o4 entropy

Article

Reinforcement Learning-Based Reactive Obstacle Avoidance
Method for Redundant Manipulators

Yue Shen

check for
updates

Citation: Shen, Y,; Jia, Q.; Huang, Z.;
Wang, R.; Fei, J.; Chen, G.
Reinforcement Learning-Based
Reactive Obstacle Avoidance Method
for Redundant Manipulators. Entropy
2022, 24,279. https://doi.org/
10.3390/€24020279

Academic Editors: Udo Von

Toussaint and Adam Lipowski

Received: 4 January 2022
Accepted: 14 February 2022
Published: 15 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Qingxuan Jia, Zeyuan Huang, Ruiquan Wang, Junting Fei and Gang Chen *

School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications,
Beijing 100876, China; yuefei@bupt.edu.cn (Y.S.); gingxuan@bupt.edu.cn (Q.].); zyh214@bupt.edu.cn (Z.H.);
wangruiquan@bupt.edu.cn (R.W.); fit@bupt.edu.cn (J.F.)

* Correspondence: chengang_zdh@bupt.edu.cn

Abstract: Redundant manipulators are widely used in fields such as human-robot collaboration due
to their good flexibility. To ensure efficiency and safety, the manipulator is required to avoid obstacles
while tracking a desired trajectory in many tasks. Conventional methods for obstacle avoidance of
redundant manipulators may encounter joint singularity or exceed joint position limits while tracking
the desired trajectory. By integrating deep reinforcement learning into the gradient projection method,
a reactive obstacle avoidance method for redundant manipulators is proposed. We establish a general
DRL framework for obstacle avoidance, and then a reinforcement learning agent is applied to learn
motion in the null space of the redundant manipulator Jacobian matrix. The reward function of
reinforcement learning is redesigned to handle multiple constraints automatically. Specifically, the
manipulability index is introduced into the reward function, and thus the manipulator can maintain
high manipulability to avoid joint singularity while executing tasks. To show the effectiveness of the
proposed method, the simulation of 4 degrees of planar manipulator freedom is given. Compared
with the gradient projection method, the proposed method outperforms in a success rate of obstacles
avoidance, average manipulability, and time efficiency.

Keywords: redundant manipulator; obstacle avoidance; reinforcement learning; null space

1. Introduction

Compared with traditional robotic manipulators, redundant manipulators have more
degrees of freedom (DOF) in joint space than task space, which possesses better flexibility
for complicated tasks. Therefore, redundant manipulators are widely used in fields such as
human-robot collaboration [1], medical surgery [2], and space exploration [3]. Redundant
manipulators often work in dynamic environments and often even share workspaces with
people. The manipulator may collide with people or other obstacles during the movement,
which requires the capability of real-time obstacle avoidance. In many tasks, such as
polishing and welding, the manipulator is obliged to track the desired trajectory under
complex physical constraints. As a result, manipulators need to achieve real-time obstacle
avoidance while completing given end-effector motion tasks.

Real-time or reactive obstacle avoidance of redundant manipulators has been exten-
sively investigated. However, most studies, such as the artificial potential field method [4,5],
mainly focused on obstacle avoidance in point-to-point tasks, where the end-effector mo-
tion is not specified. To meet the end-effector trajectory constraint while avoiding obstacles,
Jacobian pseudoinverse-based methods [6] have been introduced, in which the gradient
projection method (GPM) [7] is the most popularly adopted. The motion of a redundant
manipulator is usually divided into end-effector motion and self-motion. The gradient
projection method projects the optimization function of the self-motion gradient to the null
space of the Jacobian matrix, which can adjust the configuration to avoid obstacles without
affecting the end-effector motion. The optimization function usually consists of distance

Entropy 2022, 24, 279. https:/ /doi.org/10.3390/e24020279

https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020279
https://doi.org/10.3390/e24020279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7338-6045
https://doi.org/10.3390/e24020279
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020279?type=check_update&version=2

Entropy 2022, 24, 279

20f19

in different forms, such as distance from the key point to obstacles [8] and repulsive po-
tential field generated by obstacles [9]. However, the GPM may lead to joint singularity or
joint position limits while avoiding obstacles; thus the manipulator will fail to track the
desired trajectory. The damped least-squares method (DLS) [10] and weighted least-norm
methods (WLN) [11] are introduced to solve the problem. Combined with DSL and WLN,
Zhang [12] presented an improved weighted gradient projection method (IWGPM), in
which the manipulator can handle joint singularity and joint position limits, but it increases
the tracking error. To coordinate end-effector motion and self-motion, Liu [13] proposed a
weighted additional deviation velocity based on the gradient project method (GP-WADV).
However, coping with multiple constraints simultaneously is still hard for these methods.

Recently, many studies have applied learning-based methods to obstacle avoidance
path planning under multiple constraints. Qureshi [14] proposed a motion planning net-
work using deep learning to generate a collision-free path, but it cannot satisfy real-time
obstacle avoidance. Xu [15] formulated the obstacle avoidance problem as quadratic
programming (QP), then a deep recurrent neural network is established to solve the QP
problem online. Apart from deep learning (DL) methods, deep reinforcement learning
(DRL) is considered to be very promising for path planning due to its excellent learning
ability. Sangiovanni [16] proposed a real-time collision avoidance approach based on Nor-
malized Advantage Function for safe human-robot coexistence. However, redundancy is
not considered. Kumar [17] presented a method that used the Proximal Policy Optimization
algorithm to directly map task-space goals into joint-space commands. The method can
handle redundancy and joint limits automatically without manually specifying constraints,
but the end-effector tracking process is not considered. Hua [18] proposed a method to
avoid obstacles for redundant manipulators based on the Deep Deterministic Policy Gradi-
ent algorithm, but it is mainly applied in a narrow duct. However, learning-based methods
usually neglect the characteristics of redundant manipulators and can only be applied to
point-to-point collision-free path planning.

In summary, the existing methods cannot completely satisfy multiple constraints, such
as obstacle avoidance and singularity avoidance in trajectory tracking tasks. Motivated by
GPM and DRL, we propose a reactive obstacle avoidance method for redundant manipula-
tors. The method leverages the null space of GPM and the learning ability of DRL, which is
very suitable for obstacle avoidance of redundant manipulators under multiple constraints.
The major contributions of this paper are as follows:

(1) A general DRL framework for obstacle avoidance of redundant manipulators is estab-
lished, in which multiple constraints can be integrated easily.

(2) Animproved representation of the state is given in obstacle avoidance. The dimension
of state space is independent of the distribution of obstacles. Therefore, the learned
obstacle avoidance strategy has a good generalization.

(3) The self-motion of redundant manipulators is utilized to reduce the action space from
the entire joint space to the null space of the Jacobian matrix, which greatly improves
the learning efficiency of DRL.

(4) A novel reward function of reinforcement learning is designed to cover multiple
constraints. The manipulability of a manipulator is introduced, so the manipulator
can learn to avoid obstacles while keeping away from the joint singularity.

The rest of this paper is organized as follows: Section 2 defines the obstacle avoidance
problem of redundant manipulators. Section 3 describes our proposed reactive obstacle
avoidance method. Section 4 presents the experiments and results. Section 5 summarizes
the research work.

2. Problem Setup

This paper focuses on the situation in which a redundant manipulator works in a
populated industrial environment, possibly invaded by obstacles. A collision could occur
while the robot is reaching its target or executing a specific task. The manipulator aims to
avoid surrounding obstacles while tracking the desired trajectory.

Entropy 2022, 24, 279

30f19

We assume that obstacles will not appear on the desired trajectory of the manipulator;
otherwise, the manipulator needs to stop or re-specify the desired motion of the end-
effector. Multiple obstacles may appear in the workspace; the manipulator only needs to
react when the distance between the manipulator and the obstacle is less than a specified
safety distance, which can be called reactive obstacle avoidance. As shown in Figure 1, the
manipulator only needs to avoid Obstacle 2 when tracking the desired trajectory.

Safe Distance

Obstacle2

Obstaclel
Obstacle3

Task Path

Figure 1. Obstacle avoidance for a redundant manipulator.

When the dimension # in the joint space of the manipulator is greater than the dimen-
sion m in task space, the manipulator has r = n — m degrees of redundancy for the task.
The relationship between the movement of the joint space and the task space is given in
Equation (1):

x=]gq 1
where x € R™ is the end-effector velocity in task space, § € R" is the joint velocity in joint
space, and] € R™*" is the Jacobian matrix.

The inverse solution of redundant manipulators is not unique, which means that
infinite joint configurations can reach the same end-effector pose. According to the GPM,
the inverse solution can be expressed as Equation (2):

g=T"x+I-T)¢ @)

where Jt € R™"™ is the Moore—Penrose pseudo-inverse, I — | t1 e R represents the
null space of the Jacobian matrix, and ¢ € R" is an arbitrary joint velocity vector. The
first item is the minimum norm solution, which is used to track the end-effector trajectory.
The second item is the homogeneous general solution. It refers to self-motion, which can
meet other requirements, such as obstacle avoidance. Obviously, the first item can be
easily obtained based on the desired end-effector motion. This paper mainly studies the
optimization for the second item.

3. Method

According to Equation (2), the gradient projection method realizes obstacle avoidance
through defining ¢ in various forms. The manipulator may be singular or exceed joint
position limits while avoiding obstacles. We propose a DRL-based method to learn ¢ by a
neural network, which can handle multiple constraints automatically.

3.1. Reinforcement Learning

Reinforcement learning (RL) refers to the idea that the agent optimizes its action
through interaction with the environment. The RL framework is shown in Figure 2.

Entropy 2022, 24, 279

40f19

s N
ﬂ\ Agent /%

State Reward Action
s, z a
Lt R

' Environment «——
| .

t

N

t+1

Figure 2. Reinforcement learning framework.

At each time step ¢, the agent is in the state s; € S, then takes an action a; € A according
to a policy 7r(a|s) mapping from state to action. Each action affects the environment and
hence changes its state to s, 1. The agent receives a reward r;;1 € R at time step t+1. The
goal of the agent is to find the optimal policy 7* that maximizes the total expected reward
Gt with a discount factor . The expression of G; and 7t* are given in Equations (3) and (4),
respectively.

Gt =rep1 + 12 + P ras+ ... =) Voriiki ®3)
k=0
" = arg maxE ’)’krt+k+1] 4)
S =

To find the optimal policy, there are mainly three types of methods: valued-based,
policy-based, and actor-critic methods. In value-based methods, the optimal value function
is first estimated, and then the optimal policy is derived from the value function. A
typical method is Deep Q-Network (DON) [19], which uses a neural network to estimate
the optimal value function. In policy-based methods, the optimal policy is estimated
directly from the experiences of the agent. A typical method is REINFORCE [20], which
uses the policy gradient to find the optimal policy. The actor-critic methods combine
the characteristics of two types of methods, using the actor for policy estimation and the
critic for value function estimation. Typical methods are the Deep Deterministic Policy
Gradient (DDPG) [21], Trust Region Policy Optimization (TRPO) [22], Proximal Policy
Optimization (PPO) [23], Asynchronous Advantage Actor-Critic (A3C) [24], and Soft Actor-
Critic (SAC) [25]. In the field of robotics, the state space and action space are generally
continuous, and actor-critic methods are widely used.

For reinforcement learning problems, the design of state, action, and reward functions
are very important, which directly affect the training effect.

3.2. State Definition

For obstacle avoidance of the manipulator, the state should include the position
information of the manipulator and obstacles. Intuitive design for the stateis s = {g, x,},
where g € R" is the joint angles of the manipulator and x, € R is the position of the
obstacle. The definition of the state remains as a disadvantage because it needs to expand
the dimension when multiple obstacles exist. Therefore, the dimension of state space will
be relevant to the number of obstacles, leading the neural network trained to have no
generalization.

To solve the problem, we convert the position of obstacles to the distance vector from
each link to its closest obstacle. Specifically, let O be the set of points on the surface of all
obstacles, and let £; be the set of points of the ith link. Let 0; € O and [; € £; be the closest
points in the two sets, as given in Equation (5).

lloj = Ii|| = minmin|jo — I ()
eL;

Entropy 2022, 24,279 50f 19

The vector for each link connecting these closest points is defined as d; = 0; — I;. The
dimension of d; is 2 for planar manipulators or 3 for spatial manipulators. The closest
distance vector for a 3-DOF planar manipulator is shown in Figure 3.

/77 Y

Figure 3. The closet distance vector for each link.

Based on the closest distance vector, we redefine the state of the obstacle avoidance
as follows.

S:{q/d1/d2/'°'/dﬂ} (6)

The state definition realizes the general position representation of multiple obstacles.
When the number or distribution of obstacles in the environment changes, the state di-
mension remains unchanged. In addition, because the distance between each link and its
closest obstacle is recorded, it is helpful for the neural network to learn the coordination for
obstacle avoidance among the links of the manipulator.

3.3. Action Definition

The action definition cannot directly adopt the joint velocity of the configuration space,
which fails to satisfy the self-motion constraint. According to Equation (2), the action is
naturally defined in Equation (7).

a={¢})

Combing the action with the null space of the Jacobian matrix, the manipulator
can avoid obstacles by adjusting the joint angle while keeping the end-effector position
unchanged.

3.4. Reward Function Design

The design for the reward function is indeed important for reinforcement learning,
and the reward function should guide the manipulator to learn the optimal strategy. In
addition to avoiding obstacles, the manipulator should also consider other constraints,
such as joint singularity avoidance and joint position limits. The reward function contains
three items.

The obstacle avoidance item is defined as Equation (8). When the closest distance
between the manipulator and obstacles is less than the safe distance d;, a negative reward
will be generated.

To = Z:min(||c7li||/ds -1,0) (8)
i=1

The joint motion item is defined as Equation (9). The joint position increment of the
manipulator is required to be as small as possible.

ro=—|(I—=J"])al ©)

Entropy 2022, 24, 279

6 of 19

The joint singularity item is defined as Equation (10). Manipulability [26], introduced
by Yoshikawa, is a common index to measure singularity. A higher manipulability is good

for tracking variable trajectories.
rm =/ det(J]T) (10)

In summary, the reward function is designed as Equation (11).
r= A1, + Axrg + Agry, (11)

where A1, Ay, A3 represent the weight of each item, respectively. The corresponding values
are given in Section 4. It should be noticed that if a collision occurs or any joint exceeds its
position limits, then a negative reward » = —10 will be generated.

3.5. Learning for Reactive Obstacles Avoidance

Similar to the RL framework in Section 3.1, the reactive obstacle avoidance frame-
work is divided into two parts: agent and environment. The difference lies in where
the environment part has a null space module for reactive obstacle avoidance, as shown
in Figure 4.

Soft Actor Critic

Actor Optimizer
Update 6 T Policy Gradient Update ¢ l T Q Gradient

L% || LR, LN

Policy Network Network

: Soft Update

Target Entropy thge:)rk
W

Action State Reward

Environment

q X
) T & .
[~ - Obstacle

Null Space e Workspace

Figure 4. Framework of reactive obstacle avoidance.

3.5.1. SAC Algorithm

To avoid obstacles and maintain high manipulability during the movement, sufficient
exploration in the state space is encouraged under multiple constraints. SAC, one of the
state-of-the-art deep reinforcement learning algorithms, is widely used for its good explo-
ration. Therefore, SAC is very suitable for obstacle avoidance of redundant manipulators.

Entropy 2022, 24, 279

7 of 19

Instead of maximizing the discounted cumulative reward, SAC introduces the entropy
of the policy, as shown in Equation (12).

" = arg maxE
Tty

Y (r(st,ar) +0€H(7Te('|5t)))] (12)
t

where 6 represents parameters of the policy, « is the temperature parameter for regulating
the entropy term against the reward, and H denotes the entropy of the policy.

In SAC, the Q function Qg(s,a) and policy 71y are approximated by deep neural
networks, which can be learned with the stochastic gradient descent method. The Q
function can be learned by minimizing the soft Bellman residual, as shown in Equation (13).

Jol9) = E[(Qote0a) = r(s,00) = 1Es Vo)) | 13

where V;ﬁ(s) =Eg, [Q;ﬁ(s, a) —walog n@(a’s)} ,and Qg is a target Q network, whose param-

eter ¢ is obtained as an exponentially moving average of ¢. Moreover, the policy 7 can be
learned by minimizing the expected KL-divergence, as shown in Equation (14).

Jn(0) = Esp [Ear, [a1log mp(als) — Qy(s,a)]] (14)

where D is the replay buffer for storing experiences of the agent.
Finally, SAC also provides an automatic way to update the temperature parameter «,
as shown in Equation (15).

J(&) = Eamry[—alog mp(als) — aH] (15)

where H is a hyperparameter interpreted as the target entropy. In continuous action tasks,
such as most robotic tasks, H is usually defined as the negative of the action dimension.
The SAC algorithm is summarized in Algorithm 1.

Algorithm 1. Soft Actor-Critic (SAC)

1. Initialize policy network 6, Q network ¢1, ¢,, target Q network ¢; = ¢1,¢» = ¢»
2. Initialize replay buffer D = &
3. for each epoch do

4 for each environment step do

5. Sample a; from 71y(-|s), collect r¢, 5¢11
6. D = DU {st,at, 7t,5141}

7 end for

8 for each gradient step do

9. ¢i = ¢i — AQVIq(¢i), fori € {1,2}
10. 0=0—AV]r(0)

11. a=0a—AV](a)

12. ¢ = (1—1)¢p; +1;, fori € {1,2}
13. end for

14. end for

3.5.2. RL-Based Reactive Obstacle Avoidance Algorithm for Redundant Manipulators

The redundant manipulator senses the position of obstacles in real-time and moves
in the environment. Then the reward is calculated according to Equation (11) and is
transmitted to the SAC agent. The actor and critic networks update the parameters from
the experiences of the agent. The final action ¢ is output through the actor network.

Entropy 2022, 24, 279

8 of 19

Combined with the null space of the Jacobian matrix, the joint velocity of the self-motion
can be obtained as Equation (16).

av=U=T")¢ (16)

According to the expected motion xp of the manipulator end-effector, the minimum
norm solution is obtained as Equation (17).

ip = J"xp (17)
Finally, the joint velocity of the manipulator can be expressed as Equation (18):
9=14qp+ iy (18)

The joint angle updates through time integration, and then a new state can be gener-
ated. The process is repeated until the task of the manipulator is finished.

The RL-based reactive obstacle avoidance algorithm for redundant manipulators is
summarized in Algorithm 2.

Algorithm 2. Proposed Obstacle Avoidance Algorithm for Redundant Manipulators

1. Obtain state s = {q,dy,dp, ..., dn}
2. Calculate the minimum distance dpin = {||d1||, [|d2]], - -, l|dn || } min
3. while d i, < ds, do

4. ¢ = SAC.Actor(s)

5. g=T"ip+{I—-]])¢

6. if g is out of joint velocity range, then
7. g = scaled q

8. end if

9. g=q+q-At

10. s={q,dy,dy, ..., dn}

11 diin = Ll 2l e}

12. end while

3.5.3. Training Strategy

An intuitive training strategy is to randomly generate multiple obstacles in the envi-
ronment and let the manipulator interact with the environment to learn to avoid obstacles,
as shown in Figure 5a. However, this method will generate many cases where obstacles
are far from the safe distance. Thus, the manipulator does not need to respond, leading to
useless learning. To improve the learning efficiency of obstacle avoidance, obstacles can be
generated directly near the links of the manipulator; that is, in the initial state, obstacles
have invaded the safe distance of the manipulator. In addition, considering that in most
cases there is only one obstacle in the safety distance of the manipulator at a moment, only
one obstacle is generated during training, as shown in Figure 5b.

When the end-effector of the manipulator is fixed, there are infinite distributions of
obstacles. Except for learning obstacle avoidance in this situation, the RL agent should
adapt to changes in the end-effector position. Learning varying obstacle distribution and
end-effector positions simultaneously is very difficult. Therefore, we design a two-stage
learning strategy motivated by curriculum learning [27]. In Stage I, the manipulator starts
from a fixed configuration and learns to avoid obstacles in null space. In Stage II, at the
beginning of each training, the end-effector of the manipulator will move to a new random
position nearby. After the training of Stage I is completed, its network parameters are used
to initialize the network of Stage II.

Entropy 2022, 24, 279

90f19

(a) (b)

Figure 5. Methods to generate obstacles: (a) Obstacles randomly generated in the workspace; (b) An
obstacle generated in the safe distance.

4. Results and Discussion

To evaluate the performance of our method and the gradient projection method, two
scenarios have been carried out. All simulations were run on a computer with a 3.5 GHz
Intel(R) Xeon(R) E5-1620 v3 processor and 16 GB RAM.

4.1. System Description

The simulation environment is built on OpenAl gym [28]. It contains a 4-DOF planar
redundant manipulator and random obstacles. Each link length of the manipulator is 1 m.
The ranges of joint position and joint velocity are listed in Table 1.

Table 1. Joint range of the manipulator.

Joint Range Imin ©) Amax ©) qmin /s Qmax ls)
joint 1 -120 120 -20 20
joint 2 —160 160 -20 20
joint 3 —160 160 —20 20
joint 4 —160 160 -20 20

The manipulator executes tasks in the blue workspace (1.2 m x 1.6 m). The task
only constraints the end-effector position, so there are two redundant joints. When the
manipulator is tracking the desired trajectory, some obstacles in the environment may
invade the safe distance (0.2 m) of the manipulator. The shape of the obstacle can vary.
Considering that the distance between the manipulator link and its closest obstacle has
been calculated, the obstacle can be simplified as a circle. The 4-DOF planar manipulator is
shown in Figure 6.

A Base

/\ Desired Path Point
N @ Obstacles

O Safe distance

Nearest distance

|:| Workspace

Figure 6. The 4-DOF planar redundant manipulator.

Entropy 2022, 24, 279

10 of 19

4.2. Parameters Selection

The training of the SAC algorithm mainly has two types of parameters: network
structure parameters and training process parameters. The specific network of the SAC
algorithm is shown in Figure 7. The entire network is composed of fully connected layers,
and ReLU is used for the activation function.

State State . Action
N
Fc:256 Stack
RelU Fc:256
Fc:256 ; RelLU
RelU ? Fc:256
Mean Std dev ? RelLU
Gaussian . Fel
Tanh
Actor Network Critic Network

Figure 7. Network structure of the SAC.

The main parameters of the training process are shown in Table 2. The training process
only uses the CPU.

4.3. Training

According to the training strategy in Section 3.5.3, the training is divided into two
stages, as shown in Figure 8. In Stage I, the position of the end-effector is fixed. In Stage II,
at the beginning of each training episode, the end-effector of the manipulator will perform
a wandering with a radius of R=0.1 m.

At the beginning of each training episode, an obstacle is generated around the link
of the manipulator. The manipulator continuously learns to avoid obstacles during the
interaction with the environment until the closest distance between the manipulator and
the obstacle is out of the safe distance or the interaction number exceeds 400. A total of
50 epochs are trained, and each epoch contains 500 environment interactions. The green
curve in Figure 9 shows the total average return of evaluation during training for SAC. We
use five different random seeds, with each averaging 10 evaluation episodes after every
epoch. The solid curve corresponds to the mean and the shaded region to the minimum
and maximum returns over the five trials. After 20,000 steps of environment interaction
(~40 min), it converges and has a good performance.

We also trained a SAC agent that the action is directly defined as joint velocity in joint
space. Because there is no null space constraint, the end-effector of the manipulator cannot
remain unchanged while avoiding obstacles. As shown in Figure 9, the training curve in
blue cannot even converge, which implies the importance of the action definition.

Entropy 2022, 24, 279

11 0f 19

A T
\ J

q‘

Table 2. Parameters of training.

Parameter Value
Optimizer Adam
Learning rate 0.001
Discount factor 0.99
Polyak update factor 0.995
Entropy target —4
Replay buffer size 1 x 10°
Mini-batch size 100
Max episode length 400
M 1
Az 0.2
A3 0.05

(a) (b)

Figure 8. (a) Training in Stage I; (b) Training in Stage II.

| 1
(%) N
o (¢

1
~
a

-100

Episode Reward

‘a -125

L
o
o

— joint space
—— null space (ours)

=175

=200
0.0 0.5 1.0 1.5 2.0 2.5

Steps x10°
Figure 9. Learning curve of episode reward.

4.4. Simulation and Discussion

To validate our method, two different scenarios have been carried out in simulation
with the same 4-DOF planar manipulator. We compared the performance of our method in
these scenarios to the GPM [8].

Scenario I: A single obstacle invades the safe distance of the manipulator. This is the
most common scenario in which a worker usually approaches the manipulator.

Scenario II: Two obstacles invade the safe distance of the manipulator simultane-
ously. This scenario is more challenging, and the manipulator may be too constrained to
avoid obstacles.

Entropy 2022, 24, 279

12 0of 19

It should be noticed that many obstacles may appear in the workspace, but the
manipulator only needs to react to the obstacles that invade the safe distance.

e Case study in Scenario I

The experiments of Cases A and B are aimed at verifying the obstacle avoidance
capability when a single obstacle invades the safe distance of the manipulator.

(1) Case A: The manipulator is required to keep the end-effector stationary.

As shown in Figure 10a,b, the two methods start from the same initial configuration

Gini = [45°, —900,00,9O°]T and eventually succeed in avoiding obstacles. The red lines
indicate the initial configuration, while the blue lines represent the final configuration. The
color of the links changed from light to dark shows the whole process of avoiding obstacles.
The blue dotted line in Figure 10e represents the safe distance. According to Figure 10e,f,
our method avoids the obstacle in fewer steps and ends with a higher manipulability
than GPM.

(a) (b)
—— — @l
1007 0(%) 1001 ()
— as() | — @)
— q®) — qa(°)
501 50 A
o g
2 2
© 0 © 0
£ £
=3 o
=50 =50
- - —
—100 1 B — —100 1
0 3 6 9 12 15 18 21 0 2 4 6 8 10
Steps Steps
(c) (d)

25

Distance (cm)

— GPM

5 10
Steps

(e)

15 20

Manipulability

3.78

w
g
N

w
9
o

3.751

3.74 4

10 15 20

Steps

()

Figure 10. Case A study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method;
(c) Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest
distance to obstacle; (f) Comparison of manipulability.

Entropy 2022, 24,279 13 0of 19

The manipulability of the 4-DOF planar manipulator is shown in Figure 11. Because
the manipulability of a planar manipulator is independent of joint 1, we use g ~ g4 to
draw the figure. To show it more clearly, g, is sliced every 80° while g3 and g4 are sliced
every 5°. The distribution of manipulability is relatively complicated. To further compare
the performance of the two methods, the manipulability during the process is projected
to the plane g, X g3, where g1 = 45°,94 = 90° at the initial position. Figure 12 clearly
shows that our method can move in a direction with higher manipulability, which further
demonstrates the search capability in a complex space of our method.

5.55

4.44

333

2.22

111

0.00

150
4.65
w0 4.20
50 -3.75
- 3.30
S0
S - 2.85
—50 2.40
1.95
—-100
1.50
—-150
. . . ; ; 1.05
-150 -100 -50 0 50 100 150
g2(°)

Figure 12. Comparison of manipulability movement.

Entropy 2022, 24, 279

14 of 19

Joint angle(®)

—50

—100 -

(2) Case B: The manipulator is required to track a line.

As shown in Figure ??a,b, the two methods start from the same initial configuration
Gini = [45°,—90°,0°,90°]" and eventually succeed in tracking the line in green color.
Figure ??c,d indicates that the joint changes more smoothly in our method. In Figure ??e,
the manipulator applied in our method avoids the obstacle quickly, while the GPM struggles
in avoiding the obstacle and tracking the line simultaneously. According to Figure ??f, the
manipulability of the two methods both decreased due to more constraints in the tracking
task, but the decline of our method is smaller.

(a) (b)

aq1(°)

— q2°)
- T — 40O

— 94(°)

100 A

501

Joint angle(®)

—50

—100 4

Distance (cm)

20 40 60 80 100 120 140 160 180 0 15 30 45 60 75 90 105 120
Steps Steps
3.8 — GPM
—— Ours
3.6
Fd
3 3.4
S
E]
a
z
H
232
3.0
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Steps Steps
(e) (f)

Figure 13. Case B study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method;
(c) Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest
distance to obstacle; (f) Comparison of manipulability.

Entropy 2022, 24, 279

15 0f 19

e Case study in Scenario II

The experiments of Cases C and D are aimed at verifying the obstacle avoidance
capability when two obstacles invade the safe distance of the manipulator.

(1) Case C: The manipulator is required to keep the end-effector stationary.

As shown in Figure 14a,b, the two methods start from the same initial configuration.
Our method succeeds in avoiding obstacles while the GPM fails. According to Figure 14c,e,
the manipulator applied in the GPM oscillates while avoiding obstacles. The reason
for the oscillation is that the GPM only considers the influence of the closest invading
obstacle. When the manipulator encounters two obstacles, the closest invading obstacle
may constantly switch from one to another. The manipulator can be stuck in a dilemma
due to the adverse effects of the two obstacles, leading to obstacle avoidance failure. Our
method utilizes the distance between each link and its closest obstacle, which ordinates
the movement of each joint in null space, then the manipulator successfully avoids the
obstacles. In Figure 14f, the manipulability of the two methods both decreased due to more
constraints in obstacle avoidance, but the decline of our method is smaller than the GPM.

Joint angle(®)

Distance (cm)

100

! 100 A

504

50

Joint angle(°®)
o

3.70

L w
o o
Sy o

Manipulability

vl
0
o

3.50

0 20

40 60 80 100 0 20 40 60 80 100
Steps Steps

(e) ()

Figure 14. Case C study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method;
(c) Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest
distance to obstacle; (f) Comparison of manipulability.

Entropy 2022, 24, 279

16 of 19

(2) Case D: The manipulator is required to track a line.

Case D is the most challenging in all cases. The manipulator is required to track a line
when two obstacles invade the safe distance. As shown in Figure 15, although the two
methods all succeed in tracking the line in green color, joint oscillation exists in the process.
It should be noticed that our method has less oscillation (Figure 15¢,d) and maintains a
higher manipulability (Figure 15f) than the GPM.

Joint angle(®)

—100 -

— ql°)
— q0°)

_ a5()
— qa(®)

100

50 A

Joint angle(®)
o

—50

-100

0 15

30

45 60 75 920 105 120 0

15 30 45 60 75 90 105 120
Steps Steps
(c) (d)
25
—— GPM 4.0 —— GPM
—— Ours —— Ours
20 mmmmmmmmmmm e smpploc
3.9
E 15 2z
A S 3.8
o o
5 2
& g
o 101 =37
51 3.6
0 . : : . : - 3.5 ! . . : . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Steps Steps
(e) (f)

Figure 15. Case D study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method;
(c) Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest
distance to obstacle; (f) Comparison of manipulability.

e More comparisons

Except for the case study, we provide more general comparisons about the success
rate, average manipulability, and time efficiency. Considering that our method differs
mainly in null space motion from the GPM, we only evaluate the cases that the end-effector
keeps still.

According to the obstacle generation method in Section 4.3, a single obstacle and
two obstacles are randomly generated 1000 times near the manipulator links in the initial

configuration g;,; = [45°, —90°,0°,9O°]T. The success rate of obstacle avoidance, the

Entropy 2022, 24, 279

17 of 19

average manipulability 777 under successful obstacle avoidance and the time to calculate gy
in two scenarios are compared.

As shown in Table 3, the success rate of the two methods can both reach 100% in
Scenario I, but our method has a higher average manipulability while avoiding obstacles.
In Scenario II, the success rate of our method is 96.8%, which is nearly 20% higher than
the GPM, and our method still achieves a higher average manipulability. One reason for
the failure of obstacle avoidance is that the manipulator cannot avoid obstacles only in the
null space due to over-constraint, which can be seen in Case C above. In addition, in the
harder, Scenario 11, the average manipulability of the two methods decreased. The result
can be interpreted that more obstacles that invade the safe distance will demand more
requirements for obstacles avoidance, leading to less optimization for manipulability. As
for time efficiency, our method calculates null space motion faster because it only needs a
forward propagation of neural network in a reaction for obstacle avoidance. Moreover, our
method saves ~22% more time in Scenario I and ~33% more time in Scenario II than GPM,
which indicates that the calculation time of our method grows slower than the GPM when
the scenario becomes more complex.

Table 3. Comparison of the GPM and our method.

Comparison GPM Ours
Success rate in Scenario I 100% 100%
Success rate in Scenario II 77 4% 96.8%
m in Scenario I 3.78 3.95
m in Scenario II 3.63 3.72
Time to calculate g, in Scenario I 1.484 ms 1.155 ms
Time to calculate g, in Scenario II 2.048 ms 1.372 ms

5. Conclusions

In this paper, we propose a reactive obstacle avoidance method for redundant manip-
ulators based on DRL. Except for obstacle avoidance, the proposed method can handle
joint singularity and joint position limits automatically while tracking the desired task
trajectory. We establish a general DRL framework for obstacle avoidance of redundant
manipulators, in which a null space module is introduced, and the SAC algorithm is used
to train. An improved state definition is used to represent multiple obstacles. The motion
in null space is defined as the action. A novel reward function is designed to meet multiple
constraints. The simulation results show the effectiveness of our method. Compared with
the gradient projection method, our method outperforms in the success rate of obstacle
avoidance, average manipulability, and time efficiency. When two obstacles invade the safe
distance of the manipulator simultaneously, our method achieves a 96.8% success rate of
obstacles avoidance, which is nearly 20% higher than the gradient projection method.

Further research can be conducted based on this paper. The joint speed and obstacles
speed can be considered so that the manipulator can avoid obstacles in advance. Except for
the speed level, dynamic constraints of motion can also be considered.

Author Contributions: Conceptualization, Y.S., Q.J. and G.C.; methodology, Y.S.; software, Y.S.;
validation, Z.H. and R.W.; formal analysis, Y.S.; investigation, Y.S.; resources, G.C.; data curation,
Y.S.; writing—original draft preparation, Y.S.; writing—review and editing,].F.; visualization, Y.S.;
supervision, Q.J.; project administration, G.C.; funding acquisition, Q.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Major Project of the New Generation of Artificial Intel-
ligence of China (No. 2018AAA0102904) and the National Natural Science Foundation of China
(No. 51975059).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Entropy 2022, 24,279 18 of 19

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hjorth, S.; Lachner,]J.; Stramigioli, S.; Madsen, O.; Chrysostomou, D. An Energy-Based Approach for the Integration of
Collaborative Redundant Robots in Restricted Work Environments. In Proceedings of the 2020 IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October-24 January 2020; pp. 7152-7158. [CrossRef]

Khan, A.H.; Li, S.; Cao, X. Tracking Control of Redundant Manipulator under Active Remote Center-of-Motion Constraints: An
RNN-Based Metaheuristic Approach. Sci. China Inf. Sci. 2021, 64, 132203. [CrossRef]

Chen, G.; Yuan, B,; Jia, Q.; Sun, H.; Guo, W. Failure Tolerance Strategy of Space Manipulator for Large Load Carrying Tasks. Acta
Astronaut. 2018, 148, 186-204. [CrossRef]

Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90-98. [CrossRef]
Wang, W.; Zhu, M.; Wang, X.; He, S.; He,].; Xu, Z. An Improved Artificial Potential Field Method of Trajectory Planning and
Obstacle Avoidance for Redundant Manipulators. Int.]. Adv. Robot. Syst. 2018, 15, 1729881418799562. [CrossRef]

Whitney, D.E. Resolved Motion Rate Control of Manipulators and Human Prostheses. IEEE Trans. Man-Mach. Syst. 1969, 10,
47-53. [CrossRef]

Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms. IEEE Trans. Syst. Man Cybern.
1977, 7, 868-871. [CrossRef]

Zlajpah, L.; Petri¢, T. Obstacle Avoidance for Redundant Manipulators as Control Problem. In Serial and Parallel Robot Manipulators;
Kucuk, S., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 11.

Wan, J.; Yao, J.; Zhang, L.; Wu, H. A Weighted Gradient Projection Method for Inverse Kinematics of Redundant Manipulators
Considering Multiple Performance Criteria. Stroj. Vestn. J. Mech. Eng. 2018, 64, 475-487. [CrossRef]

Di Vito, D.; Natale, C.; Antonelli, G. A Comparison of Damped Least Squares Algorithms for Inverse Kinematics of Robot
Manipulators This Work Was Supported by the European Community through TheprojectsROBUST(H2020-690416),EuRoC(FP7-
608849), DexROV (H2020-635491) and AEROARMS (H2020-644271). IFAC-Pap. 2017, 50, 6869—6874. [CrossRef]

Xiang, J.; Zhong, C.; Wei, W. General-Weighted Least-Norm Control for Redundant Manipulators. IEEE Trans. Robot. 2010, 26,
660-669. [CrossRef]

Zhang, X.; Fan, B.; Wang, C.; Cheng, X. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant
Surgical Manipulators. Sensors 2021, 21, 7362. [CrossRef] [PubMed]

Liu, J.; Tong, Y.; Ju, Z.; Liu, Y. Novel Method of Obstacle Avoidance Planning for Redundant Sliding Manipulators. IEEE Access
2020, 8, 78608-78621. [CrossRef]

Qureshi, A.H.; Miao, Y.; Simeonov, A.; Yip, M.C. Motion Planning Networks: Bridging the Gap Between Learning-Based and
Classical Motion Planners. IEEE Trans. Robot. 2021, 37, 48-66. [CrossRef]

Xu, Z.; Zhou, X.; Li, S. Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators. Front.
Neurorobot. 2019, 13, 47. [CrossRef] [PubMed]

Sangiovanni, B.; Rendiniello, A.; Incremona, G.P; Ferrara, A.; Piastra, M. Deep Reinforcement Learning for Collision Avoidance
of Robotic Manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12-15 June 2018;
pp. 2063-2068. [CrossRef]

Kumar, V.; Hoeller, D.; Sundaralingam, B.; Tremblay, J.; Birchfield, S. Joint Space Control via Deep Reinforcement Learning. In
Proceedings of the 2021 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September-1 October 2021; pp. 3619-3626. [CrossRef]

Hua, X.; Wang, G.; Xu, J.; Chen, K. Reinforcement Learning-Based Collision-Free Path Planner for Redundant Robot in Narrow
Duct. J. Intell. Manuf. 2021, 32, 471-482. [CrossRef]

Mnih, V.,; Kavukcuoglu, K; Silver, D.; Rusu, A.A.; Veness,].; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A K,;
Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529-533. [CrossRef]
[PubMed]

Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function
Approximation. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November—4
December 1999; pp. 1057-1063.

Lillicrap, T.P; Hunt,].J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep
Reinforcement Learning. arXiv 2019, arXiv:1509.02971.

Schulman, J.; Levine, S.; Abbeel, P; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 7-9 July 2015; pp. 1889-1897.

Schulman, J.; Wolski, F; Dhariwal, P; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

Mnih, V.; Badia, A.P.,; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep
Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19-24
June 2016; pp. 1928-1937.

http://doi.org/10.1109/IROS45743.2020.9341561
http://doi.org/10.1007/s11432-019-2735-6
http://doi.org/10.1016/j.actaastro.2018.04.052
http://doi.org/10.1177/027836498600500106
http://doi.org/10.1177/1729881418799562
http://doi.org/10.1109/TMMS.1969.299896
http://doi.org/10.1109/TSMC.1977.4309644
http://doi.org/10.5545/sv-jme.2017.5182
http://doi.org/10.1016/j.ifacol.2017.08.1209
http://doi.org/10.1109/TRO.2010.2050655
http://doi.org/10.3390/s21217362
http://www.ncbi.nlm.nih.gov/pubmed/34770667
http://doi.org/10.1109/ACCESS.2020.2990555
http://doi.org/10.1109/TRO.2020.3006716
http://doi.org/10.3389/fnbot.2019.00047
http://www.ncbi.nlm.nih.gov/pubmed/31333442
http://doi.org/10.23919/ECC.2018.8550363
http://doi.org/10.1109/IROS51168.2021.9636477
http://doi.org/10.1007/s10845-020-01582-1
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Entropy 2022, 24,279 19 of 19

25. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10-15 July
2018; pp. 1861-1870.

26. Yoshikawa, T. Manipulability of Robotic Mechanisms. Int. |. Robot. Res. 1985, 4, 3-9. [CrossRef]

27. Luo, S.; Kasaei, H.; Schomaker, L. Accelerating Reinforcement Learning for Reaching Using Continuous Curriculum Learning. In
Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19-24 July 2020; pp. 1-8.
[CrossRef]

28. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAl Gym. arXiv 2016,
arXiv:1606.01540.

http://doi.org/10.1177/027836498500400201
http://doi.org/10.1109/IJCNN48605.2020.9207427

	Introduction
	Problem Setup
	Method
	Reinforcement Learning
	State Definition
	Action Definition
	Reward Function Design
	Learning for Reactive Obstacles Avoidance
	SAC Algorithm
	RL-Based Reactive Obstacle Avoidance Algorithm for Redundant Manipulators
	Training Strategy

	Results and Discussion
	System Description
	Parameters Selection
	Training
	Simulation and Discussion

	Conclusions
	References

