient’s vital signs, such as blood oxygen saturation, to be able to react in time and prevent
illness progression.

In recent years, an increase in the aging population has been observed in many
countries. Although this trend was initially observed mainly in developed countries, now
it can be seen in many developing countries as well. It is predicted that, by 2050, one-
sixth of the world’s population will be older than 65 years, in comparison to one-tenth in
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2019. There is no doubt that these trends will contribute to a significant increase in the
number of people needing support due to their disabilities and chronic diseases. Many
of these patients can be successfully treated at home environment, thus allowing elderly
and disabled people to have better life quality and at the same time the burden on the
healthcare system is reduced. Nevertheless, this approach, known as Ambient Assisted
Living (AAL) [1], requires the deployment of smart devices in the patient’s home and on the
patient themselves, to monitor the patient´s state and react in time in case of deterioration of
vital parameters. One of the main prerequisites to enable this new way of providing remote
healthcare is to have reliable communication between the smart sensors and the healthcare
provider. The adoption of novel and advanced technologies in the smart healthcare sector
will improve the performances in terms of latency, interoperability and scalability, energy
efficiency, security and privacy, etc. The design of communication protocols shall take into
account the biomedical signals as well as the communication medium properties, as it is
known from the Mathematical Theory of Communication [2] by C.E. Shannon.

In this paper, we elaborate on different aspects of biomedical signal communications
from an information theory perspective. We contribute under the following perspectives:
(1) by providing an overview of the state-of-the-art and emerging biomedical applica-
tions, and their communication requirements; (2) by reviewing different communication
technologies and standards commonly used in the medical application; (3) by highlight-
ing the benefits of advanced concepts such as Machine Learning (ML), Big Data Ana-
lytics (BDA), Software Defined Networking (SDN), biometric technologies, Blockchain,
and Cloud/Edge/Fog computing, as foundations of IoT for biomedical and healthcare
domain.

2. Emerging Biomedical Applications

With the aging population numbers rising, the sort of diseases that our current and
future societies deal with are mainly cancer, cardiovascular disease, Parkinson’s, asthma,
obesity, diabetes, and various other chronic or fatal diseases. In many cases, this sort of
disease could be managed or even prevented if detected and monitored at an early stage. It
is therefore imperative for aging societies to invest in a future healthcare system that will
be able to cope with a large aging population. The future healthcare system should be in a
position to integrate human medical expertise and services along with modern technology
to provide proactive wellness management and concentrate on the early detection and
prevention of diseases. Such medical-oriented technologies have been evolving for some
time, driven by the needs of society and of the general market. According to [3], even
monitoring vital signs can be considered as a key solution for offering proactive healthcare
services and this can be achieved through a network consisting of smart, low-power sensors
and actuators. Such devices may be used on-body (wearable) or in-body (implanted), or
even in the blood stream providing regular and accurate data. As with many products in
our lives, it is natural that such solutions are market-driven and based on facts and figures
worldwide dictating which type of diseases affect our population.

Figure 1 provides an overview of the remote healthcare system, where both hospital
and home environment are considered. Furthermore, it presents different wireless commu-
nication networks, which will be discussed in subsequent sections and are used to connect
equipment and sensors used to monitor the patient’s vital signs. The measurements which
are collected at the gateways and base stations are conveyed over the Internet to the server
where the data are stored and processed. Finally, these data are presented to the end-user:
healthcare practitioner or the patient via the web, desktop, or mobile applications.
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Figure 1. Remote healthcare system.

2.1. Use Cases

In order to define what kind of technologies are expected to deliver medical sensing
data to support future healthcare services, it is necessary to first look at the use cases
that have been identified. These use cases have been selected based on their operation,
transmission characteristics, and market penetration:

2.1.1. In-Body Sensors

• Glucose Sensors (GS): These are widely used across the globe. They are used to
measure the blood glucose concentration and help patients cope with diabetes mellitus.
In recent years a new type of GS has been developed. Such sensors are typically
implanted under the skin [4], featuring an interface circuit while they offer continuous
measurement and monitoring of blood glucose in patients with diabetes. A GS
will typically transmit at a rate below 1 kbps with expected latency under 150 ms.
According to the World Health Organization, the number of people with diabetes rose
from 108 million (approximately 2.4% of the entire population) in 1980 to 422 million
(approximately 5.8% of the entire population) in 2014, while in 2019 diabetes was the
ninth leading cause of death with an estimated 1.5 million deaths directly caused by
diabetes [5]. It is worth noting that diabetes is found to be significantly more common
in urban than rural areas [6–8]. This means that in urban areas, the network must be
able to cope with a high density of users, causing significant traffic to the network.

• Pacemaker: Cardiovascular diseases are among the most common diseases across
the world. Pacemakers have been invented to sense irregularities in heart beating
and to send a signal to the heart that makes it beat at the correct pace. A pacemaker
is a generally small, battery-operated device. The typical data rate expected to be
transmitted is below 1 kbps for a 12-bit pacemaker with a 500 Hz sampling rate.
The latency expected for a pacemaker should be less than 150 ms. According to [8],
cardiovascular diseases are the leading cause of death globally, taking an estimated
17.9 million lives each year. According to [9], rural residents experience higher death
rates compared with residents of urban areas. In many cases, the cause of this death
could have been prevented [10]. A pacemaker along with an ECG can prove lifesaving,
offering vital information about the state of the heart. As with the glucose sensor, it is
expected that IoT networks in urban areas will be required to support this critical data
in real-time, while in some cases priority will be given to people in critical conditions.
At the same time, it is expected that this network will have to handle the traffic found
in urban densely populated areas.

• Capsule Endoscopy (CE): This has been possible thanks to modern miniaturized
electronics and Ultra-Wideband (UWB) communications that enable the investigation
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of the small bowel providing a non-invasive, well-tolerated means of accurately
visualizing the distal duodenum, jejunum, and ileum [11]. CE is typically used when
flexible endoscopy fails to identify a diagnosis. It consists of a capsule for imaging,
a device for receiving and storing data, a computer, and software. The capsule itself
consists of a light source, lens, battery, and a transmission device. A CE would
typically require 1 Mbps of data rate with less than 150 ms of latency.

2.1.2. On-Body Sensors

• Electromyography (EMG): This measures the electrical activity of muscles by recording
the electrical impulses that muscles produce. The nerve conduction test measures
the speed at which impulses travel along a nerve during rest, slight contraction,
and forceful contraction. A 12-channel EMG requires 1.536 Mbps of data rate at
8 kHz of sampling rate. The latency should be less than 250 ms. This implies that the
communication channel carrying this sort of data will have to have enough bandwidth
to meet these transmission requirements. Such application can be used to examine
changes in muscle activity during acute and subacute phases of stroke recovery [12].

• ECG: As mentioned before, cardiovascular diseases are among the most common and
life-threatening diseases across the world. People who suffer from cardiovascular
diseases are usually fitted with an ECG, which measures changes in electrical signals
on different areas of skin. Such signals are basically electrical and chemical signals
used to enable communication between our nerve and muscle cells. Regular electrical
signals also control our heartbeat. An ECG is mainly used for recording how often
the heart beats (heart rate) and how regularly it beats (heart rhythm). In some cases,
during the monitoring process, patients are encouraged to continue their daily routines
in order to be able to capture possible irregularities of the heartbeat. A 12-channel
ECG requires 72 kbps data rate to communicate recorded data at a sampling rate of
500 Hz and latency of less than 250 ms. As with the EMG, the communication channel
required for carrying this sort of data need to have enough bandwidth to meet the
transmission requirements.

• Temperature, Heart Rate (HR), Blood Pressure (BP), Blood Oxygen (BO): The main vital
signs of the human body such as Temperature, HR, BP, and BO are associated with a
single value that is not expected to change rapidly within a given time. Thus, the data
rates required for such applications are expected to be below 10 kbps employing low
power channels for the data transmission. Vital signs monitoring provides an easy
way for the early detection of various diseases. The subtle variation of vital signs,
such as the core body temperature, can be a significant indicator for older patients
as it often indicates a more severe infection and is associated with increased rates of
life-threatening consequences [13].

2.1.3. Intelligent Things in Smart Hospitals

• Automated Medicine Dispenser: Automated dispensing machines are used to securely
store medication on patient care units. They also feature electronic tracking of the use
of narcotics and other controlled drugs. These machines can save nursing time by
eliminating a need for manual end-of-shift narcotic counts in the patient care units.
Another clinical feature of automated dispensing machines is the capability to track
and proactively monitor drug usage patterns. This is accomplished by setting up
clinical indicators during the removal of specified drugs [14].

• Urine Monitoring System: According to [15], a urine monitoring device has been
designed and implemented for monitoring postoperative urination. This device has
been designed to reduce the burden of the nursing staff required to regularly monitor
and empty the urine bags as well as to provide crucial information about the rate of
flow of urine in real time that is vital information for postoperative urination. Authors
have implemented this using WiFi, but this assumes adequate WiFi coverage across
the hospital. Using Low Power Wide Area Network (LP-WAN) type of technology
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should alleviate this burden and enable the mass deployment of such low-cost devices
in a hospitalized environment.

• Intensive Care Unit (ICU): An ICU is a true example where information technology
and clinical informatics are used to acquire, process, and transform data into actionable
information. Furthermore, it is required that this information disseminates effectively
to improve patient care. Intensive care in ICUs involves highly complex decision
making based on data [16]. In general, this is real-time data and the whole decision-
making mechanism must provide decisions in real time. The basic approach of
collecting and managing the data involves communicating data from many disparate
sensors into a database/system (possibly located at the hospital). The system must be
reliable, resilient, and responsive to rapid changes recorded by the sensors. For the
ICU scenario, we consider that some of these devices can be connected using the IoT
network available at the hospital, especially in emergency erected ICUs such as the
one’s setup during the pandemic [17]. Devices (sensors/actuators) used in an ICU
are automated medicine dispenser, the infusion monitoring system, ECG, vital signs,
respiratory ventilator, syringe pump, infusion pump, etc.
According to [18], to connect intelligent things using Narrow Band Internet of Things
(NB-IoT) architecture, there are still numerous challenges to be addressed. Such
challenges are the limited accuracy and reliability of data collection, which is a ma-
jor challenge in the building of smart hospitals. Furthermore, security is a general
challenge since the IoT network will have to handle sensitive/critical data. The en-
cryption mechanism of terminal devices must employ an encryption algorithm and
key management mechanism to strengthen authentication.

2.2. Communication Requirements and Network Limitations

Based on the use cases presented above, such medical devices operating within a
smart environment must transmit their data to a safe location where it will be processed.
Each medical device can be considered as a source of generated data. In real life, however,
patients or even healthy people in general may require a combination of these sensors in
order to monitor a particular medical condition. Thus, it is important that the communi-
cation requirements be clearly set to define the network that will drive these use cases in
large numbers while combing various scenarios together.

According to [19], the estimated growth of the IoT through connected devices across
the globe will increase from 7.6 billion at the end of 2019 to 24.1 billion in 2030. This was
translated into significant revenue, increasing from USD 465 billion to over USD 1.5 trillion
by the year 2030. It is expected that some of the IoT applications will require low-rate,
long-range, and delay-tolerant wireless communication at very low energy usage and
cost. According to [20], the market trend indicates that the number of mobile phones has
saturated since users do not require more than 1–2 mobile devices. However, this is not
the case with the “things” since their numbers are increasing exponentially while their
data traffic pattern significantly differs from the general human-centric data traffic. We
can consider a scenario where a number of such medical devices, measuring vital signs,
operate within a given geographical area. In most cases, devices are in sleep or idle mode
most of the time, saving their precious battery resources. Nevertheless, according to the
Emergency Safety Index (ESI)-3, patients with normal vital signs should be reassessed at
the discretion of the nurse, but no less frequently than every 4 h (i.e., six times a day). So, it
is expected that these signs should be measured and transmitted through the IoT network
at least six times a day. Considering the city of Paris as an example, Paris has a population
density of 20,909 per square kilometer. Assuming that about 1% of the population may
require daily monitoring of their vital signs, glucose levels, and heart monitoring using an
ECG, this accounts to a minimum of 200 people per square kilometer. Table 1 lists all these
sensors and presents the frequency of their transmission and the size of the data generated
every time they communicate with the IoT network. All these data must be managed by
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the IoT network on top of the existing data generated by all other IoT devices that people
are using.

Table 1. Data transmission requirements for wearable medical devices.

Sensor Type Message Size [Byte] Rate [msg/Day]

Glucose Sensor [21] 18 288

24H ECG Rec [22] 40 Real Time

Temperature [23] 8 6

Heart Rate [24] 4 6

Blood Pressure [25] 8 6

Blood Oxygen [25] 8 6

According to [20] and based on nine basic use cases, it is expected that 7800 devices
will be operational in one service area of 1000 households. Compared to our reference city
of Paris, for a population of 20,909 people per square kilometer and with the number of
persons per household set at 2.38 [26], this translates to about 68,525 devices per square
kilometer. We can therefore safely assume that a large number of devices will need to
be managed by the IoT networks available in a given area; hence, there is an urgency of
planning and rapid deployment of a number of LP-WAN networks in cities to address the
different types of traffic requirements generated from a wide range of IoT-enabled devices,
both medical and non-medical.

3. Communication Standards in Medical Applications

Advancements in communication technologies represent one of the main pillars that
enable wider usage of biomedical applications. Although many of the already existing
communication protocols can be successfully applied in biomedicine, there still exists room
for improvement of their performance. In this section, we provide a review of different
communication protocols which can be grouped into two categories:

• Low Rate Wireless Personal Area Network (LR-WPAN);
• Low Power Wide Area Network (LP-WAN).

3.1. LR-WPAN

LR-WPAN communication protocols are used in scenarios characterized with low
data rate requirements, where the focus is more on the higher energy efficiency than the
data throughput. The application of IoT sensor devices in smart healthcare is aimed at
providing reliable transfer of measurements such as blood pressure, pulse, blood glucose
level, ECG, etc. [27–29]. These data are usually collected at a gateway concentrator and sent
to a remote server where they are usually processed by different data analysis algorithms,
such as machine learning. There already exist a number of Wireless Personal Area Network
(WPAN) protocols that can be applied in biomedical applications, such as Bluetooth Low
Energy (BLE) [30], ZigBee [31,32], and NFC [33], which are usually used to transmit
the data to the gateway concentrator. LR-WPAN networks are suitable for collection
of measurements from in-body sensors, such as the glucose sensor [34], pacemaker [35]
and endoscope capsules [36], due to the lower signal ranges and requirement for energy
efficient operation [37].

BLE, which is also called Bluetooth Smart, was designed in 2006 and included in
the main Bluetooth standard as a part of Bluetooth Core Specification version 4. So far,
it has been mainly used in consumer electronic devices such as smart watches, tablets,
mobile phones, and different home IoT devices such as sensors, lamps, etc. In contrast
to the original Bluetooth standard, which is optimized for continuous data transmission
aimed at file transfer and music streaming, BLE is aimed at transmission of short messages.
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Newer Bluetooth standards such as Bluetooth 5.0 and 5.1 provide additional features such
as higher data rate and enhanced interoperability, which make them even more suitable for
smart healthcare applications.

The ZigBee protocol has mainly been used in smart home applications. It has been
developed to become an open communication standard aimed at responding to the re-
quirements of high energy efficiency for Machine to Machine (M2M) communication. It is
based on the IEEE 802.15.4 standard, which works in unlicensed frequency bands including
868 MHz, 900 MHz, and 2.4 GHz, where the selection of band depends on local wireless
transmission regulations. This standard is built in a way to allow devices to communicate
in different network topologies such as point-to-point, mesh, and star. The ZigBee protocol
has high energy efficiency, which allows it to work for years from single batteries. Since it
uses unlicensed bands, it needs to employ interference avoidance techniques in order to
cope with the interference from other devices that share the same frequency band, such
as Bluetooth and WiFi. Maximum transmission range is limited to 10–150 m, depending
on the propagation environment and transmitter output power. In order to deal with this
limitation, mesh networking mechanisms are used. Namely, by using intermediate network
nodes—Zigbee routers—the data are relayed through a series of hops. Zigbee is commonly
used in applications requiring low data throughput up to 250 kbps and higher energy
efficiency and security (128 bit Advanced Encryption Standard (AES) data encryption). It is
built upon the IEEE 802.15.4 standard where network and application layers are further
specified by the Zigbee protocol.

3.2. LP-WAN

LP-WAN networks are used to enable the long range transmission with low transmit
power and higher energy efficiency. This technology is especially useful when there is a
need to provide long battery lifetime of the sensing devices such as thermometer [38], HR
meter, and oxymeter [39] that send the measurements with lower data rate over longer
ranges. LP-WAN networks that operate in licensed bands have the advantage of the dedi-
cated spectrum which lead to lower interference levels and more reliable communications,
which is particularly suitable for critical healthcare applications.

• NB-IoT is envisioned to support Wireless Sensor Networks (WSN) within legacy
cellular networks. Over time, some of the older generations of cell networks have
become outdated. NB-IoT is expected to further increase their life time and bring new
business models with a simple software update of the network infrastructure. These
networks have narrow bandwidth of only 180 kHz which can be assigned within LTE
guard band. Although such narrow bandwidth supports lower data rates, at the same
time they provide extended coverage and reduced power consumption [40].

• Long Term Evolution-Machine Type Communications (LTE CAT-M) [41] enables
connectivity of IoT devices with reduced complexity of the device. This technology can
be implemented on the already existing LTE base stations. Nevertheless, it supports
longer communication range and longer battery lifetime. Besides being based on
the currently available mobile networks, LTE CAT-M has enhanced security and
privacy, which is especially important when dealing with patient’s health data. It uses
1.4 MHz bandwidth in contrast to regular LTE which used 20 MHz, and supports
the data transfer speeds of up to 1 Mbps, which is particularly suitable for healthcare
monitoring that need higher data rates.

• Extended Coverage GSM Internet of Things (EC-GSM-IoT) represents the standard
that operates within GSM frequency bands which is based on eGPRS [42]. It is capable
of providing extended range with higher energy efficiency for IoT applications. Since
this technology is based on the legacy GSM networks, their lifetime can be effectively
extended and bring new business opportunities to the mobile network operators. It
provides maximum data throughput of 240 kbps while requiring 200 kHz of band-
width. Similarly to NB-IoT technology, this is suitable for healthcare applications
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requiring lower data rates. The battery life of connected devices is expected to be up
to 10 years.

In addition to the aforementioned technologies, there also exist LP-WAN technologies
which operate in unlicensed bands. These can be used in healthcare application which are
not of critical importance, since the IoT devices need to share the available spectrum with
other devices that also operate in Scientific and Medical (ISM) frequency bands.

• Long Range Wide Area Network (LoRaWAN) operates in sub-GHz frequency band
and employs a proprietary spread spectrum modulation technique. It has been de-
signed with the aim to support the mobile and fixed devices that are powered with
batteries, where the energy efficiency is one of the most important aspects. In contrast
to ZigBee, LoRaWAN is based on a star topology where different gateways commu-
nicate with the network nodes. It envisions three device types, based on the way
they communicate with the network. More specifically, Class A enables bidirectional
communication between network node and a gateway. For the uplink transmission,
the data is randomly transmitted, whereas for the downlink, the receiver is turned
on 1 and 2 s after the uplink transmission. Class B works in a similar manner where
the receiving window is scheduled, while Class C enables bi-directional communi-
cation with low latency by allowing the receiving windows to be open at any time.
LoRaWAN allows data rates up to 37.5 kbps [43] and transmission range of about
30 km, where these depend on the transmitter configuration, such as Tx power, signal
bandwidth, spreading factor and propagation channel characteristics [44].

• SigFox represents a communication technology based on Shift Keying (DBPSK) and
Gaussian Frequency Shift Keying (GFSK). It uses only 100 Hz out of total 192 kHz of
total spectrum. Besides this, Sigfox message payload is limited to 12 bytes, with a limit
of only 140 messages per day. In Europe, it operates on 868 MHz, whereas in North
America a 902 MHz band is allocated for its use. The data received by the gateways
are collected on the SigFox cloud servers and made available to the end users through
an Application Programming Interface (API) or web-based interface. The limits of
the number of messages per day and message size makes it suitable for non-critical
scenarios with less frequent measurements [45].

• INGENU operates on ISM 2.4 GHz frequency band, which allows for wider usage
since this band is less regulated worldwide. For the uplink communication, it employs
Random Phase Multiple Access (RPMA) Direct Sequence Spread Spectrum (DSSS) as
the transmission scheme. By using such an approach, multiple transmitters are able to
share one time slot. Since each RPMA channel takes only 1 MHz of bandwidth, it is
possible to have 40 uplink and downlink channels within 2.4 GHz spectrum. INGENU
supports data rate of 19.5 kbps for downlink and 78 kbps for uplink. Transmission can
reach up to 3 km in urban and up to 15 km in rural environments [46]. For security, it
employs AES 256 bit encryption.

• WEIGHTLESS is a protocol that enables two-way communication by using PSK/GMSK
and O-QPSK modulation with spread spectrum [47]. Similarly to other LP-WAN com-
munication standards, it also uses sub-GHz frequency bands that do not require
license. It supports adaptive bit rate from 625 bps to 100 kbps, while its channels are
only 12.5 kHz narrow [48]. In order to optimize on the network capacity, WEIGHT-
LESS uses control of power in uplink and downlink directions. Finally, in order to
enable secure transmission of data, it employs AES encryption with 128 and 256 bits.

4. Advanced Concepts in IoT for Biomedical Applications

Rapid prototyping and deployment of IoT devices have introduced an open space
for the next generation applications in various fields such as industrial automation, smart
cities, intelligent transportation systems, remote healthcare monitoring, etc. These ap-
plications generate large quantities of real-time data, thus providing significant benefits,
but also introducing some critical challenges that should be carefully examined. In the
emerging field of IoT for biomedical applications, ML, BDA, SDN, biometric technologies,
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Blockchain, and Cloud/Edge/Fog computing could be synergistically used to provide
advanced networking architectures and solutions. During the last decade, the expansion of
M2M communications has introduced some novel forms of interactions and data generation
mechanisms with great potential for healthcare applications. In these interactions, large
volumes of data are continuously being generated from various heterogeneous sources and
transmitted for remote medical diagnostics, thus raising the challenges in data acquisition
and analysis [49,50]. The scalability and interoperability of the IoT healthcare network
infrastructure should be supported by providing Quality of Service (QoS) guaranties.

For scientists and researchers, the ability to collect and analyze large medical and
healthcare datasets is an essential precondition in assuring timely disease detection, di-
agnosis, and treatment. The use of ML has already shown promising results in various
biomedical and healthcare applications [51,52]. Among other ML techniques, supervised
ML provides required support for time-critical healthcare applications. In combination with
fog computing, it creates a powerful tool for robust end-to-end encryption [53]. Numerous
techniques have been proposed for ECG signals analysis [54,55], where the most popular
ECG databases are the MIT-BIH arrhythmia [56] and the AHA [57].

Entropy is one of the fundamental features of information and communication the-
ory [2], widely used to study the complexity of biomedical signals [58,59], or the subtle
interrelationships of multiple biomedical time series [60,61]. Biometric technology used
in patient identification can significantly improve the speed and reliability of activities,
as well as continuous authentication. It exploits physiological and behavioral biomet-
ric traits, including face, iris, fingerprints, ECG, and Photoplethysmography (PPG) [62].
The importance of entropy is confirmed in the healthcare domain since it can be used
for the production and certification of IoT devices for biomedical applications with the
high-security level [63]. One possible approach is presented in [64], where the noise-aware
biometric quantization framework (NA-IOMBA) generates reliable and high entropy keys
with low enrollment times and costs. Experiments are performed on four biometrics modal-
ities (ECG, PPG, fingerprint and iris scan). The results show that NA-IOMBA outperforms
them all and that ECG-based authentication provides the best trade-off between reliability,
key length, entropy, and implementation cost.

The secure transmission of medical images is another challenging task since traditional
encryption techniques cannot ensure the required level of privacy and confidentiality of
patient data transmitted in heterogeneous IoT environment. Recent research efforts generate
advanced image encryption techniques particularly suitable for medical images [65,66].
One possible approach is presented in [67]. The encryption technique uses three stages to
encrypt the image by using the 256 bits key value for logical operation. This lightweight
framework provides high performance in terms of encrypted entropy, small computational
time, encryption speed, and low complexity.

Cloud/Edge/Fog computing and IoT networking have emerged as a new level of
interaction between people and devices. In the field of IoT for biomedical applications, these
technologies provide required resources for processing, storage, analytics, and networking
of data. Various types of IoT and cloud computing services enable continuous monitoring,
predictive and preventive care, AI-driven diagnosis, etc. Among other relevant topics, data
security and patient privacy are of paramount importance [68]. Entropy-as-a-Service (EaaS)
is a cloud-based platform for the generation and distribution of high-quality entropy for
distributed applications and IoT devices, as well as embedded computer systems [69]. EaaS
provides the entropy for generating strong cryptographic keys required in prevention of
malicious attacks.

Cloud computing services provide on-demand storage and analysis, but may also
cause unpredictable latency with a negative impact on QoS. Potential issues include privacy
and reliability of patient data, heterogeneous and resource-constrained devices, and com-
plex monitoring and management. Therefore, the cloud-based IoT platforms for biomedical
applications should be further explored and examined.
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The softwarized infrastructure for smart healthcare provides significant benefits in
terms of resource management and dynamic reconfigurability [70]. SDN introduces a
control plane that implements logical functionalities of the network and a data plane to
manage the actual transmission of user data [71,72]. This is particularly important for
providing interoperability between different communication protocols, the management of
constrained resources, as well as the support for the critical flows in IoT healthcare networks.
For example, SDN-based Edge computing can provide efficient resource utilization in the
healthcare system [73]. This solution provides the authentication of IoT devices by the
Edge servers using a lightweight authentication scheme. An SDN controller performs load
balancing and network optimization.

Novel solutions in computing and networking, as well as in data analytics, open
the path towards new treatments for diseases, and drastically improve diagnostic quality
by providing superior decision support to healthcare professionals. Analytics in Fog
computing is performed closer to the edge of applications and devices, and this approach
is more appropriate for events requiring a timely response. The distributed solutions could
provide optimal performances depending on the specific biomedical application needs.
In [74], IoT-fog based healthcare monitoring system is proposed for continuous monitoring
of BP and other health parameters to identify stages of hypertension. The artificial neural
network is utilized for the prediction of the risk level of hypertension. The Fog system
enables continuous generation of an alert of BP fluctuation on users’ mobile phones,
while results of analysis and medical information of each user are stored permanently on
cloud storage.

Efficient deployment of WSN/IoT biomedical applications requires advanced security
mechanisms and algorithms. Blockchain addresses the privacy concerns for IoT networks
by using cryptographic algorithms for the robustness against failure and data exposure [75].
In [76], blockchain technology is used for remote healthcare applications. The model
provides reliable data communication over the network and storage over the Cloud-based
on lightweight cryptographic techniques. The concept of Ring Signatures that provides
privacy properties like Signers Anonymity and Signature Correctness, has been introduced.

Some recent research activities address the challenges in collecting, storing, and pro-
cessing large-scale biomedical datasets across heterogeneous computing and storage plat-
forms [77]. As a result, Personal Health Dashboard (PHD), a secure, scalable, and interop-
erable platform for the streamlined and cost-effective acquisition, storage, and analysis of
large biomedical datasets ranging from wearable biosensor data and multi-omics profiles
to clinical data, is presented. Omics data contains catalog of molecular profiles which
creates the base for precision and personalized medicine [78,79]. PHD can operate on any
large-scale cloud infrastructure or local high-performance computing system and can be
customized according to end-user needs. Moreover, the secure cloud-agnostic platform
allows data capture, integration of diverse datasets, analytics, visualization, and notification
to patients via the mobile PHD smart application.

In [80], the Dynaswap cybersecurity architecture has been proposed. This architecture
combines existing security frameworks such as the Authentication Authorization Account-
ing framework, Multi-Factor Authentication, Secure Digital Provenance, and Blockchain
with advanced security tools (e.g., Biometric-Capsule, Cryptography-based Hierarchical
Access Control, and Dual-level Key Management). This solution comprises two major
components: decryption and ML clusters for data processing and biomedical research,
respectively. The security technologies have been developed and integrated with the Open
Medical Record System to provide advanced security and privacy protection, as well as the
remote access and share of sensitive data.

The use of cryptanalysis for authentication purposes provides an efficient mechanism
for the protection of possible security threats. A novel genetic algorithm for data security
architecture that performs one-time key, single block enciphering is presented in [81].
The algorithm combines Gene Fusion and Horizontal Gene Transfer inspired by the spread
of antibiotic resistance in bacteria. A novel scheme for highly random variable keys
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results in an avalanche effect with an average of 98%. The architectural framework of the
biomedical Wireless Body Area Network (WBAN)/IoT system is presented, both with
theoretical and simulation analysis, where experimental results on low-cost electronic
device prototype are also provided. In Table 2, we provide the summary of requirements
for different healthcare applications and communication technologies.

Table 2. Summary of data requirements and communication technologies for healthcare applications.

Sensors Healthcare
Application

IoT Communica-
tion Technology Data Rate Range Advanced

Technology Benefits

Electrocardiography
(ECG), Magneto-
cardiography
(MCG)

Heart Activity
Monitoring,
Remote Health
Monitoring,
Arrhythmia
Detection

Bluetooth/BLE 3 Mbps/1 Mbps 10–100 m

AI-aided
model for
next-
generation
ultra-edge IoT
sensors [82]

Remote patient
monitoring for a
prolonged period,
especially in
aging urban
populations and
under-served
regions.

Zigbee 20–250 kbps 100 m
NB-IoT 200 kbps 1–10 km

Heart Rate, Blood
Pressure,
Temperature

Heart Disease
Detection,
Remote
Health
Monitoring

Bluetooth/BLE 3 Mbps/1 Mbps 10–100 m

Cloud-based
heart disease
prediction
system using
ML tech-
niques [83]

Intelligent
cloud-based
network for
analysis, planning
and decision
making. Provides
continuous
supervisions for
patient’s safety.

LoRaWAN 50 kbps 2–20 km

Accelerometer,
Gyroscope,
Magnetometer

Fall Risk
Prevention,
Pervasive
Healthcare
Applications

Bluetooth/BLE 3 Mbps/1 Mbps 10–100 m

SDN-based
multitier
computing
and communi-
cation
architec-
ture [84]

Real-time
healthcare
services.
Performance
advantages over
traditional
cloud-based
approaches.

EC-GSM-IoT 70–240 kbps 15 km

Blood Oxygen,
Temperature,
Heart Rate, Photo-
plethysmogram
(PPG)

Remote
Health
Monitoring

Bluetooth/BLE 3 Mbps/1 Mbps 10–100 m Fog-based ML
tools for data
analysis and
diagnosis [85]

Automated health
monitoring and a
COVID-safe
framework that
minimizes a
coronavirus
exposure risk.
Smartphone
application.

LoRaWAN 50 kbps 2–20 km
NB-IoT 200 kbps 1–10 km
EC-GSM-IoT 70–240 kbps 15 km

5. Compression as the Past and Future of Medical Information

The principles of the techniques described in the previous sections arose from one
basis—information theory—and its main disciplines developed during the narrow time
period from 1948 to 1953: cryptography [86], channel capacity [87], and coding [88]. How-
ever, emerging applications that bring the future to healthcare are also capable to produce
data in quantities that will soon deserve to be called “big”.

A key component for transmitting and storing such vast amounts of data is another
pillar of information theory: compression [2,87]. Compressed data is more compact, reduces
transmission and storage costs, and allows signal reconstruction either accurately (lossless)
or with some distortion.
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5.1. Piling the Cardiovascular Data

The ECG is a signal of modest size, and seemingly, its compression is superfluous.
However, according to the World Health Organization (WHO), cardiovascular diseases
account for the majority of premature deaths from non-communicable diseases [89]. Simple
and non-invasive recording and low-cost equipment make the ECG as one of the most
common diagnostic tools. It is used permanently during systematic examinations, home
visits, in patients with private electrocardiographs, in hospitals, and during constant 24 h
monitoring (“Holter” devices). E-health, telemedicine, crowdsensing, and crowdsourcing
are services that perform the monitoring remotely and transmit and store data [90]. A sim-
ple Holter system with three electrodes and a modest A/D conversion with 200 Hz and
10 bits/sample generates 0.5 Gbit per patient per day. So the signals are already piling
up, and the applications envisaged in the previous sections tremendously increases their
transmission and storage.

The elementary method for lossy ECG compression is at the core of information theory:
digitalization. A comprehensive analysis of the requirements for ECG sampling frequency
and amplitude resolution appeared in 1990 [91]. The study followed the recommendations
of the American Heart Association, as well as earlier contributions on the relationship of
amplitude resolution and sampling frequency. Three characteristic of ECG implementa-
tions are outlined: visual observation, computerized analysis, and transmission/storage.
The conclusion was in favor of a sampling frequency of 250 Hz for visual observation,
and 500 Hz for computerized analysis and storage, with not less than 10 bits/sample.
The recommendations of Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology [92], also state the optimal sampling
range of 250–500 Hz. The range of 100–250 Hz may be satisfactory as well, but only if an
interpolation algorithm is applied. It is in accordance with A/D conversion followed by
the complete implementation of the sampling theorem [37,87].

In a 2002 experiment [93], cardiologists were asked to rank the quality of the recorded
ECG groups of signals from the MIT database [94,95]. Each signal group consisted of the
original record—360 Hz and 11 bps (ECG type I)—and the same record was processed
to mimic 240 Hz, 10 bps (type II), 180 Hz, 9 bps (type III), and 180 Hz, 8 bps (type IV),
Figure 2). Although the first signal produces five times more bits per second than the
fourth, cardiologists equally ranked all of them, giving an insignificantly worse grade to
the fourth.

Figure 2. ECG signal from the MIT database. (a) Type IV—worst, fs = 100 Hz with 8 bits per
sample; (b) Type I—best, fs = 360 Hz with 11 bits per sample. The rounded region in panel (a) was
misinterpreted as a tremor; panel (b) shows that the alleged tremor is a consequence of low resolution.

A recent study [96] relaxed the sampling frequency requirements, stating that 250 Hz
is sufficient for any analysis, 100 Hz is acceptable for the time domain, but not for spectral
analysis, while 50 Hz is not acceptable at all. Indeed, when the 1000 Hz signal is reduced
to 50 Hz, the intervals between adjacent R peaks of the ECG signal get about 20 different
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values, so the corresponding time series of RR intervals becomes discrete (Figure 3). This
violates the theoretical requirements for the analysis.

Figure 3. Time series of the RR interval of a healthy volunteer; (a) fs = 1000 Hz, with 200 different
amplitude values within a range of 700 to 900 ms; (b) fs = 50 Hz, with only 10 amplitude values
within the same range.

A “true” compression begins after digitalization. The state-of-the-art ECG compression
methods from the nineties are reviewed in a classical paper [97]. The lack of standards
considering the signal acquisition made the direct method comparison impossible, but the
paper describes their advantages and disadvantages.

A more recent review [98] from 2015 partitioned the compression techniques into
“time-domain”, “transform-domain”, and “2D”. An additional technique, “parameter-
extraction”, is irreversible and does not provide signal reconstruction, so it does not fit
the definition of data compression. The time-domain methods, mostly from the previous
century, announced many techniques, among the most distinguished are “Aztec” [99]
and “Cortes” [100]. More recently, novel techniques came into the focus, such as neural
networks [101].

Considering the transform-domain, early techniques are summarized in [102], while
recent ones are based on wavelet transforms [103–105]. The 2D techniques achieve better
performances as they do not observe ECG sample by sample, but create an “image” of
successive RR intervals [106].

The task of finding the proper compression method for a signal that seems so simple
is still not finished. As already said, without the standardized acquisition procedure,
the methods cannot be accurately compared. Subjective measures are important for visual
ECG examination in a doctor’s office, but only objective measures enable direct comparison.
The most common ones show compression performance and average signal distortion.
Such measures are compression ratio—the ratio of the number of bits in original and in
compressed data; and percent mean square difference—square root of the ratio of the sum
of squared difference of the source and compressed signal amplitudes, divided by the sum
of squared source amplitudes, expressed in [%]. However, the features of the signals—such
as characteristics of QRS complex, and P and T waveforms, are gaining importance in
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novel diagnostic procedures. So the measures that estimate the preservation of signal
features, rather than overall signal distortion, become more important. One of the most
distinguished ones is weighted diagnostic distortion, which checks 18 parameters of the
signal [107]. Despite its complexity, it checks the preservation of the most relevant features
of the compressed ECG signal.

Since 2000, the widely used Digital Imaging and Communication in Medicine (DI-
COM) standard, originally developed for image storage, has included rules for diagnostic
ECG. A few years later, the first ECG manufacturer adopted the DICOM standard for
diagnostic electrocardiographs [108], followed almost immediately by appropriate PACS
solutions [109]. In this way, proprietary systems are no longer required to exchange
ECG data.

5.2. Medical Image Compression

The number of medical image examinations is constantly increasing. There are more
and more imaging procedures and the number of images per examination is increasing,
as well as the image resolution. For example, during 2019–2020, more than seven million
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) examinations were
performed in Canada, and the number of CT scans per thousand people was 143.4. Accord-
ing to the OECD (Organization for Economic Cooperation and Development), this puts
Canada in the lower quarter among the observed countries [110].

The size of uncompressed medical imaging files from one patient could be from a few
MB for nuclear medicine to 1 GB for advanced CT exams [111]. The healthcare procedures
assume that all acquired images are securely stored and are available for secure and as fast
as possible transmission on demand, which actualizes basic information theory problems
on coding, transmission, and data compression [2] in medical imaging.

The problem of storage and transmission of medical images and the need for stan-
dardization has been recognized from the early 1980s with the introduction of MRI as the
new intrinsically digital medical imaging modality (the first was CT in the early 1970s).
The American College of Radiology (ACR) and National Electrical Manufacturers Associa-
tion (NEMA) formed the Digital Imaging and Communication Standards Committee in
1983. The first version of the standard (ACR-NEMA 300-1985) was introduced in 1985 and
the first revision was published in 1988. The standard has been continuously improved and
the standardization committee has been expanded to manufacturers outside the United
States and medical specialties beyond radiology. In 1993, the name DICOM was established.
Today’s release of the standard specifies a medical image and patient data file format as
well as the network communications protocol [112]. In NEMA nomenclature, DICOM
is known as NEMA PS3, while in ISO standards, DICOM is denoted as ISO12052:2017:
“Health informatics—DICOM including workflow and data management”. DICOM is
widely accepted in the healthcare industry and there is a general opinion that DICOM
standards have a crucial role in the transformation of film-based medical imaging to full
digital workflow in modern hospitals.

The DICOM committee regularly develops corrections and new chapters to the stan-
dard. Updates are compatible with previous versions, although some features may be
abandoned in newer versions and the use of these features is not recommended in the new
applications. The DICOM standard defines medical image exchange trough digital media
(CD, DVD, etc.) and over the network, and it is designed to meet the needs of different
imaging modalities (US,CT, MRI, etc.). DICOM is also designed to allow communication
between different elements in the hospital medical imaging workflow usually organized as
PACS, as shown in Figure 4.
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Figure 4. Picture Archiving and Communication System.

The current version of the standard defines several transfer syntaxes for encapsulation
of encoded pixel data including compressed data formats. DICOM includes Run Length
Encoding (RLE), JPEG, JPEG-LS, JPEG-2000, JPIP, MPEG2, and MPEG-4AVC/H.264 [113].
On the other hand, the implementation of compression techniques in clinical practice
is not an easy question. Although there is no reservation about the implementation of
lossless compression methods, lossy compression has been an issue in the medical imaging
community since the beginning.

In the United States, the Food and Drug Administration (FDA) regulates the use
of medical devices. The FDA also regulates PACS performance such as medical image
transmission, display, processing, and storage. In 1993, the FDA stated “the suitability of
lossy compression for a variety of medical applications such as primary diagnosis, refer-
ral, and archiving”. In this guideline, manufacturers are not required to limit the use of
PACS elements that use lossy compression but may limit their recommended use. These
guidelines also stated that lossy compressed medical images should be marked and an
approximate compression ratio should be obtained. The main concern is that degradation
of image quality due to the lossy compression may result in a wrong diagnosis or patient
treatment, and the manufacturer may be responsible for that [111]. This led to a more
conservative approach in the commercial implementation of medical image compression,
and lossless techniques become a technique of choice among DICOM recommended com-
pression methods. It should be noticed that DICOM does not recommend or approve any
particular compression for any particular modality or clinical application.

On the other hand, with the rapid development of sensors, communications, and im-
age acquisition [37], compression of medical image data is critical, especially with limited
bandwidth and data storage. In 2008, the Royal College of Radiologists (RCR) (UK), pub-
lished a recommendation for lossy compression implementation in clinical contexts [114].
As part of the Connecting for Health national PACS solution, RCR recognizes the necessity
of compression and recommends compression ratios for primary diagnosis for various
modalities utilizing the JPEG2000 lossy compression approach. RCR recommendations
are based on the review of earlier studies and they also recommend further studies for
the assessment of the effects of compression on the thin slice for radiotherapy planning
CT data. The Canadian Association of Radiologists (CAR) published a standard for lossy
compression validation and identified examination categories in 2011 [115]. The maximum
compression ratios for JPEG and JPEG2000 for certain modalities and anatomical locations
are provided in this standard, which is based on Pan/Canadian studies [116]. To avoid
apparent distortions for various examination types, the appropriate compression ratios
were chosen based on a large-scale study with 100 readers. It is important to note that CAR
clearly specifies that their research does not address image compression for CAD (Computer
Aided Diagnosis) or image post-processing applications (3D reformatting, multiplanar
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reconstructions—MPR, maximum intensity projections—MIP, etc.). In 2009, the German
Röntgen Society (DRG) organized a consensus conference with over 80 professionals to
discuss the compression problem in digital medical imaging [117]. They looked at previous
research and made suggestions for lossy JPEG and JPEG2000 compression ratios.

The ESR has launched an international expert discussion on the usability of lossy
(irreversible) image compression in radiological imaging based on these findings and
taking into account the major concerns of users and suppliers regarding the use of lossy
image compression. In 2011, the discussion’s findings were published in a statement
paper [118]. They define the term DAIC, assuming lossy compression that has no effect on a
certain diagnostic task. In practice, this means that any compression-related artifacts should
be invisible to the human eye or at such a low level that they have no effect on interpretation.
Instead of making recommendations on appropriate compression ratios, the ESR suggests
that “the radiologist should follow the CAR, DRG, or RCR recommendations to ensure
diagnostically acceptable image compression (DAIC)”.

In 2017, ACR introduced a technical standard for the electronic practice of medical
imaging [119]. In this standard, they do not propose “any general statement on the type or
amount of compression that is appropriate to any particular modality, disease, or clinical
application”, but advise responsible physicians to use scientific literature and national
guidelines in deciding about the appropriate type of compression and appropriate compres-
sion ratio. They also stated that no matter if reversible or irreversible compression method
is used, only algorithms defined by the DICOM standard such JPEG, JPEG-LS, JPEG-2000,
or MPEG should be applied since images encoded with proprietary and nonstandard
compression schemes reduce interoperability.

It has been demonstrated in recent analyses of medical image compression algorithms
that techniques not included in the DICOM standard can provide a greater compression
ratio [120]. It should also be mentioned that different compression ratios and approaches
may be optimal for particular modalities or diagnostic tasks.

There are two primary issues with using irreversible compression techniques in medi-
cal imaging in general. Any irreversible compression method should first be tested and
authorized by qualified physicians and/or professional organizations for a certain modality
and exam, and then recognized and adopted into current standards. Because all applica-
tions and equipment are vendor-agnostic, the current position is convenient for both users
and manufacturers. It is a significant achievement, and it is important to guarantee that it
is maintained, especially in today’s connected world.

5.3. Future Medical Practices and Paradigms

Aging populations in many countries across the world are staining clinical institutions
while healthcare costs are rising. This issue became more challenging during the pandemic
when such clinical institutions were turned into COVID-19 treatment centers or they had
to stop accepting patients when cases of COVID-19 were detected. According to [121],
services such as artificial intelligence enabled remote patient monitoring and diagnoses
can be supported by 5G and beyond 5G networks. Such networks can be employed to
reliably connect hospitals, ambulances, and homes, thus making healthcare service more
resource-efficient and more effective in managing resources and containing the outbreak
of a pandemic. Authors in [122] have stated that ambulances featuring 5G connectivity
can have high quality video calls with doctors and specialists in the hospital to attend the
patient remotely especially under ongoing social distancing measures. Services such as
AI-enabled remote patient monitoring and diagnoses can be supported by 5G networks
and can be a useful life-saving solution for people living in remote areas. As stated in [121],
travel restrictions in a pandemic can prevent patients and surgeons to attend more equipped
hospitals. Given that surgeries and treatments must be offered all year round under any
circumstances, 5G-enabled remote surgery, or in a larger scale internet of skills [123],
enables the patients to attend a nearby hospital and receive treatment/surgery from a
doctor hundreds of miles away. This of course will require Ultra-Reliable Low-Latency
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Communications (URLLC) and very high data-rate communications [124], which, for this
work, are out of scope given that we are talking about IoT type of connectivity with limited
capacity and data-rates. The technology presented in this paper may be more applicable
on Predictive, Preventing and Personalized Medicine (PPPM). In the context of predictive
and precision medicine, biomedical imaging techniques described in the previous two
sections, are of particular importance. Moreover, the PPPM may be the key in health care for
detecting and treating diseases early enough. With the advances in electronics, information
communication technologies, and AI, it is now possible to consider employing PPPM to
achieve effective and targeted preventive measures and to offer personalized treatment
algorithms tailored to every individual. With the introduction of advanced healthcare,
delayed interventional medicine may be replaced with predictive medicine and, therefore,
treatment may also change from being reactive to preventive. Common non-communicable
diseases such as diabetes, cardiovascular diseases, chronic respiratory diseases, cancer, and
dental pathologies can be effectively treated or even prevented in some cases by introducing
PPPM into our existing medical practices. With advanced healthcare, we can therefore
introduce predictive diagnostics followed by targeted prevention before the manifestation
of pathology.

6. Conclusions

Remote healthcare applications are needed more than ever, especially nowadays with
the pandemic and lockdown restrictions where many people are unable to visit their local
doctor and hospital for their routine checkups. Furthermore, hospitals cannot admit an
increasing number of patients, and the healthcare system is required to provide its services
at a home environment or temporary hospital. To support such services, we can make use
of the current and future IoT technologies. This promising communication infrastructure
may be used to support remote monitoring of patients and enhance virtual routine visits to
doctors. The smart healthcare system should overcome many challenges.

Furthermore, large volumes of biomedical and healthcare data, in different formats
and from heterogeneous sources, can be efficiently processed with advanced algorithms
and technologies such as AI, ML, SDN, Cloud/Edge/Fog computing, etc. Due to the
exponential growth of the IoT-enabled devices expected in the next ten years, medical
devices will have to operate in a busy network environment of things. Reliability, resilience,
and security are among the parameters that such networks must deliver. One solution
is to optimize the transmission of these sensors by compressing their data and reducing
their airtime. IoT architectures should be self-adaptive and energy-aware in order to
provide efficient resource management and meet the requirements of next-generation
healthcare applications. The diversity of these applications and their requirements makes
the design process extremely complex. Therefore, the selection of communication standards,
protocols, and technologies is a crucial step in providing the required performances. Secure
mechanisms and protocols based on biometric and blockchain frameworks may open a
new horizon in this emerging and challenging field.

In this paper, we discuss various emerging topics and challenges in the field of IoT for
biomedical and healthcare systems. The future predictive, preventive, and personalized
healthcare will strongly rely on emerging communication technologies, improved diagnos-
tics from digital imaging and precision treatment, secure and reliable protocols, as well as
optimized data transmission.
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