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Abstract: Channel estimation is a challenging task in a millimeter-wave (mm Wave) massive multiple-
input multiple-output (MIMO) system. The existing deep learning scheme, which learns the mapping
from the input to the target channel, has great difficulty in estimating the exact channel state informa-
tion (CSI). In this paper, we consider the quantized received measurements as a low-resolution image,
and we adopt the deep learning-based image super-resolution technique to reconstruct the mm Wave
channel. Specifically, we exploit a state-of-the-art channel estimation framework based on residual
learning and multi-path feature fusion (RL-MFF-Net). Firstly, residual learning makes the channel
estimator focus on learning high-frequency residual information between the quantized received
measurements and the mm Wave channel, while abundant low-frequency information is bypassed
through skip connections. Moreover, to address the estimator’s gradient dispersion problem, a
dense connection is added to the residual blocks to ensure the maximum information flow between
the layers. Furthermore, the underlying mm Wave channel local features extracted from different
residual blocks are preserved by multi-path feature fusion. The simulation results demonstrate that
the proposed scheme outperforms traditional methods as well as existing deep learning methods,
especially in the low signal-to-noise-ration (SNR) region.

Keywords: millimeter-wave massive MIMO; channel estimation; image super-resolution; residual
learning; multi-path feature fusion; dense connection

1. Introduction

The millimeter Wave (mm Wave) has become one of the research hotspots for its
rich bandwidth resources and anti-interference ability in future mobile communication
systems [1]. Aiming at solving the problem of path loss in mm Wave, the combination of
massive MIMO and mm Wave is used to eliminate the loss by using the high beam fugacity
gain provided by large antenna arrays [2]. However, it is difficult to obtain accurate channel
state information (CSI) especially in the low SNR region because there is a lot of fading in
mm Wave massive MIMO communication systems. In this paper, we focus on the channel
estimation approaches for a mm Wave massive MIMO system.

The traditional channel estimation methods mainly include least squares (LS), min-
imum mean square error (MMSE) [3] and compressed sensing-based algorithms [4–6].
However, the assumption that pilot length is larger than the antennas at the BS in the
mm Wave massive MIMO system makes channel estimation computationally complicated
and creates a huge pilot overhead. In recent years, deep learning (DL) has attracted the
attention of researchers in wireless communication fields and has been successfully applied
to key physical layer techniques such as modulation pattern recognition [7–10], blind
channel equalization [11], channel decoding [12,13] and channel estimation [14–25]. The
authors of [14] use powerful deep learning to address the orthogonal frequency division
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multiplexing (OFDM) system in an End-to-End manner for combating nonlinear distortion
and interference. From the simulation results, the DL-based method solves the channel
distortion and detects the transmitted symbols with better performance than the LS, but it
implicitly estimates the CSI without computing the channel impulse response (CIR). To
solve this problem, the work in [15] proposes a deep learning-based image processing
technique that considers the time-frequency response of a fast-fading channel as a two-
dimensional image and directly estimates the channel matrix by the proposed ChannelNet.
The results rival the MMSE but require training multiple networks for different SNR. A
deep denoising convolutional neural network (DnCNN) for improving the model’s ro-
bustness is proposed in [16], which learns rapidly changing channel characteristics and
accurately estimates the channel amplitudes for frequency-selective channel estimation.
Motivated by the advantages of residual learning, the studies in [17–20] introduce a residual
learning based estimator, which greatly reduces the implementation complexity. The loss
functions for channel estimation are not well designed in a mm Wave massive MIMO
system. Therefore, the authors of [21] develop a conditional generative adversarial network
(cGAN) to predict more realistic channels by adversarial training. The results show that
cGAN is more effective for channel estimation. Inspired by [15], an advanced DL-based
super-resolution channel estimation framework EDSR is proposed in [22], and the results
in practical 5G simulation environments show that EDSR improves the estimation accu-
racy and reduces the bit error ratio (BER). Aiming at higher channel estimation accuracy
without transmitting longer training sequences, a channel estimation algorithm based on
Generative Adversarial Networks (GAN) is proposed in [23], which effectively achieves
better estimation performance than that of traditional estimation algorithms. To reduce
the pilot overhead in the time-varying cascaded channel estimation over reconfigurable
intelligent surface (RIS)-assisted communication, the work in [24] proposes a DL-based
channel extrapolation over both antenna and time domains. Specifically, the entire neural
network is divided into the recurrent neural network (RNN) and the enhanced feedforward
neural network (FNN) to achieve better extrapolation performance. In [25], a two-stage
DNN structure with nonlinear modules is proposed to simultaneously generate channel
estimation in real-time. The simulation shows that the proposed method is robust to all
kinds of nonlinear channel distortion.

With the increasing antennas at the base station (BS) in the mm Wave massive MIMO
communication system, severe problems of complex matrix inverse operation and huge
pilot overhead are produced. There are some recent works addressing the wave imaging on
the machine-learning approach [26–28]. Motivated by the methods mentioned above, we
regard the quantized received measurements at the BS as a low-resolution image and adopt
a state-of-the-art channel estimation framework based on residual learning and multi-path
feature fusion to reconstruct the mm Wave channel accurately.

The contributions of this paper are summarized as follows:

• The quantized received measurements and mm Wave channel can be regarded as
a low-resolution image and a high-resolution image, respectively. Then, we adopt
DL-based image super-resolution techniques to address the non-trivial mapping from
quantized received measurements to the mm Wave channel.

• The residual learning is introduced to train only the high-frequency residual part
between the quantized received measurements and real mm Wave channel for reduc-
ing the training difficulty of the channel estimation model. Furthermore, to prevent
the gradient dispersion problem of the estimator due to stacking residual blocks,
we conduct a dense connection to ensure maximum information flow between the
different layers of the estimator.

• To make full use of the hierarchical features from the quantized received measurements
for accurate reconstruction of the mm Wave channel, we perform multi-path local
feature fusion and global feature fusion in the estimator.
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• We consider the real part and imaginary part as different dimensions of the same
image to take advantage of the correlation of the spatial arrangement of the quantized
received measurements and the mm Wave channel.

The remainder of this paper is organized as follows. In Section 2, the mm Wave massive
MIMO system model is introduced. Section 3 presents the proposed channel estimation
scheme based on residual learning and multi-path feature fusion. Correspondingly, the
learning strategy for channel estimation and dataset generation is described in Section 4.
Section 5 shows the simulation results. Finally, a short conclusion of this paper and future
work are summarized in Section 6.

2. System Model

Figure 1 shows a narrowband single-cell mm Wave massive MIMO system with one-
bit analog-to-digital converters (ADC), where the BS is equipped with a uniform linear
array (ULA) of M antennas and NRF RF chains to serve U single-antenna users, and U � M
is considered.

User 

User 

RF Chain

User H
RF Chain

RF Chain

Y


1bit ADC

1bit ADC

1bit ADC

RL-MFF-Net
Baseband

processing

Quantized received measurements

Channel estimate

H


Figure 1. The structure of the system model for channel estimation.

The channel between the BS and the u-th user can be expressed as

hu =
L

∑
l=1

gu
l ar(α

u
l ), (1)

where L is the number of paths from the users to the BS, gu
l and αu

l denote the path gain and
the angle-of-arrival corresponding to the l-th path, respectively. ar

(
αu

l
)

refers to the array
response of the BS. Therefore, the channel between the BS and the U users is represented
as follows

H = [h1, h2, . . . , hu, . . . , hU ]. (2)

The channel response Hv in the angular domain is obtained by performing a two-
dimensional Fourier transform on H

Hv = FFT2D[H]. (3)

Since the mm Wave channel is sparse in the angular domain, the (2) can be expressed as

H = Br HvBH
t , (4)

where Br ∈ CM×M and Bt ∈ CU×U are the discrete Fourier transform (DFT) matrices. U
users send orthogonal pilot X ∈ CU×s to the BS where s represents the pilot length, and the
received signal R ∈ CM×s at the BS is given by

R =
√

PHX + W, (5)
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where W ∈ CM×s is a complex additive noise matrix subject to gaussian distribution, and P
is the transmitted power of the pilot signal. Let X = BtF , then the received signal at BS is

R =
√

PHX + W

=
√

PBr HvBH
t BtF + W.

=
√

PBr HvF + W

(6)

Vectorization of the received signal R

vec(R) = vec
(√

PBr HvF + W
)

=
(

FT ⊗
√

PBr

)
vec(Hv) + vec(W),

= ah +
_
w

(7)

where Equation (7) satisfies vec(ABC) =
(
CT ⊗ A

)
vec(B), a = FT ⊗

√
PBr, h = vec(Hv),

−
w = vec(W). ⊗ is the Kronecker product and the received signal is quantized by 1-bit ADC
at BS ∼

Y = Γ(vec(R))

= Γ
((

FT ⊗
√

PBr

)
vec(Hv) + vec(W)

)
,

= Γ(ah +
_
w)

(8)

where Γ(·) is a function that quantizes the real and imaginary parts of the received signal,

and the element in
∼
Y comes from the set Q ∈ {1 + j, 1− j,−1 + j,−1− j}

∼
Y = sgn(Re(vec(R))) + j · sgn(Im(vec(R)))
= sgn(Re(ah +

_
w)) + j · sgn(Im(ah +

_
w)),

(9)

where sgn(·) is the signum function for one-bit quantization defined as

sgn(x) =

{
1 x ≥ 0,

−1 x < 0.
(10)

Now write the complex signal in the form of a real signal

∼
Y =

[
Re(sgn(vec(R)))
Im(sgn(vec(R)))

]
, h =

[
Re(vec(Hv))
Im(vec(Hv))

]
. (11)

_
w =

[
Re(vec(W))
Im(vec(W))

]
, a =

 Re
(

FT ⊗
√

PBr

)
−Im

(
FT ⊗

√
PBr

)
Im
(

FT ⊗
√

PBr

)
Re
(

FT ⊗
√

PBr

) . (12)

3. Channel Estimation Based on Residual Learning and Multi-Path Feature Fusion
3.1. DL-Based Image Super-Resolution and Channel Estimation

The conventional compressed sensing-based channel estimation algorithm faces high-
dimensional matrix inversion operations with the increase in antennas at the BS, which
results in unsatisfactory performance at low SNR regions and requires huge pilot overhead.

In this paper, we directly use the quantized received measurements
∼
Y and the known

pilot X to recover the mm Wave channel by a deep learning method. It is assumed that
the BS is equipped with M = 32 antennas to serve U = 16 single-antenna users. At

a certain moment, each user transmits a pilot sequence of length 8 to BS.
∼
Y ∈ C32×8×2

and X ∈ C16×8×2 can be regarded as low-resolution images with two channels, while
H ∈ C32×16×2 is a high-resolution image. To make full use of the correlation in the spatial
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arrangement of quantized measurements and target channel, we consider the real part
and imaginary part as two dimensions of the same image. In the field of computer vision,
recovering a high-resolution image from a low-resolution image is an important research
problem that can be described as

IHR = ς(ILR; θ), (13)

where ILR is the low-resolution image, IHR is the recovered high-resolution image, and ς is
the deep learning model defined by parameter θ. With the help of the deep learning-based
super-resolution, the estimated mm Wave channel can be expressed as

∧
H = ΨRL−MFF−Net

(∼
Y, X; Θ

)
, (14)

where
∧
H is the prediction and Θ is the parameter of the estimator ΨRL−MFF−Net. Our

ultimate purpose is to obtain an estimator ΨRL−MFF−Net that reconstructs the corresponding

high-resolution counterpart
∧
H for given low-resolution

∼
Y and X as input.

3.2. The Proposed RL-MFF-Net

The proposed RL-MFF-Net framework is depicted in Figure 2, which is composed of a
shallow feature extraction module, feature mapping module and reconstruction module.

H
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
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v
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o
n
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Res Block

Res Block

Res Block

Res Block
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o
n
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t

1
x
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n
v

U
p

sc
al

e

C
o
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v

Feature Mapping Module

Reconstruction 

Module

Shallow Feature 

Extraction Module

Figure 2. Architecture of the proposed RL-MFF-Net-based channel estimation.

Since the pilot shows no change throughout our simulation, the quantized received

measurements
∼
Y are the input for the RL-MFF-Net. The features extracted from the

convolutional layer of the shallow feature extraction module are

G−2 = f2

(
f1

(∼
Y
))

= f2(G−1), (15)

where fi(·) stands for the function of the convolutional layer, then the extracted mm
Wave channel shallow feature G−2 is sent to the feature mapping module for deep feature
learning. The output of the k-th residual block is obtained by

Gk = Γk(Gk−1) = Γk(Γk−1(. . . (Γ1(G−2)) . . .)), (16)

where Γk denotes the k-th residual block of the feature mapping module, Gk−1 is the input of
the k-th block and Gk is the corresponding output by fully utilizing the convolutional layers
in the residual block. The mm Wave channel’s local features extracted from K residual
blocks are preserved via multi-path global feature fusion

−
G = fGF([G1, G2, . . . , GK]), (17)
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where [G1, G2, · · · , GK] denotes the concatenation of the local feature maps,
−
G denotes

the mm Wave channel global feature and fGF is a composite function of 1× 1 and 3×
3 convolution. To alleviate the vanishing-gradient problem of the RL-MFF-Net-based
estimator, the long skip connection is further implemented in the estimator to prevent the
model’s degradation

GD = G−1 +
−
G, (18)

where G−1, which is used for further shallow feature extraction and global residual learning,
is the shallow feature extracted from the first convolution layer. After extracting the local
and global features in the low-resolution space, the whole mm Wave channel is finally
estimated through a reconstructed module

∧
H = Φ(GD), (19)

where Φ is the composite function consisting of an upscale layer and convolution layer.
The proposed RL-MFF-Net in this paper consists of eight residual blocks. In addition

to the 1× 1 convolution kernel that is applied for local feature fusion and global feature
fusion, the 3 × 3 convolution kernel is utilized for feature extraction in all remaining
convolutional layers. Zero-padding is used to guarantee that the size of the feature remains
constant after convolution. Comparing with the traditional residual block in [29], dense
connection and multi-path feature fusion are implemented to enable the current residual
block can read the state of the previous block and preserve the hierarchical mm Wave
channel features extracted from each convolution in the residual block. More details about
the proposed residual block will be shown in Section 3.3.

3.3. Multi-Path Feature Fusion and Dense Connection

Motivated by advantages of residual learning, the authors of [16] proposed a denoising
convolutional neural network (DnCNN) for channel amplitude estimation, and Figure 3
illustrates the network architecture of the DnCNN.

C
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v

R
eL

U

C
o
n

v

B
a
tc

h
 N

o
rm

R
eL

U

C
o
n

v

Figure 3. The network structure of the DnCNN proposed in [16].

Although DnCNN outperforms other DL-based estimation methods, it neglects to fully
use features extracted from each convolutional layer. Inspired by the densely connected
network [30] and feature pyramid network (FPN) [31], we propose a residual block based on
multi-path feature fusion and dense connection as the basic block for the feature mapping
module, which is shown in Figure 4.



Entropy 2022, 24, 292 7 of 16

In
st

a
n

ce
 N

o
rm

R
eL

U

C
o
n

v

In
st

a
n

ce
 N

o
rm

R
eL

U

C
o
n

v

In
st

a
n

ce
 N

o
rm

R
eL

U

C
o
n

v C
o
n

ca
t

1
x
1
 C

o
n

v

1kG − kG

Figure 4. Residual block based on multi-path feature fusion and dense connection.

Each residual block is comprised of an instance normalization layer [32], ReLU layer
and convolutional layer. The instance normalization is able to accelerate the convergence
of the estimator. In order to make full use of the underlying features from the quantized
measurements for accurate reconstruction of the mm Wave channel, we conduct a dense
connection allowing the output of the k− 1-th residual block to directly access each layer
of the k-th block. Meanwhile, the features extracted from each convolutional layer in
the current block access all the subsequent layers and we pass on mm Wave channel
features that need to be preserved. After concatenating the states of all the layers within
the current block, we further conduct multi-path local feature fusion to adaptively preserve
the underlying mm Wave channel features for local residual learning.

Denoting Gk−1 and Gk to be the input and output of the k-th residual block, we have

Gk = Gk−1 + Gk,LF, (20)

where Gk and Gk−1 denote feature maps extracted from the current and preceding residual
block, respectively, and Gk,LF refers to the underlying feature preserved by using multi-path
local feature fusion

Gk,LF= f k
LF([Gk−1, Gk,1, Gk,2, . . . , Gk,M]), (21)

where [Gk−1, Gk,1, Gk,2, · · · , Gk,M] denotes the concatenation of the mm Wave channel future
extracted from the previous residual block and the whole convolution layer in current
residual block. f k

LF is defined as the 1× 1 convolution operation in the k-th residual block
for adaptive control feature fusion. Gk,m is the output of the m-th convolution layer in the
current block, which can be written as

Gk,m = ζ(Wk,m[Gk−1, Gk,1, Gk,2, . . . , Gk,m−1]), (22)

ζ is the ReLU activation function, and Ws,m is the weight of the m-th layer.

4. Learning Strategy for Channel Estimation and Dataset Generation
4.1. Learning Strategy for Channel Estimation

In this paper, the RL-MFF-Net-based channel estimator mainly works in an offline
training phase and online deployment phase. In the offline training phase, a training set is
given as (∼

Ytrain, Htrain

)
=
{(∼

Y1, H1

)
, . . . ,

(∼
YN , HN

)}
, (23)

where
(∼

Yn, Hn

)
, n ∈ {1, 2, . . . , N} denotes the n-th training example of the set.

∼
Yn ∈

CM×s×2 is the input and Hn ∈ CM×U×2 is the label. Our goal is to optimize overall
trainable variables by minimizing the mean of squared errors (MSE) as follows

L(θ) =
1
N

N

∑
n=1

(
ΨRL−MFF−Net

(∼
Yn; Θ

)
− Hn

)2
, (24)
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where ΨRL−MFF−Net(·) denotes the estimator parameterized by Θ,
∼
Yn is the input of the

estimator and Hn represents the ground truth. The other hyper-parameters are summarized
in Table 1.

Table 1. Simulation parameters.

Parameter Value

Learning rate 0.0001
Decay rate 0.6
Optimizer ADAM
Batch size 8

Training epoch 300
Loss function L2

Number of residual blocks 4∼20

The L(Θ) can be regarded as a function of the estimator parameters Θ, we adopt the
adaptive moment estimation (ADAM) algorithm [33] to optimize the loss function based
on the proposed RL-MFF-Net framework. The ADAM iteration can be written as

Θj+1 = Θj − α

∧
Mj√
∧
V j + ε

, (25)

where j is the timestep and Θ0 is represented as the initial parameter. α is the step size and

ε is used to ensure that the denominator is greater than zero.
∧
Mj and

∧
V j are the corrections

to the first-order moment estimate Mj and second-order moment estimate Vj, respectively.

∧
Mj =

Mj

1− β
j
1

, (26)

∧
V j =

Vj

1− β
j
2

, (27)

where β1 and β2 are the decay rates for the first-order and second-order moment estimate,
respectively. Specifically, β1, β2 ∈ [0, 1). The update equations for Mj and Vj are as follows

Mj = β1 ·Mj−1 + (1− β1) · gj, (28)

Vj = β2 ·Vj−1 + (1− β2) · g2
j , (29)

where gj refers the gradient of the loss function. In the online deployment phase, by

putting the test data
∼
Ytest, the trained RL-MFF-Net-based estimator can directly reconstruct

the mm Wave channel
∧
H. The proposed RL-MFF-Net-based algorithm is summarized in

Algorithm 1, where G is the maximum iteration number.
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Algorithm 1 RL-MFF-Net-based channel estimation algorithm

offline training phase:
1: Initialize j = 0, estimator parameters Θ, stepsize α, learning rate and decay rate.

2: Input: Training set
(∼

Ytrain, Htrain

)
3: while j ≤ G do weights update
4: gj ← ∇ΘLj

(
θj−1

)
5: Compute Mj and Vj by equation (27) and (28)

6: Computer
∧
Mj and

∧
V j by equation (25) and (26)

7: Update estimator parameters Θj+1 ← Θj − α
∧
Mj√
∧
V j+ε

8: j = j + 1
9: end while

10: Output: Well-trained estimator ΨRL−MFF−Net(·)
online deployment phase:

11: Input: Test set
∼
Ytest

12: do Channel Estimation with ΨRL−MFF−Net(·)
13: Output: the reconstructed mm Wave channel

∧
H = ΨRL−MFF−Net

(∼
Ytest

)
4.2. Dataset Generation

In order to train the RL-MFF-Net-based estimator, it is necessary to obtain channel
datasets and quantized received measurement datasets. The channels between the BS and
users are generated by using the publicly-available generic DeepMIMO dataset [34]. The
DeepMIMO is defined by the parameters set and ray-tracing scenario. Based on the setup
of the channel parameters as in Table 2, we can construct the channel samples between the
BS and the users according to (1) and (2) and quantized received measurement samples
according to (5)–(11). Specifically, we generate four different channel matrix Hk with the
size of 16× 8, 32× 16, 64× 32, and 128× 64, respectively. We use 60% of the datasets for
training, 30% for testing and 10% for validation.

Table 2. The deep MIMO dataset parameters.

Parameter Value

Carrier frequency 28 GHz
System bandwidth 100 MHz
Active BSs 32
Active users From row R1 to R502
Number of BS antennas

(
Mx, My, Mz

)
= (1, 16, 1); (1, 32, 1); (1, 64, 1); (1, 128, 1)

Number of user antennas
(

Mx, My, Mz
)
= (1, 1, 1)

Antenna space 0.5
The length of pilot 4∼32
Number of paths 10

5. Simulation Results

In this section, the RL-MFF-Net-based channel estimation algorithm is compared
with other DL-based methods and the traditional algorithm GAMP. We investigate the
performance of the estimator with the metric of MSE as

MSE =
1
M

M

∑
k=1

∥∥∥∥ ∧Hk − Hk

∥∥∥∥2
, (30)

where M is the number of test samples, and Hk and
∧
Hk are the target channel and the

predicted value of the proposed estimator, respectively.
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Figure 5 shows the MSE performance comparison of the ChannelNet, DnCNN, CNN,
GAMP and the proposed RL-MFF-Net. In our simulations, we consider that the BS equips
M = 32 antennas to serve U = 16 single-antenna users. The number of pilots is set to
s = 8. As shown in Figure 5, the system in four DL-based algorithms achieves better MSE
performance than that of the conventional GAMP algorithm. In particular, the proposed
RL-MFF-Net outperforms the other mentioned DL-based methods in all considered SNR
regions. Moreover, RL-MFF-Net persists to achieve 4 dB gains over the ChannelNet
especially in the low SNR region due to the joint use of residual learning, multi-path feature
fusion and dense connection.

Figure 6 shows the convergence performance versus the number of training epochs
with the proposed RL-MFF-Net-based algorithm in which the SNR is 10 dB. We can observe
that the convergence of the scheme improves as training epochs increase. During RL-MFF-
Net training, the MSE curve becomes stable after around 150 of training epochs.

-10 -5 0 5 10 15 20 25 30 35 40

SNR(db)

10-4

10-3

10-2

10-1

100

M
S

E

RL-MFF-Net
ChannelNet
DnCNN
CNN
GAMP

Figure 5. The comparison of channel estimation performance for different methods.

50 100 150 200 250 300

Epoch

10-3

10-2

10-1

M
S

E

RL-MFF-Net

Figure 6. Convergence performance of the proposed RL-MFF-Net-based channel estimation algorithm.

5.1. Impact of System Parameters

In this subsection, we show how the MSE performance of the proposed RL-MFF-Net-
based method changes for the variation of the system parameters.

Figure 7 shows the MSE performance comparison for the five channel estimation
methods with respect to a different number of pilots. It is noticed that the RL-MFF-Net-
based estimator achieves much higher estimation accuracy than other schemes with only a
small number of pilots, which greatly reduces pilot overhead for the mm Wave massive
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MIMO system. For the number of pilots s = 32, the proposed method achieves 3 dB gains
compared with the ChannelNet.

0 5 10 15 20 25 30 35

Number of Pilots

10-4

10-3

10-2

10-1

100

M
S

E

RL-MFF-Net

ChannelNet

DnCNN

CNN

GAMP

Figure 7. The MSE performance comparison of different methods versus the number of pilots.

Figure 8 shows the MSE performance of five different methods versus the number of
BS antennas. It can be seen that the four DL-based schemes achieve better performance
than the traditional GAMP algorithm. In particular, the proposed RL-MFF-Net-based
estimator enjoys lower estimation error as the number of BS antennas increase. Moreover,
the proposed method still outperforms ChannelNet 4 dB gains even at M = 128 antennas.

We further investigate the robustness of the proposed RL-MFF-Net-based channel
estimation method as a function of the number of multi-path L in Figure 9. Noting that the
proposed RL-MFF-Net-based estimator mainly works two different phases, the multi-path
components is set to L = 10 during the offline training phase. However, it can be concluded
that the proposed method robustly estimates the channels path with L 6= 10 at the online
deployment phase.
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Figure 8. The MSE performance comparison of different methods versus the number of BS antennas.
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Figure 9. The MSE performance for the proposed RL-MFF-Net-based scheme with different multi-paths.

5.2. Impact of Hyper Parameters

To determine the best estimator structure for mm Wave massive MIMO system channel
estimation, we investigate the impact of hyper parameters on estimator performance. Here,
the BS is equipped with 32 antennas to serve 16 single-antenna users and the number of
pilot is set as 8.

Figure 10 shows that the MSE value versus the SNR with the RL-MFF-Net-based
estimation algorithm in which the learning rate and decay rate are different. It can be clearly
seen that the MSE performance in the case of “Learning rate = 0.0001, Decay rate = 0.6”
outperforms that of other cases in terms of SNR, which implies that introducing a smaller
learning rate and larger decay rate can boost the performance of the channel estimation
based on the proposed method. However, too small a learning rate will lead to converge
slowly while too large a decay rate will make the loss function pass by a global minimum
point, which means that selecting an appropriate learning rate and decay rate is a significant
issue for improving the MSE performance of the RL-MFF-Net-based channel estimation.
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SNR
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10-1
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E

Learning rate=0.0001, Decay rate=0.6
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Learning rate=0.0001, Decay rate=0.3

Learning rate=0.0002, Decay rate=0.3

Figure 10. The MSE performance of the proposed RL-MFF-Net-based scheme when the learning rate
and the decay rate are different.

Figure 11 shows that the MSE performance of our proposed RL-MFF-Net-based
channel estimation scheme for different batch size is a function of SNR. It is shown that
the MSE of the channel estimation is reducing with the increasing SNR. Meanwhile, The
simulation results show that the MSE performance in the case of “batch size = 8” achieves
a more satisfactory performance than other cases, which implies that it is better to choose
an appropriate batch size during the offline training phase.
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Figure 11. The MSE performance of the proposed RL-MFF-Net-based scheme with different batch size.

Figure 12 investigates the MSE performance of the proposed RL-MFF-Net-based
channel estimation method with different residual blocks. The results show that the
estimator’s MSE improves with the increasing number of residual blocks. However, simply
stacking residual blocks to construct deeper networks for channel estimation is more
difficult to train. The reason for better performance is that it exploits dense connection to
ensure maximum information flow between the layers of the estimator. Meanwhile, multi-
path feature fusion further allows the estimator to make full use of the hierarchical features
from the quantized received measurements. At the SNR value of 20 dB, the RL-MFF-Net
with 20 residual blocks provides around 6 dB gains over the four residual blocks.
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Figure 12. The MSE performance of the proposed RL-MFF-Net-based scheme with a different number
of residual blocks.

5.3. Comparison of the Traditional Residual Block and Residual Block Based on Multi-Path Feature
Fusion with Dense Connection

In order to verify the effectiveness of the proposed multi-path feature fusion and dense
connection-based residual block, we further compare the MSE performance of the estimator
with a traditional residual block in [29] and the proposed residual block, as shown in
Figure 4.

It is obvious from Figure 13 that the proposed residual block based on multi-path
feature fusion and dense connection is able to greatly improve the MSE performance of the
estimator compared with the traditional residual block, especially in the low SNR region.
It is due to multi-path feature fusion, and the dense connection can make full use of the
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underlying features from quantized received measurements for accurate reconfiguration of
the mm Wave channel.

-10 -5 0 5 10 15 20 25 30

SNR(db)

10-4

10-3

10-2

10-1

100

M
S

E

estimator with residual block in Figure 4

estimator with residual block in Yao et al. 2021

Figure 13. The MSE performance of the RL-MFF-Net with traditional residual blocks and the
proposed residual blocks. Estimator with residual block in Yao et al. 2021 [20].

5.4. Impact of Residual Learning, Multi-Path Fusion and Dense Connection

Table 3 shows the ablation investigation on the effects of residual learning (RL), multi-
path feature fusion (MFF) and dense connection (DC) on the channel estimator.

Table 3. Different combinations of RL, MFF, and DC.

Experiments RL MFF DC MSE

1
√ √ √

0.12× 10−2

2
√ √

× 0.42× 10−2

3
√

×
√

0.49× 10−2

4 ×
√ √

0.44× 10−2

5
√

× × 0.71× 10−2

6 ×
√

× 0.69× 10−2

7 × ×
√

0.73× 10−2

8 × × × 0.97× 10−2

We find that the baseline is obtained without RL, MFF, or DC and performs poorly
(MSE = 0.97× 10−2), which is mainly caused by the difficulty of training and fails to make
full use of the hierarchical features from the quantized received measurements. When
one of RL, MFF, or DC is added to the baseline, each component can improve the MSE
performance of the baseline. Furthermore, the baseline with two components performs
better than with only one component. It is obvious that we obtain the optimal channel
estimation performance while using three components simultaneously.

6. Conclusions

In this paper, we propose a novel RL-MFF-Net-based channel estimation method
for a mm Wave massive MIMO system. Specifically, we regard the quantized received
measurements at the BS as a low-resolution image and use a DL-based image super-
resolution technique to reconstruct the mm Wave channel accurately. Initially, we introduce
residual learning to train only the high frequency residual part between the quantized
received measurements and target the mm Wave channel for reducing the training difficulty
of the channel estimator. Moreover, we conduct dense connection to address the gradient
dispersion problem of the estimator due to stacking residual blocks. Finally, we employ
multi-path feature fusion to make full use of the underlying features extracted from the
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quantized received measurements. For future work, we will apply the proposed RL-
MFF-Net-based estimator to address the channel estimation problem in a terahertz (THz)
communication system.

Author Contributions: Conceptualization, X.Z. and Z.L.; data curation, Y.W.; methodology, X.Z.
and Z.L.; software, X.Z. and Y.W.; validation, X.Z. and Y.C.; formal analysis, X.Z., Y.C. and Q.Z.;
funding acquisition, Z.L. and J.L.; investigation, X.Z. and Z.L; resources, J.L.; writing—original draft
preparation, X.Z. and Z.L.; writing—review and editing, X.Z. and Z.L.; supervision, Z.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Guizhou Science and Technology Foundation under Grant
No. (2016) 1054, Guizhou Province Joint funding Project under Grant No. LH (2017) 7226, Guizhou
University Academic New Seeding training and Innovation and Exploration Project under Grant No.
(2017) 5788 and Social Development Project of Guizhou Province under Grant No. (2011)3111.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [CrossRef]
2. Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless

systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [CrossRef]
3. Ma, J.; Ping, L. Data-aided channel estimation in large antenna systems. IEEE Trans. Signal Process. 2014, 62, 3111–3124.
4. Xu, L.; Qian, C.; Gao, F.; Zhang, W.; Ma, S. Angular domain channel estimation for mmWave massive MIMO with one-bit

ADCs/DACs. IEEE Trans. Wirel. Commun. 2020, 20, 969–982. [CrossRef]
5. Zhao, J.; Liu, J.; Gao, F.; Jia, W.; Zhang, W. Gridless Compressed Sensing Based Channel Estimation for UAV Wideband

Communications With Beam Squint. IEEE Trans. Veh. Technol. 2021, 70, 10265–10277. [CrossRef]
6. Hadji, B.; Aïssa-El-Bey, A.; Fergani, L.; Djeddou, M. Channel Estimation Using Multi-stage Compressed Sensing for Millimeter

Wave MIMO Systems. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki,
Finland, 25–28 April 2021; pp. 1–5.

7. Bu, K.; He, Y.; Jing, X.; Han, J. Adversarial transfer learning for deep learning based automatic modulation classification. IEEE
Signal Process. Lett. 2020, 27, 880–884. [CrossRef]

8. Wang, Y.; Wang, J.; Zhang, W.; Yang, J.; Gui, G. Deep learning-based cooperative automatic modulation classification method for
MIMO systems. IEEE Trans. Veh. Technol. 2020, 69, 4575–4579. [CrossRef]

9. Hao, Y.; Wang, X.; Lan, X. Frequency Domain Analysis and Convolutional Neural Network Based Modulation Signal Classification
Method in OFDM System. In Proceedings of the 13th International Conference on Wireless Communications and Signal Processing
(WCSP), Changsha, China, 20–22 October 2021; pp. 1–5.

10. Hanna, S.S.; Dick, C.; Cabric, D. Signal Processing-Based Deep Learning for Blind Symbol Decoding and Modulation Classification.
IEEE J. Sel. Areas Commun. 2022, 40, 82–96. [CrossRef]

11. Chen, J.; Jiang, M. Joint Blind Channel Estimation, Channel Equalization, and Data Detection for Underwater Visible Light
Communication Systems. IEEE Wirel. Commun. Lett. 2021, 10, 2664–2668. [CrossRef]

12. Shabara, Y.; Ekici, E.; Koksal, C.E. Source Coding Based Millimeter-Wave Channel Estimation with Deep Learning Based
Decoding. IEEE Trans. Commun. 2021, 69, 4751–4766. [CrossRef]

13. Mthethwa, B.M.; Xu, H. Low Complexity Golden Code Analytical and Deep Learning-Based Sphere-Decoders for High-Density
M-QAM. IEEE Access 2022, 10, 6940–6953. [CrossRef]

14. Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel.
Commun. Lett. 2017, 7, 114–117. [CrossRef]

15. Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep learning-based channel estimation. IEEE Commun. Lett. 2019,
23, 652–655. [CrossRef]

16. Abdallah, A.R.; Celik, A.; Mansour, M.M.; Eltawil, A.M. Deep Learning Based Frequency-Selective Channel Estimation for
Hybrid mmWave MIMO Systems. arXiv 2021, arXiv:2102.10847.

17. Li, L.; Chen, H.; Chang, H.H.; Liu, L. Deep Residual Learning Meets OFDM Channel Estimation. IEEE Wirel. Commun. Lett. 2020,
9, 615–618. [CrossRef]

18. Liu, X.; Liu, C.; Li, Y.; Vucetic, B.; Ng, D.W.K. Deep Residual Learning-Assisted Channel Estimation in Ambient Backscatter
Communications. IEEE Wirel. Commun. Lett. 2021, 10, 339–343. [CrossRef]

http://doi.org/10.1109/MCOM.2011.5783993
http://dx.doi.org/10.1109/COMST.2017.2787460
http://dx.doi.org/10.1109/TWC.2020.3029400
http://dx.doi.org/10.1109/TVT.2021.3103153
http://dx.doi.org/10.1109/LSP.2020.2991875
http://dx.doi.org/10.1109/TVT.2020.2976942
http://dx.doi.org/10.1109/JSAC.2021.3126088
http://dx.doi.org/10.1109/LWC.2021.3111075
http://dx.doi.org/10.1109/TCOMM.2021.3072999
http://dx.doi.org/10.1109/ACCESS.2022.3141626
http://dx.doi.org/10.1109/LWC.2017.2757490
http://dx.doi.org/10.1109/LCOMM.2019.2898944
http://dx.doi.org/10.1109/LWC.2019.2962796
http://dx.doi.org/10.1109/LWC.2020.3030222


Entropy 2022, 24, 292 16 of 16

19. Ji, Q.; Zhu, C.; Guo, X. mmWave MIMO: An LAMP-Based Network with Deep Residual Learning Combining the Prior
Channel Information for Beamspace Sparse Channel Estimation. In Proceedings of the IEEE 21st International Conference on
Communication Technology (ICCT), Nanjing, China, 13–16 October 2021; pp. 279–284.

20. Yao, Y.; Lei, H.; He, W. Wideband DOA Estimation Based on Deep Residual Learning With Lyapunov Stability Analysis. IEEE
Geosci. Remote. Sens. Lett. 2021, 19, 1–5. [CrossRef]

21. Dong, Y.; Wang, H.; Yao, Y.D. Channel Estimation for One-Bit Multiuser Massive MIMO Using Conditional GAN. IEEE Commun.
Lett. 2021, 25, 854–858. [CrossRef]

22. Maruyama, D.; Kanai, K.; Katto, J. Performance Evaluations of Channel Estimation Using Deep-learning Based Super-resolution.
In Proceedings of the IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
9–12 January 2021; pp. 1–6.

23. Hu, T.; Huang, Y.; Zhu, Q.; Wu, Q. Channel Estimation Enhancement With Generative Adversarial Networks. IEEE Trans. Cogn.
Commun. Netw. 2021, 7, 145–156. [CrossRef]

24. Xu, M.; Zhang, S.; Ma, J.; Dobre, O.A. Deep Learning-Based Time-Varying Channel Estimation for RIS Assisted Communication.
IEEE Commun. Lett. 2022, 26, 94–98. [CrossRef]

25. Zheng, X.; Lau, V.K.N. Simultaneous Learning and Inferencing of DNN-Based mmWave Massive MIMO Channel Estimation in
IoT Systems With Unknown Nonlinear Distortion. IEEE Internet Things J. 2022, 9, 783–799. [CrossRef]

26. Yin, W.; Ge, J.; Meng, P.; Qu, F. A neural network method for the inverse scattering problem of impenetrable cavities. Electron.
Res. Arch. 2020, 28, 1123. [CrossRef]

27. Chow, Y.T.; Deng, Y.; He, Y.; Liu, H.; Wang, X. Surface-localized transmission eigenstates, super-resolution imaging, and pseudo
surface plasmon modes. SIAM J. Imaging Sci. 2021, 14, 946–975. [CrossRef]

28. Gao, Y.; Liu, H.; Wang, X.; Zhang, K. On an artificial neural network for inverse scattering problems. J. Comput. Phys. 2022,
448, 110771. [CrossRef]

29. Zhao, S.; Fang, Y.; Qiu, L. Deep Learning-Based channel estimation with SRGAN in OFDM Systems. In Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March 2021; pp. 1–6.

30. Li, Z.; Li, Y.; Liu, Y.; Wang, P.; Lu, R.; Gooi, H.B. Deep learning based densely connected network for load forecasting. IEEE Trans.
Power Syst. 2020, 36, 2829–2840. [CrossRef]

31. Xie, J.; Pang, Y.; Nie, J.; Cao, J.; Han, J. Latent Feature Pyramid Network for Object Detection. IEEE Trans. Multimed. 2022.
[CrossRef]

32. Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv 2016,
arXiv:1607.08022.

33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
34. Alkhateeb, A. DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications. arXiv 2019,

arXiv:1902.06435.

http://dx.doi.org/10.1109/LGRS.2021.3090408
http://dx.doi.org/10.1109/LCOMM.2020.3035326
http://dx.doi.org/10.1109/TCCN.2020.3013257
http://dx.doi.org/10.1109/LCOMM.2021.3127160
http://dx.doi.org/10.1109/JIOT.2021.3085659
http://dx.doi.org/10.3934/era.2020062
http://dx.doi.org/10.1137/20M1388498
http://dx.doi.org/10.1016/j.jcp.2021.110771
http://dx.doi.org/10.1109/TPWRS.2020.3048359
http://dx.doi.org/10.1109/TMM.2022.3143707

	Introduction
	System Model
	Channel Estimation Based on Residual Learning and Multi-Path Feature Fusion
	DL-Based Image Super-Resolution and Channel Estimation
	The Proposed RL-MFF-Net
	Multi-Path Feature Fusion and Dense Connection

	Learning Strategy for Channel Estimation and Dataset Generation
	Learning Strategy for Channel Estimation
	Dataset Generation

	Simulation Results
	Impact of System Parameters
	Impact of Hyper Parameters
	Comparison of the Traditional Residual Block and Residual Block Based on Multi-Path Feature Fusion with Dense Connection
	Impact of Residual Learning, Multi-Path Fusion and Dense Connection

	Conclusions
	References

