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Abstract: A multi-exposure fused (MEF) image is generated by multiple images with different expo-
sure levels, but the transformation process will inevitably introduce various distortions. Therefore,
it is worth discussing how to evaluate the visual quality of MEF images. This paper proposes a
new blind quality assessment method for MEF images by considering their characteristics, and it is
dubbed as BMEFIQA. More specifically, multiple features that represent different image attributes
are extracted to perceive the various distortions of MEF images. Among them, structural, naturalness,
and colorfulness features are utilized to describe the phenomena of structure destruction, unnatural
presentation, and color distortion, respectively. All the captured features constitute a final feature
vector for quality regression via random forest. Experimental results on a publicly available database
show the superiority of the proposed BMEFIQA method to several blind quality assessment methods.

Keywords: blind quality assessment; multi-exposure fused images; structure; naturalness;
colorfulness

1. Introduction

In view of the increasing development of image processing technologies, it has become
more feasible to help humans perceive the real world in high-quality images. For example,
multi-exposure fusion (MEF) and high dynamic range (HDR) imaging both belong to image
enhancement technology, which can provide excellent detail information and an ideal,
natural appearance [1]. HDR imaging technology requires additional processing, such as
generation, image conversion to a low dynamic range image, and visualization on common
displays. Unfortunately, all of these procedures can produce artifacts that affect the quality
of HDR images [2]. Multi-exposure fusion technology is relatively simple, it does not need
intermediate operations, and it has also been applied in some practical fields [3]. However,
the unique process of integration from multiple different exposure images into one ultimate
image will result in distortion due to the fusion weighting assignment. Obviously, the
distortion will influence human perception and result in different human opinion scores.
Hence, to measure the distortion degree objectively, it is necessary to develop a quality
assessment method for MEF images.

In recent years, many researchers have developed some image quality assessment
(IQA) methods [4–14]. Those methods can be categorized into full-reference (FR) methods,
reduced-reference (RR) methods, and no-reference (NR) methods. The FR and RR methods
both need original image information to make a comparison; however, it is opposite to the
truth that there is never a pre-defined reference in the real application. Therefore, it is more
urgent to design NR methods for IQA tasks.

Based on the considerations of the inherent characteristics of MEF images, a new
NR-IQA method is proposed in this paper to predict the quality of MEF images more
accurately, and it is named BMEFIQA.

The main contributions are detailed as follows:
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(1) Inspired by the various characteristics of MEF images, structural, naturalness, and col-
orfulness features are extracted from different standpoints to perceive their distortion.

(2) On account of structure loss produced by abnormal exposure, the exposure map is
weighted to the gradient similarity to detect structural distortion.

(3) The experimental results demonstrate that the proposed method is competent for
MEF images and superior to several NR-IQA methods.

The remainder of this paper is constructed as follows: In Section 2, related works
are presented. In Section 3, the proposed BMEFIQA method is described in detail. The
experimental results and analysis based on a public MEF image database are presented in
Section 4. Finally, the conclusion is drawn in Section 5.

2. Related Works

Currently, there are many efficient NR-IQA methods for ordinary images. For instance,
Moorthy et al. [5] proposed an NR-IQA method named the distortion identification-based
image verity and integrity evaluation (DIIVINE), which is based on natural scene statistics
(NSSs). In [6], Saad et al. utilized an NSS model of discrete cosine transform coefficients to
design the IQA method, which is referred to as BLINDS-II. In [7], Mittal et al. extracted
features from the empirical distribution of locally normalized luminance and the products
of locally normalized luminance in the spatial domain; the method is named BRISQUE.
Liu et al. [8] constructed the CurveletQA method by utilizing curvelet transform to extract
a set of statistical features. Xue et al. [9] combined the gradient magnitude map with
the Laplacian of Gaussian response to perceive the structural information of images and
showed highly competitive performance, dubbed as GradLog. Fang et al. [10] employed
the degree of deviation from NSS models to represent the unnatural character of contrast-
distorted images, which is termed ContrastQA. Li et al. [11] proposed an NR-IQA method
based on structural degradation, which is described by the gradient-weighted histogram
of local binary pattern (LBP) calculation on the gradient map (GWH-GLBP). Liu et al. [12]
developed the oriented gradient (OG) IQA method by studying the quality relevance of
the relative gradient orientation. Gu et al. [13] combined local and global considerations to
design an NR-IQA method called NIQMC. Oszust [14] captured the information carried
by image derivatives of different orders by local features and used it for image quality
prediction. Zhang et al. [15] integrated the features of natural image statistics and created
a multivariate Gaussian model of image patches for quality assessment. Xu et al. [16]
proposed an NR-IQA method based on high-order statistics aggregation, which needs a
small codebook.

Except for the above IQA methods for ordinary images, some studies have also con-
tributed to predicting the quality of tone-mapped images. For example, Gu et al. [17]
devised an effective blind tone-mapped quality index (BTMQI) via the analysis of informa-
tion, naturalness, and structure. Kundu et al. [18] derived the HDR image gradient-based
evaluator (HIGRADE) based on standard measurements of the bandpass and newly con-
ceived differential NSS. Although the above IQA methods for ordinary and tone-mapped
images showed good performance, they are not appropriate for the prediction of the quality
of MEF images, as their distortion type is distinguished from the above two types of images.

For MEF images, there also exist some IQA methods, which belong to FR methods. For
instance, Zheng et al. [19] proposed a quantitative metric called the ratio of spatial frequency
error; this is derived from the definition of spatial frequency, which reflects local intensity
variation. Ma et al. [20] proposed an objective method based on the principle of structural
similarity and a novel measure of patch structural consistency. Xing et al. [21] combined
contrast information with structural similarity and saturation similarity to predict the
quality of an MEF image. Fang et al. [22] utilized a pyramid subband contrast preservation
scheme and an information theory-adaptive pooling strategy to establish a quality assess-
ment method for MEF images of both static and dynamic scenes. Deng et al. [23] designed a
method by extracting color, texture, and structural features. Martinez et al. [24] utilized the
multi-scale scheme to compute structural similarities. Considering the limitation of such FR
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methods, which need reference information, an NR method was proposed in our previous
work [25]. However, there is room for improvement. Therefore, to predict the quality
of an MEF image more accurately, its characteristics should be taken into consideration
more comprehensively.

3. The Proposed BMEFIQA Method

Since MEF images are fused by multiple images with different exposure levels [26],
the weight assignment process will introduce some artifacts, such as detail loss, structural
degradation, unnaturalness, and color distortion. Figure 1 gives a vivid presentation of
MEF images generated by three different MEF algorithms, which show the different visual
effects. Figure 1a, generated by Merten’s algorithm [27], has the highest mean opinion
score (MOS) and is the best quality. The detailed information is well preserved, except for
the over-exposed part (i.e., outside the entrance of the cave). Moreover, it also has much
more abundant color information than the others, and it seems more natural. At a first
glance of Figure 1b, which is generated by Raman’s algorithm [28], the blackened scene
is the initial perception of humans. In fact, the brightness decline also leads to detail and
color information loss. The MEF image generated by local energy weighting [29] shows
proper brightness, but it loses the original naturalness, and it also introduces some artifacts
around the wall and stones. Therefore, structural, naturalness, and color information are
the main factors that influence the visual quality of MEF images.

Figure 1. An example of multi-exposure fusion images generated by three MEF algorithms. (a) MEF
image generated by Merten’s algorithm [27] (MOS = 7.6957); (b) MEF image generated by Raman’s al-
gorithm [28] (MOS = 4.2609); (c) MEF image generated by local energy weighting [29] (MOS = 4.3043).

To fill the gap of quality prediction for MEF images under the condition with a lack of
reference information, a novel method named BMEFIQA is proposed in this paper, which
considers three factors (i.e., structure, naturalness, and colorfulness). Figure 2 presents the
pipeline of the proposed BMEFIQA method. Specifically, three types of quality-sensitive
features corresponding to the above three factors are extracted to generate overall feature
vectors. Then, random forest is utilized to train a quality regression model, thus aggregating
all excavated features. More details are given in the following subsections.

3.1. Structural Features

Structural information usually carries the basic visual content of a scene, and the
human visual system (HVS) has strong adaptability to extract the structure for visual
perception [30]. For an MEF image, distortion introduction will always destroy its structural
information, such as abnormal exposure (i.e., over-exposure or under-exposure). Therefore,
the visual quality of an MEF image can be determined by measuring whether the structural
information is damaged or not, especially for over-exposed and under-exposed regions.
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Figure 2. The framework of the proposed BMEFIQA method.

First, the exposure of the MEF image needs to be measured to distinguish the re-
gions of over-exposure and under-exposure. Given MEF image I and converting it into
a gray-scale one, its corresponding exposure map EI can be calculated by measuring the
distance between its normalized pixel intensity and the constant 0.5. Specifically, when
the normalized pixel intensity is close to 0 or 1, the corresponding pixel is regarded as
under-exposed or over-exposed. Therefore, EI can be defined as

EI = 1− exp

(
Iy − 0.5

)2

2τ2 (1)

where Iy is the normalized pixel intensity of the gray-scaled MEF image I, and τ is the
standard variance of the Gaussian function, which is set to 0.2 according to previous
experience [31].

Figure 3 shows three exposure maps of the MEF images in Figure 1. By comparing with
Figure 1, it can be observed that the brighter regions are the under-exposed or over-exposed
regions, and the fainter regions represent the normal exposed regions in Figure 3.

Figure 3. (a–c) The corresponding exposure maps of the MEF images in Figure 1.

As an effective structural information feature, the gradient is utilized to describe the
structure loss phenomenon. To further measure the influence of abnormal exposure on
the acquisition of gradient information, some fake MEF images are obtained by darkening
and brightening the real MEF images, which are denoted as If. They can be produced
as follows:

If = Ir · C (2)
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where C = c, c∈{1/3.5, 1/5, 1/6.5, 3.5, 5, 6.5}, and Ir represents the gray-scaled MEF image
I. After that, six fake MEF images can be generated.

Then, gradient maps G of such fake MEF images are calculated as

G =

√
(If ⊗ px)

2 +
(
If ⊗ py

)2 (3)

where px and py are the Prewitt filters, along with the horizontal and vertical directions,
respectively. ⊗ indicates the convolution operator. Additionally, the gradient map of the
real MEF image I is also obtained by (3), which is denoted as GI.

Then, the gradient similarities between I and the generated six fake MEF images are
calculated. Let Gs be the similarities of G and GI, which are calculated to quantify the
influence of abnormal exposure. They are defined as

Gs =
2G ·GI + C1

G2 + GI
2 + C1

(4)

where C1 is a constant to avoid zero denominators, which is set to 10−8.
Since the distortions of the over-exposed and the under-exposed regions are easier for

the human eye to perceive, combining the gradient similarities Gs with the exposure map
EI can make the distortion perception more accurate. Therefore, gradient combined with
exposure weighting is defined as

Ge =

∑
k

∑
f

Gs · EI

∑
k

∑
f

EI
(5)

where k and f are the indexes of the horizontal and vertical pixels.
As the same number of fake MEF images, after combining six gradient similarity maps

with EI, the obtained Ge is a 6-dimensional feature that describes the structure loss of the
MEF image.

From the statistical perspective, the NSS model is utilized in the gradient domain to
represent the structural variation in the MEF images. Specifically, the gradient map GI is
processed by the local mean subtraction and divisive normalization to obtain the mean
subtracted contrast normalized (MSCN) coefficients [7], which are expressed by

ĜI(i, j) =
GI(i, j)− µ(i, j)

δ(i, j) + 1
(6)

where ĜI(i, j) are the MSCN coefficients of GI at the position of (i, j). µ(i, j) and δ(i, j) are
the local mean and standard deviation of GI(i, j), respectively.

Different degrees of structural distortion will inevitably affect the distribution of the
MSCN coefficients of GI. As the distribution has a Gaussian-like appearance, a gener-
alized Gaussian distribution (GGD) is utilized to match the MSCN coefficients, and the
mathematical expression is given by

f (l, α, σ2) =
α

2βΓ(1/α)
· e−(|l|/β)α

(7)

where β = σ
√

Γ(1/α)Γ(3/α), Γ(·) represents the gamma function. The parameters α and
σ2 represent the shape and variance of the Gaussian distribution, respectively. Therefore,
the two parameters α and σ2 are taken as the 2-dimensional global structural features.

In addition, the pairwise products of neighboring MSCN coefficients are also calculated
to capture the relationship of the neighboring pixels. The MSCN coefficients are processed
in four directions, and this process is expressed as
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H(i, j) = ĜI(i, j)ĜI(i, j + 1)
V(i, j) = ĜI(i, j)ĜI(i + 1, j)
D1(i, j) = ĜI(i, j)ĜI(i + 1, j + 1)
D2(i, j) = ĜI(i, j)ĜI(i + 1, j− 1)

(8)

where H(i, j), V(i, j), D1(i, j), and D2(i, j) are the results processed along with the horizontal,
vertical, main diagonal, and sub-diagonal directions, respectively.

Then, an asymmetric generalized Gaussian distribution (AGGD) is utilized to fit each
pairwise product, which is defined as

f
(

k; v, ω2
l , ω2

r

)
=


v

(βl+βr)Γ(v−1)
exp

(
−
(
−k
βl

)v)
, k < 0

v
(βl+βr)Γ(v−1)

exp
(
−
(
−k
βr

)v)
, k ≥ 0

(9)

ϕ = (βr − βl)
Γ(2/v)
Γ(1/v)

(10)

where βl = ωl
√

Γ(v−1)/Γ(v−3) and βr = ωr
√

Γ(v−1)/Γ(v−3).
The above parameters v, ϕ, ω2

l , and ω2
r constitute the compensation features that

perceive the global structural distortion. As a result, the compensation features calculated
in the four directions form a 16-dimensional feature vector.

However, the phenomena of structure loss also contain the loss of detailed information,
which can be measured via entropy. Block entropy is calculated to perceive the local
detail information variation, which is denoted as eb. After calculating the local entropy in
8 × 8 blocks of each MEF image, the entropy calculation is used to measure the distribution
of the obtained local entropy, which can be expressed as

e = −
m

∑
n=1

p(eb(n)) log2 p(eb(n)) (11)

where m is the block number of each MEF image, and p(·) is the probability density of the
m-th block entropy value.

Furthermore, the mean value and standard deviation of the block entropy are also
calculated to measure the overall detail loss, which are denoted as em and es, respectively.
Finally, e, em, and es are integrated to form another set of 3-dimensional structural features.

3.2. Naturalness Features

Generally, a high-quality MEF image has a natural-like appearance. MEF algorithms
may disrupt the natural statistical regularities in the spatial domain. From a global per-
spective, the naturalness can be quantified via the NSS-based model. An MEF image, I,
is converted to a gray-scale image, Ir, and then the MSCN coefficients of Ir are calculated
according to Equation (6). Moreover, the GGD model defined in Equation (7) is utilized
to capture the statistical property, and the shape and variance parameters are taken as the
first group of global naturalness features.

From another perspective, naturalness is also affected by the overall brightness and
contrast, which is seriously influenced by under-exposed and over-exposed conditions. It
has been demonstrated that the mean and standard deviation values of the image intensity
can represent the brightness and contrast of an image [32]; the entropy can also describe the
distortion of brightness. Therefore, these moment features (mean and standard deviation)
and the entropy feature are applied to build NSS models to capture the naturalness variation
undergoing the distortions. Among them, Gaussian probability density functions are used
to fit the mean and standard deviation. The specific definitions are as follows:

da =
1√

2πξa
exp

[
− (a− τa)

2

2ξ2
a

]
(12)
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ds =
1√

2πξs
exp

[
− (s− τs)

2

2ξ2
s

]
(13)

where a and s are the mean and standard deviation values, respectively. da and ds
are the possibilities of the MEF image being natural when a and s are given. The pa-
rameters in Equations (12) and (13) are set to ξa = 26.063, τa = 118.559, ξs = 12.858,
and τs = 57.274, respectively.

In addition, the entropy feature is fitted by the extreme value probability density
function, which is defined as

do =
1
ξo

exp
[

o− τo

ξo
− exp

[
o− τo

ξo

]]
(14)

where o is the entropy value of Ir. do is the possibility of the MEF image being natural when
o is given. ξo and τo are the parameters that are set to 0.258 and 7.54, respectively.

As a result, da, ds, and do form the second group of global naturalness features. Com-
bined with the first group of features, 5-dimensional features are used to describe the
naturalness of the MEF image.

3.3. Colorfulness Features

Abundant color information is important for an outstanding MEF image, as it illus-
trates that the image has proper color saturation and realistic scene chroma. The weight
assignment processes in the different MEF algorithms may emphasize different parts of the
image content, as different humans do not always focus on the same things. As Figure 1
shows, different emphasis brings different distortion. Nevertheless, the color distortion
measure is necessary and right. In previous work, it was proved that the color perception of
human vision is mainly processed in the opponent color space [33]. Therefore, the opponent
color space is obtained by the red–green–blue (RGB) color channels in the RGB color space.
The transformation processes are expressed as T1 = R − G, T2 = (R + G)/2 − B; T1 is the
obtained red–green channel, and T2 is the obtained yellow–blue channel.

A combination of the two transformed channels is utilized to represent the colorfulness
of the MEF image. The specific definition is as follows:

Ct = log
(

γ2
T1

/
∣∣aT1

∣∣0.2
)
· log

(
γ2

T2
/
∣∣aT2

∣∣0.2
)

(15)

where γ2
T1

and γ2
T2

denote the variances in T1 and T2, respectively. aT1 and aT2 denote the
mean value of T1 and T2, respectively.

In Figure 1, it can be seen that over-exposure and under-exposure will both affect
the representation of excellent color with a decrease in contrast. Therefore, the contrast
energies are calculated in the opponent color space to perceive the color distortion. Let Ce
be the calculated contrast energy; it is obtained by

Ce =
ε · ρ

(
Ig
)

ρ
(
Ig
)
+ ε · χ

− ϑg (16)

where g ∈ {T1, T2}; IT1 and IT2 denote the red–green and yellow–blue channels of I,

respectively. ρ
(
Ig
)
=
√(

Ig ⊗ px
)2

+
(
Ig ⊗ py

)2; χ is the contrast gain to correct and
normalize all filter responses, ε is the maximum value of ρ

(
Ig
)
, and ϑg is the noise threshold.

χ and ϑg are fixed at the same settings as in [34].
Finally, the mean value of Ce is calculated as another feature except for Ct. In fact,

according to the opponent color space, two channels can be used to perform the contrast
energy calculation process, and 2-dimensional features are obtained.

Moreover, to obtain a more complete sense of color distortion, the NSS model is also
executed in the two opponent color channels. Specifically, T1 and T2 are processed with
the MSCN coefficient calculation defined in Equation (6) and the GGD model defined
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in Equation (7), respectively. The obtained shape and variance parameters constitute
4-dimensional complementary color features.

3.4. Feature Aggregation and Quality Regression

So far, 39-dimensional features are extracted via structure, naturalness, and color-
fulness analyses, denoted as SF, NF, and CF, respectively. According to the obtained
quality-sensitive features, the mapping relationship between the features and human
subjective scores should be learned to achieve the purpose of quality prediction. As an
effective regression manner, random forest (RF) is used to pool the high-dimensional fea-
tures to indicate the quality of the MEF image. The specific expression can be represented
as follows:

Q = η(F) (17)

where Q is the final quality score of the MEF image; η(·) denotes the mapping function by
RF; and F denotes the final all-feature vectors, F = {SF, NF, CF}.

4. Experiment Results
4.1. Experimental Protocol

In the experiment, an open MEF subjective assessment database [35] is selected to
evaluate the performance of the proposed BMEFIQA method. The database consists of
136 MEF images, which portray different scenarios. The corresponding perceptual quality
score is subjectively tested by numerous observers, that is, human subjective scores, and the
MOS values of each MEF image are obtained from them. These MEF images are generated
by distinct types of MEF algorithms, including local energy weighted linear combination,
global energy weighted linear combination, Li12 [36], Raman09 [28], ShutaoLi12 [37],
Mertens07 [27], Gu12 [29], and ShutaoLi13 [38]. Specifically, 136 MEF images are derived
from 17 source multi-exposure images. The detailed contents are reported in Table 1 and
Figure 4.

Table 1. The details of the MEF image database [35].

No. Source Sequences Size Image Source

1 Balloons 339 × 512 × 9 Erik Reinhard
2 Belgium house 512 × 384 × 9 Dani Lischinski
3 Lamp1 512 × 384 × 15 Martin Cadik
4 Candle 512 × 364 × 10 HDR Projects
5 Cave 512 × 384 × 4 Bartlomiej Okonek
6 Chinese garden 512 × 340 × 3 Bartlomiej Okonek
7 Farmhouse 512 × 341 × 3 HDR Projects
8 House 512 × 340 × 4 Tom Mertens
9 Kluki 512 × 341 × 3 Bartlomiej Okonek

10 Lamp2 512 × 342 × 6 HDR Projects
11 Landscape 512 × 341 × 3 HDRsoft
12 Lighthouse 512 × 340 × 3 HDRsoft
13 Madison capitol 512 × 384 × 30 Chaman Singh Verma
14 Memorial 341 × 512 × 16 Paul Debevec
15 Office 512 × 340 × 6 Matlab
16 Tower 341 × 512 × 3 Jacques Joffre
17 Venice 512 × 341 × 3 HDRsoft
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Figure 4. Source images in the benchmark MEF database [35].

Three standard performance evaluation criteria are utilized to evaluate the perfor-
mance of the proposed method, and they include the Person linear correlation coefficient
(PLCC), Spearman’s rank-order correlation coefficient (SROCC), and root-mean-square
error (RMSE). Specifically, PLCC, SROCC, and RMSE are used to evaluate the prediction
accuracy, prediction monotonicity, and prediction error, respectively. Moreover, before
the calculation of the PLCC value, a five-parameter logistic regression is used to perform
nonlinear mapping between the predicted score and the subjective quality scores; the
definition is given by

Q f = λ1

[
1
2
− 1

exp(λ2(Q− λ3))

]
+ λ4Q + λ5 (18)

where Qf is the fitted score, and λ1, λ2, λ3, λ4, and λ5 are the fitting parameters, which
can be obtained via the nlinfit function in MATLAB software. The initial values of these
five fitting parameters are guided by the video quality expert group (VQEG) [39]. The
final values are determined by nonlinear least-squares optimization between the subjective
quality scores and Qf. When calculating the PLCC value, the input (i.e., predicted score Q)
should be replaced by Qf.

An excellent quality assessment method should always have higher PLCC and SROCC
values and a lower RMSE value. To obtain a robust criterion, we employ 17-fold cross-
validation to test the proposed BMEFIQA method. Specifically, the MEF image database is
divided into 17 subsets, 16 of which are used for RF model training, and the remaining are
used for testing. Each subset contains MEF images belonging to the same scene. Finally,
we report the average criteria values (i.e., PLCC, SROCC, and RMSE) across all fold trails
when the train/test cycles are over for all the scenes.

4.2. Performance Comparison

To verify the superiority of the proposed method, two types of the NR-based method,
which has demonstrated effectiveness for other images, are used to make the performance
comparison. The first type contains ten methods, which are designed for ordinary images,
dubbed as 2D NRIQA, namely, DIIVINE [5], BLIND-II [6], BRISQUE [7], CurveletQA [8],
GradLog [9], ConstrastQA [10], GLBP [11], OG [12], NIQMC [13], and SCORER [14]. The
second type contains three methods designed for tone-mapped images, dubbed as TM-
NRIQA, namely, BTMQI [17], HIGRADE-1 [18], and HIGRADE-2 [18]. All the comparison
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methods are learning-based ones following the 17-fold cross-validation to obtain their
performance for MEF images, which is consistent with the proposed method. To ensure
that the results are not biased, the performances of the comparison methods are all obtained
by running the original released codes from the authors.

The overall performance comparison results are presented in Table 2. To highlight
the best performance, the PLCC, SROCC, and RMSE values are shown in bold. Obviously,
the proposed BMEFIQA method reveals its better performance compared to the other
comparison methods, which verifies its validity. We can draw some observations from
Table 2. On the one hand, most 2D NRIQA methods exhibit poor performance, except
for GradLog; the worst performance indicators for PLCC and SROCC are only 0.163 and
0.113, respectively. The reasons for this phenomenon can be roughly summarized as
follows: First, the distortion of an MEF image presents differently from an ordinary 2D
image, such as difficult semantic understanding and color deterioration when suffering
from over-exposure and under-exposure. Second, the GradLog method combines gradient
amplitude maps with the Laplace of Gaussian responses to sense structural information,
which can describe the structural distortion of MEF images well. Hence, its performance
outperforms other comparison 2D NRIQA methods. On the other hand, compared with 2D
NRIQA methods, TM-NRIQA methods achieve better performance. This can be attributed
to the fact that the distortion of tone-mapped images seems similar to that of MEF images.
However, such results should also be improved to predict the quality of MEF images
more accurately. The proposed BMEFIQA method considers the structure, naturalness,
and colorfulness of an MEF image from three aspects. Its comprehensive consideration
advocates that it obtains superior performance to the competing methods.

Table 2. The overall performance comparison results.

Metrics PLCC SROCC RMSE

DIIVINE 0.491 0.403 1.452
BLINDS-II 0.534 0.346 1.409
BRISQUE 0.414 0.380 1.517

CurveletQA 0.371 0.337 1.548
GradLog 0.631 0.567 1.293

ContrastQA 0.458 0.412 1.482
GWH-GLBP 0.163 0.113 1.645

OG 0.523 0.525 1.421
NIQMC 0.519 0.404 1.425
SCORER 0.481 0.494 1.461
BTMQI 0.452 0.343 1.487

HIGRADE-1 0.561 0.566 1.380
HIGRADE-2 0.585 0.583 1.352

Proposed 0.694 0.673 1.200

In order to compare the performance of the different methods more intuitively, Figure 5
shows the scatter plots for the objective predicted scores and MOS values of fourteen NR-
IQA methods. They are conducted using the whole MEF database, and the scatter points
are fitted by the logistic function. The closer these scatter points are to the fitting line, the
better the performance. In Figure 5, it can be seen that the predicted scores of the proposed
method show a higher correlation with the MOS values than the other NR-IQA methods.

4.3. Impacts of Different Features and Block Sizes

Based on the above performance comparison, the proposed BMEFIQA method is
demonstrated to have a good-quality prediction capability. However, for the individual
features, their role in the overall method remains ambiguous. To realize their purpose, the
individual features SF, NF, and CF and their different combinations are used to train the
corresponding regression models to predict the quality of the MEF images separately. As
shown in Table 3, the obtained regression models are written as Model-t, t ∈ {1, 2, . . . , 7},
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which indicates the number of individual features and their possible combinations. Their
respective performance results are also given in Table 3, and the best performance results
are shown in bold. The following can be observed: First, among the individual features,
compared with the naturalness features NF and color features CF, the structural features SF
show a relatively strong performance. For the overall performance, SF contributes the most.
Second, among the different combinations, the combination of SF and CF produces the best
performance. Although the performance of CF itself is relatively weak, when it is combined
with NF, its performance is improved, indicating that it provides a good auxiliary effect.
Third, when all SF, NF, and CF features are incorporated together, the best performance
can be obtained. Therefore, we believe that SF, NF, and CF features are complementary to
each other.

Figure 5. Scatter plots for the objective predicted scores and MOS values of sixteen NR-IQA meth-
ods. (a) DIIVINE [5]; (b) BLINDS_II [6]; (c) BRISQUE [7]; (d) CurveletQA [8]; (e) GradLog [9];
(f) ContrastQA [10]; (g) GWH-GLBP [11]; (h) OG [12]; (i) NIQMC [13]; (j) SCORER [14]; (k) BT-
MQI [17]; (l) HIGRADE-1 [18]; (m) HIGRADE-2 [18]; (n) Proposed.
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Table 3. Performance comparison of different feature combinations.

Models SF NF CF PLCC SROCC RMSE

Model-1
√

× × 0.646 0.506 1.272
Model-2 ×

√
× 0.557 0.457 1.385

Model-3 × ×
√

0.389 0.416 1.535
Model-4

√ √
× 0.651 0.520 1.263

Model-5
√

×
√

0.658 0.640 1.255
Model-6 ×

√ √
0.604 0.599 1.328

Model-7
√ √ √

0.694 0.673 1.200

In the block entropy calculation process, as different block sizes may affect the quality
prediction performance, the block size should be determined to obtain the optimal perfor-
mance. In the experiment, performances are tested under different block sizes, as shown
in Table 4. Specifically, the block size varies from 8 to 64, and the corresponding PLCC,
SROCC, and RMSE values are given. Additionally, the run time under different block sizes
is also developed. From the results, we can observe that the PLCC and SROCC values and
the run time decrease with an increase in block size. Under comprehensive consideration,
the block size is set to 8.

Table 4. Performance comparison with different block sizes and the corresponding run time.

Block Size PLCC SROCC RMSE Time (s)

8 × 8 0.694 0.673 1.200 1.3383
16 × 16 0.677 0.655 1.227 0.4744
32 × 32 0.683 0.658 1.218 0.2857
64 × 64 0.688 0.659 1.210 0.2347

4.4. Run Time

In a practical application, in addition to performance, efficiency is also important for
the methods. Therefore, the mean implementation times for all MEF images in the MEF
database of the proposed method and the other competing methods are reported in Table 5.
All the original codes are implemented on a Windows 10 1.80 GHz Intel Core i7-8565U
CPU with 8GB RAM and NVIDIA MX 150, using MATLAB 2017b. In Table 5, it can be seen
that the proposed BMEFIQA method has a moderate execution time.

Table 5. The results of execution time by different methods.

Methods DIIVINE BLINDS_II BRISQUE CurveletQA

Time (s) 6.6024 14.7361 0.0414 2.5141

Methods GradLog ContrastQA GWH-GLBP OG

Time (s) 0.0343 0.0259 0.0576 0.0314

Methods NIQMC SCORER BTMQI HIGRADE-1

Time (s) 1.9241 0.5878 0.0758 0.2602

Methods HIGRADE-2 Proposed

Time (s) 1.9040 1.3383

4.5. Discussion

In this study, a novel NR-IQA method that can handle the quality prediction task
for MEF images is proposed. Specifically, the proposed BMEFIQA method considers the
structure, naturalness, and colorfulness of MEF images, and it extracts the corresponding
features of these three aspects. Through the performance comparison in the previous
section, the proposed method shows its potential in predicting the quality of MEF im-
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ages. It can be used in the application terminal to monitor quality with no reference
information provided.

Although the proposed BMEFIQA method considers some image attributes, it is
limited for kaleidoscopic images in real cases. They may be influenced by some special
situations, which cannot be foreseen. As a result, regarding the performance of the pro-
posed method, there is still room for improvement. For instance, the human attention
mechanism will affect the perception of MEF image quality, and humans will have differ-
ent artistic biases toward MEF images in different scenes. Deep learning is well known
for its ability to automatically learn the features of some images. In future work, deep
learning-based methods or more handcrafted features with the attention mechanism can be
incorporated to improve the performance of the BMEFIQA method. Moreover, the MEF
image database should be expanded for data training and testing to increase the robustness
and practicability of the method.

5. Conclusions

This paper proposes a blind quality assessment method for multi-exposure fusion
(MEF) images based on structure, naturalness, and colorfulness analyses of MEF images,
named BMEFIQA. For the structure analysis, exposure map calculation is implemented
to weight the gradient similarities, statistical modeling is used in the gradient domain,
and entropy calculation is performed to characterize the loss of structural information.
For the naturalness analysis, statistical modeling in the spatial domain combines the
statistics of moment features and entropy, which are built to characterize scene naturalness.
For colorfulness analysis, opponent color space is used to calculate contrast energy and
build the statistical model. Finally, random forest is used to fuse the extracted features
into prediction quality. Experiments on the public MEF image database demonstrate the
superiority of the proposed BMEFIQA method.
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