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Abstract: Characterizing the topology and random walk of a random network is difficult because
the connections in the network are uncertain. We propose a class of the generalized weighted Koch
network by replacing the triangles in the traditional Koch network with a graph Rs according to
probability 0 ≤ p ≤ 1 and assign weight to the network. Then, we determine the range of several
indicators that can characterize the topological properties of generalized weighted Koch networks by
examining the two models under extreme conditions, p = 0 and p = 1, including average degree,
degree distribution, clustering coefficient, diameter, and average weighted shortest path. In addition,
we give a lower bound on the average trapping time (ATT) in the trapping problem of generalized
weighted Koch networks and also reveal the linear, super-linear, and sub-linear relationships between
ATT and the number of nodes in the network.

Keywords: Koch network; degree distribution; diameter; random walk; average trapping time

1. Introduction

Complex networks are acknowledged as an invaluable system for describing na-
ture and society [1,2]; many endeavors have been devoted to exploring the structure and
properties of complex networks for characterizing and simulating the properties of some
real-world systems in our life. Among all of these properties, the scale-free nature, di-
ameter, and clustering coefficient have attracted considerable attention [3–5]. In addition,
the weight of the network has important research significance in air transportation [6],
biological neural networks [7] and so on. Therefore, it is necessary to explore the influ-
ence of weight on the topological properties and dynamic process of the network, so we
also determine the bound of the average weighted shortest path of network designed in
this paper.

To better understand the properties of random networks in complex networks, ex-
tensive technical methods were developed for establishing a variety of theoretical models
of random networks. For example, the well-known ER-model was proposed by Erdos
and Renyi [8] to try to explain a low clustering coefficient and low variation in the node
degrees; its degree distribution was verified to be Poisson distribution. Watts and Stro-
gatz put forward a small-world WS-model [9], which can rationally reflect the statistical
properties of the network that are neither completely regular nor entirely random and
explain small-world phenomena in various real-world networks by exploring the diameter
and clustering coefficient. The BA model was built by Barabasi et al. [10] using two rules,
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growth and preferential attachment; the degree distribution of the latter two networks
obeys a power–law distribution. In this paper, we introduce a class of generalized weighted
Koch networks with probability p. The ranges of their topological parameters are given by
characterizing the topological characteristics of the deterministic network models under
the two extreme states.

Random walk as a fundamental tool to describe the dynamic process of networks, such
as page search in the world wide web [11], signal propagation [12] and energy transport [13].
The trapping problem is defined as a kind of random walk that takes place in networks
in the presence of a fixed trap, absorbing all particles that visit it [14,15]. A basic quantity
relevant to the trapping problem is called the mean first-passage time (MFPT). The MFPT
from a node i to the trap is the expected time taken by a walker starting from i to reach
the trap for the first time. The average trapping time (ATT) is the average of MFPTs over
all starting nodes other than the trap. The ATT for a given trap is used as a indicator of
the trapping efficiency to evaluate the process of trapping; it has a core position in many
disciplines, including computer, biology, engineering and so on [16–18].

The organization of this paper is as follows. In Section 2, we introduce a method about
constructs the generalized weighted Koch networks, according to probability p. In Section 3,
we characterize several parameters that reveal the topological properties and dynamic pro-
cesses of our network, including average degree, degree distribution, clustering coefficient,
diameter, average weighted shortest path, and average trapping time. In the last section,
we draw the conclusion with a concise narrative.

2. The Generalized Weighted Koch Network

The generalized weighted Koch network Gs,r(t) presented in this paper is controlled
by three parameters s ≥ 3, r > 0, t ≥ 0, where r is the weight factor and t is the time step,
and s and t are positive integers. We mainly explore the influence of the parameter s and the
weight r related to the topology on the topological properties and dynamic characteristics
of the network.

Let Cs and Ks be a cycle with s nodes and a fully connected graph with s nodes,
respectively. We introduce a probability 0 ≤ p ≤ 1, then Gs,r(t) can be created in the
following way: for t = 0, the network starts with a graph Rs of s nodes, and its edge with
unit weight corresponds to Gs,r(0). When p = 0, Rs is a cycle Cs of s nodes, and when
p = 1, Rs is a complete graph Ks of s nodes. For t ≥ 1, Gs,r(t) is obtained by adding a
node group Rs for each node in every existing graph Rs of Gs,r(t− 1), where each node
group Rs can be a cycle Cs with probability p or a complete graph Ks with complementary
probability 1− p; this rule is shown in Figure 1. We repeat this growth process until the
network becomes what we need.

sC sK

p p1

, ( )s rG t 1

Figure 1. Iterative rule of the generalized weighted Koch network.

Additionally, for the generalized weighted Koch network we proposed, if r = 1 and
s = 3 are satisfied, we can obtain the classic Koch network mentioned in the literature [19];
when r = 1, we can obtain the expanded Koch networks referred to in Ref. [20]. For s = 3,
the network Gs,r(t) is simplified to the weighted Koch network in Ref. [21]. The above
network models are all special cases of the generalized weighted Koch networks constructed
in this paper.

That is to say, Gs,r(t) can be obtained from Gs,r(t− 1) by the recursive method, where
one can connect each node of existing cluster Rs in Gs,r(t − 1) with a graph of s nodes
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according to probability 0 ≤ p ≤ 1. We denote the two networks corresponding to the
extreme conditions p = 0 and p = 1 as GA

s,r(t) and GB
s,r(t), respectively. Figures 2 and 3

show the growing process of the two determined networks at t = 0, 1, 2. Some topological
properties and ATT of GA

s,r(t) have been described in the literature [22,23], so we mainly
focus on the topological properties and ATT of GB

s,r(t), then estimate the range of parameters
of random network Gs,r(t) by studying the characteristics of two deterministic networks
GA

s,r(t) and GB
s,r(t).

0t 

1t  2t 

Figure 2. The network GA
s,r(t) at first three time steps when s = 5 and r = 1.

Let Nt and Et be the number of nodes and edges of network Gs,r(t), and let ∆N(t)
and ∆E(t) be the number of new nodes and new edges created at time step t, that is
Nt = Nt−1 + ∆N(t) and Et = Et−1 + ∆E(t). Additionally, Cs or Ks in Figure 1 is regarded
as a cluster Rs, the total number of new generated clusters in the Gs,r(t) at time step t is
recorded as R(t), and combining R(t) = (s + 1)R(t− 1) and the initial value R(0) = 1, we
have R(t) = (s + 1)t. Based on the construction method, we obtain

∆N(t) = s(s− 1) · C(t− 1) = s(s− 1)(s + 1)t−1. (1)

0t 

1t  2t 

Figure 3. The network GB
s,r(t) at first three time steps when s = 6 and r = 1.

The number of nodes and edges of networks GA
s,r(t) and GB

s,r(t) are denoted by NZ
t

and EZ
t , Z = A, B. The difference between GA

s,r(t) and GB
s,r(t) is that the cluster Rs selected
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by the probability p is not the same, the number of nodes of all Rs is s, but the number of
their edges is different. So, we have Nt = NA

t = NB
t , and they can be calculated as

Nt = N0 +
t

∑
i=1

∆N(i) = (s− 1)(s + 1)t + 1. (2)

For the number of new edges created at time step t in the network GA
s,r(t), we obtain

∆EA(t) = s2 · R(t− 1) = s2(s + 1)t−1. According to the iterative construction of GA
s,r(t), we

calculate the total number of edges in the network GA
s,r(t) as follows,

EA
t = EA(0) +

t

∑
i=1

∆EA(i) = s(s + 1)t. (3)

Similarly, we examine the number of new edges created at time step t in GB
s,r(t), it

is equal to ∆EB(t) = [s2(s − 1)/2] · R(t − 1) = [s2(s − 1)/2] · (s + 1)t−1, thus, the total
number of edges in GB

s,r(t) is equal to

EB
t = EB(0) +

t

∑
i=1

∆EB(i) =
s(s− 1)

2
(s + 1)t. (4)

Therefore, we can obtain the range of the number of edges of the generalized weighted
Koch network Gs,r(t), which satisfies s(s + 1)t ≤ Et ≤ s(s−1)

2 (s + 1)t.
Referring to Ref. [22], the average degree of GA

s,r(t) is 〈k〉A → 2s/(s− 1) for t → ∞.
On the other hand, the solution of average degree of GB

s,r(t) is

〈k〉B =
2EB

t
NB

t
=

s(s− 1)(s + 1)t

(s− 1)(s + 1)t + 1
, (5)

where 〈k〉B is approximately s for a large t, which shows that the two networks GA
s,r(t)

and GB
s,r(t) are sparse networks according to the standard proposed in the literature [24]

because the condition Et � Nt(Nt − 1)/2 is clearly established. Therefore, we obtain that
the range of average degree of the generalized weighted Koch network Gs,r(t) satisfies
2s/(s− 1) ≤ 〈k〉 ≤ s.

3. Topological Properties and ATT

Next, we discuss some relevant topological characteristics of our network, including
degree distribution, clustering coefficient, diameter and average weighted shortest path,
and give the lower bound of the ATT for our networks.

3.1. Degree Distribution

The degree distribution P(k) is a physical quantity that describes the overall char-
acteristics of the network. It is defined as the probability that a randomly selected node
in the graph has exactly k associated edges. Cumulative degree distribution Pcum(k) is
defined as the probability that the degree of a node is greater than or equal to k, that is,
Pcum(k) = ∑∞

k′=k P(k′). Many networks are regarded as scale-free when their cumulative de-
gree distribution approximately follows a power–law distribution Pcum(k) ∼ k1−γ and the
power exponent γ lies between 2 and 3 [25].

Theorem 1. The cumulative degree distribution of the network GB
s,r(t) obeys a power law distribution

PB
cum(k) = (s− 1)

ln(s+1)
ln 2 k1−γ, γ = 1 +

ln(s + 1)
ln 2

, (6)

and GB
s,r(t) is a scale-free network if, and only if, s = 3.
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Proof. Let kB
i (t) be the degree of node i in network GB

s,r(t) at time step t. When node i joins
the network at time step ti, there is only one Ks connected to it, so we have kB

i (ti) = s− 1.
We can find that the degree of node i depends on the number of cluster Ks, including it. Let
RB(i, t) be the number of cluster Ks including node i at time step t. We can establish the
following relation RB(i, t) = 2RB(i, t− 1), considering the initial condition RB(i, ti) = 1, so
RB(i, t) = 2t−ti . Further, there is a relationship between kB

i (t) and RB(i, t),

kB
i (t) = (s− 1)RB(i, t) = (s− 1)2t−ti . (7)

We know that the degree of node i satisfies kB
i (t) = 2kB

i (t− 1), which shows that the
degree spectrum of GB

s,r(t) is discrete. Table 1 lists the degree spectrum of the two networks
GA

s,r(t) and GB
s,r(t), and nZ(ki)(Z = A, B) represents the number of nodes with degree ki.

Analyzing the degree spectrum of GB
s,r(t), we can obtain its cumulative degree distribution,

PB
cum(k) =

1
NB

t

∞

∑
k′=k

nB(k
′B
i ) =

(s− 1)(s + 1)ti + 1
(s− 1)(s + 1)t + 1

, (8)

we can solve for ti = t− ln k/(s−1)
ln 2 from Equation (7) and substitute ti into Equation (8), then

PB
cum(k) =

(s− 1)(s + 1)t[k/(s− 1)]−
ln(s+1)

ln 2 + 1
(s− 1)(s + 1)t + 1

≈ (s− 1)
ln(s+1)

ln 2 k−
ln(s+1)

ln 2 ,

(9)

when t is large enough, the cumulative degree distribution follows a power law with
exponent γ = 1 + ln(s + 1)/ ln 2 ∈ [2, 3] if, and only if, 1 ≤ s ≤ 3, considering that the
range of the parameter s is s ≥ 3, so the network GB

s,r(t) is a scale-free network when s = 3.
On the other hand, the cumulative degree distribution of GA

s,r(t) can be found in [22]. It is

expressed as PA
cum(k) = 2

ln(s+1)
ln 2 k−

ln(s+1)
ln 2 , which shows that the network GA

s,r(t) also satisfies
the properties of the scale-free network when s = 3. Therefore, we can judge that the
generalized weighted Koch network Gs,r(t) has a remarkable scale-free property when
s = 3. When s > 3, the degree distribution of Gs,r(t) obeys a power-law distribution k1−γ

and the exponent is γ = 1 + ln(s+1)
ln 2 .

Table 1. The degree spectrum of GA
s,r(t) and GB

s,r(t).

t kA
i nA(kA

i ) kB
i nB(kB

i )

0 2 s(s− 1)(s + 1)t−1 s− 1 s(s− 1)(s + 1)t−1

1 2× 2 s(s− 1)(s + 1)t−2 2(s− 1) s(s− 1)(s + 1)t−2

· · · · · · · · · · · · · · ·
ti 2× 2ti s(s− 1)(s + 1)t−ti−1 2ti (s− 1) s(s− 1)(s + 1)t−ti−1

· · · · · · · · · · · · · · ·
t− 1 2× 2t−1 s(s− 1)(s + 1)0 2t−1(s− 1) s(s− 1)(s + 1)0

t 2× 2t s 2t(s− 1) s

3.2. Clustering Coefficient

The overall clustering coefficient of a network is used to quantity the ability of the net-
work to agglomerate, while the local clustering coefficient can measure the agglomeration
near each node in the network. The local clustering coefficient ci corresponding to node i is
defined as the ratio between the number of existing edges ei connecting its ki neighbors and
the number of all possible edges ki(ki − 1)/2 between them, that is, ci = 2ei/ki(ki − 1) [26].
The overall clustering coefficient of the network is denoted as C = 1

|Nt | ∑i∈V(G) ci; it is
defined as the average of ci over all nodes in the network.
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Theorem 2. For the network GB
s,r(t), the solution of the overall clustering coefficient of the whole

network satisfies

CB → 2s + 1
2(s + 1)

, for t→ ∞. (10)

Proof. According to the structure of the network GB
s,r(t), it can be judged that the nodes

with the same degree have the same local clustering coefficient. Therefore, Table 2 shows
the local clustering coefficient and the corresponding number of nodes. nB(kB

i ) represents
the number of nodes with degree kB

i , and c(kB
i ) is the local clustering coefficient of each

node with degree kB
i . Therefore, the overall clustering coefficient CB of GB

s,r(t) is

CB =
1

NB
t

∑
kB

i

c(kB
i ) · nB(kB

i )

=
1

(s− 1)(s + 1)t + 1
[s(s− 1)(s + 1)t−1 +

s(s− 2)(s− 1)(s + 1)t−2

2(s− 1)− 1

+
s(s− 2)(s− 1)(s + 1)t−3

22(s− 1)− 1
+ · · ·+ s(s− 2)

2t(s− 1)− 1
]

→ 2s + 1
2(s + 1)

.

(11)

In the limit of t→ ∞, we have CB → 1, which indicates that the network GB
s,r(t) is high

clustered. We can control the clustering coefficient by adjusting parameter s. For network
GA

s,r(t), when s = 3, the clustering coefficient CA is approximately k−1 in the large limit
of t; otherwise, the clustering coefficient of GA

s,r(t) in other cases is always equal to zero.
Therefore, the generalized weighted Koch networks transition from low clustered to high
clustered, as the probability p keeps increasing in the interval [0, 1].

Table 2. The local clustering coefficient of node in network GB
s,r(t).

t kB
i c(kB

i ) nB(kB
i )

0 s− 1 1 s(s− 1)(s + 1)t−1

1 2(s− 1) s−2
2(s−1)−1 s(s− 1)(s + 1)t−2

· · · · · · · · · · · ·
ti 2ti (s− 1) s−2

2ti (s−1)−1
s(s− 1)(s + 1)t−ti−1

· · · · · · · · · · · ·
t− 1 2t−1(s− 1) s−2

2t−1(s−1)−1 s(s− 1)(s + 1)1

t 2t(s− 1) s−2
2t(s−1)−1 s

3.3. Diameter

The diameter Dmax(t) of a network is used to measure information transmission delays
and find vital nodes in the network. It is defined as the largest distance between any pair
of nodes. Let DA

max(t) and DB
max(t) denote the diameters of GA

s,r(t) and GB
s,r(t), respectively.

Theorem 3. The diameter of the network GA
s,r(t) is equal to

DA
max(t) =

{
( 1

2 + t)s, i is even;
( 1

2 + t)(s− 1), i is odd.
(12)

The diameter of the network GB
s,r(t) is

DB
max(t) = 2t + 1. (13)
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Proof. By the topological structure of GA
s,r(t), we find that a node on the cycle Cs can only

reach another node through a path on the cycle, so we discuss the diameter of the network
GA

s,r(t) according to the parity of the number of nodes.
Case 1. When s is even, we assume that the two nodes with the farthest distance in the

network GA
s,r(t− 1) are x1 and x2. In network GA

s,r(t), y1 is the farthest node to x1 among
the new neighbors of x1, and y2 is the farthest node to x2 among the new neighbors of x2.
New neighbors refer to those nodes generated at time step t among all neighbors. Then,
the diameter of GA

s,r(t) refers to the distance between nodes y1 and y2; we can obtain the
following equation,

DA
max(t) = DA

max(t− 1) + s, (14)

with the help of DA
max(0) = s/2, we can obtain

DA
max(t) = (

1
2
+ t)s. (15)

Case 2. When s is odd, the diameter of the network GA
s,r(t) at two consecutive time

steps t− 1 and t satisfies the following relationship:

DA
max(t) = DA

max(t− 1) + s− 1, (16)

where it is obvious that the diameter of the smallest network GA
s,r(0) is DA

max(0) = (s− 1)/2,
so the expression of diameter can be obtained according to the above recursive formula,

DA
max(t) = (

1
2
+ t)(s− 1). (17)

Considering the construction algorithm of GB
s,r(t), the diameters of GB

s,r(t) and GB
s,r(t− 1)

at two consecutive time steps have the following rule:

DB
max(t) = DB

max(t− 1) + 2, (18)

the initial condition is DB
max(0) = 1, then for any t ≥ 0, we have

DB
max(t) = 2t + 1. (19)

Theorem 3 shows that the propagation efficiency of GB
s,r(t) is more efficient than that

of GA
s,r(t). Among all generalized weighted Koch networks, the network GA

s,r(t) has the
largest diameter and the network GB

s,r(t) has the smallest diameter. Thus, we can determine
that the diameter of the generalized weighted Koch network satisfies 2t + 1 ≤ Dmax(t) ≤
( 1

2 + t)s.

3.4. Average Weighted Shortest Path

In this subsection, we take the weight into account to examine the shortest path be-
tween two nodes in our networks. The average weighted shortest path is defined as Lt =

2
Nt(Nt−1)Dtot(t), where Dtot(t) = ∑i,j∈Gs,r(t),i 6=j dij(t), dij(t) denotes the weighted shortest
path connecting node i and j in network Gs,r(t) [27,28]. We only determine the lower bound
of Lt for our network Gs,r(t) by calculating the average weighted shortest path of GB

s,r(t).

Theorem 4. For the networks GB
s,r(t), when r = 1, its average weighted shortest path is

LB
t =

2[A1(s + 1)t + A2(s + 1)2t + A3t(s + 1)2t]

[(s− 1)(s + 1)t + 1](s− 1)(s + 1)t , (20)
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when r 6= 1, then

LB
t =

2[A4(sr + 1)t + A5(s + 1)2t + A6(sr + 1)t(s + 1)t]

[(s− 1)(s + 1)t + 1](s− 1)(s + 1)t , (21)

the values A1 − A6 are in Appendix A. They are constants that depend on the parameter s and the
weight r, and do not depend on the time step t.

Proof. The recursive construction of the network allows us to calculate the Dtot(t). The net-
work GB

s,r(t + 1) can be divided into s + 1 branches, which we label as GB,n
s,r (t) for n =

1, 2, · · ·, s, s + 1, the center branch GB,1
s,r (t) is a copy of GB

s,r(t), and GB,2
s,r (t), GB,3

s,r (t), · · · ,
GB,s+1

s,r (t) have the same structure as GB
s,r(t), but their edge weights are scaled by a factor

of r. We denote the connected nodes as W1, W2, · · ·, Ws, which connect the copy GB,1
s,r (t)

and other copies GB,n′
s,r (t), n′ = 2, 3, · · ·, s + 1. Therefore, the total of the shortest distances

Dtot(t + 1) satisfies the following relation,

Dtot(t + 1) = (sr + 1)Dtot(t) + Ωt, (22)

where Ωt is the sum over all shortest paths whose nodes are not in the same copy of GB
s,r(t),

that is to say, the paths in Ωt must all go though at least one of the s connected nodes W1,
W2, · · · , Ws. The first term on Equation (22) is the sum of weighted shortest path linking
node i and j in every GB,n′

s,r (t), n′ = 2, 3, · · · , s + 1. Considering the scaling of the edges,
we have

s+1

∑
n=1

∑
i,j∈GB,n

s,r (t)

dij = ∑
i,j∈GB,1

s,r (t)

dij +
s+1

∑
n′=2

∑
i,j∈GB,n′

s,r (t)

dij

= ∑
i,j∈GB

s,r(t)

dij + rs ∑
i,j∈GB

s,r(t)

dij

= (sr + 1)Dtot(t).

(23)

Next, the analytical expression for Ωt is not difficult to find. We denote Ωαβ
t as the sum

of all shortest paths with nodes in GB,α
s,r (t) and GB,β

s,r (t); there are two different situations
that need to be discussed. Let Ωαβ

t denote the sum of the distances of the nodes in GB,n′
s,r to

the nodes in GB,1
s,r for n′ = 2, 3, · · · , s + 1. Moreover, Ωαγ

t represents the sum of nodes in
different GB,n′

s,r , which must pass through GB,1
s,r , but their end node is not in GB,1

s,r . Thus, we
have

Ωt = sΩαβ
t +

s(s− 1)
2

Ωαγ
t . (24)

It can be seen from the above formula that we need to calculate Ωαβ
t and Ωαγ

t to obtain
Ωt. We define a variable

∆t = ∑
i∈GB

s,r(t),i 6=W2

diW2 , (25)

which represents the sum of the distances from all nodes in GB
s,r(t) to node W2; specifically,

we can obtain the following result for GB
s,r(1),

∆1 = (r + 1)(s− 1)2 + (s− 1)r + (s− 1). (26)

Considering the self-similar structure at time step t, we know that the quantity ∆t
evolves recursively as

∆t = r∆t−1 + (s− 1)(r∆t−1 + Nt−1 − 1) + ∆t−1

= (sr + 1)∆t−1 + (s− 1)2(s + 1)t−1.
(27)
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We obtained the recursive relation of ∆t, and combined with the initial condition ∆1
given by Equation (26), we can calculate the expression of ∆t,

∆t =

{
[(s− 1)2t + s2 − 1](s + 1)t−1, r = 1;

(sr + 1)t s−1−(s2−s)r
s(1−r) + (s−1)2

s(1−r) (s + 1)t, r 6= 1.
(28)

Then, we calculate the two variables Ωαβ
t and Ωαγ

t through the variable ∆t, and
the following two cases are discussed.

Case 1. This situation shows that one of α and β must be equal to 1 because only
copy GB,1

s,r (t) and other copies GB,n′
s,r (t) have a common node. Let GB,α

s,r (t) and GB,β
s,r (t) have

a common node Wk, where α, β ∈ [1, s + 1], α 6= β. For two nodes i ∈ GB,α
s,r (t), j ∈ GB,β

s,r (t)
and Wk 6= i, j, we have

Ωαβ
t = ∑

i∈Gα
s,r(t),j∈Gβ

s,r(t)
i,j 6=W2

dij

= ∑
i∈Gα

s,r(t),j∈Gβ
s,r(t)

i,j 6=W2

(diW2 + djW2)

= (Nt − 1) ∑
i∈Gα

s,r(t)
i 6=W2

diW2 + (Nt − 1) ∑
j∈Gβ

s,r(t)
j 6=W2

djW2

= (r + 1)(Nt − 1)∆t.

(29)

Case 2. GB,α
s,r (t) and GB,γ

s,r (t) have no common node, so it must cross two nodes Wk and
Wm in copy GB,1

s,r (t) from node i to j.

Ωαγ
t = ∑

i∈Gα
s,r(t),j∈Gγ

s,r(t)
i,j 6=W2

dij

= ∑
i∈Gα

s,r(t),j∈Gγ
s,r(t)

i,j 6=W2,m 6=2

(diW2 + dW2Wm + dWi′ j)

= r(Nt − 1)∆t + r(Nt − 1)∆t + (Nt − 1)2

= 2r(Nt − 1)∆t + (Nt − 1)2.

(30)

where dW2Wm = 1 is used, and Wm refers to other nodes on GB
s,r(t − 1) except node W2.

Substituting Equations (29) and (30) into Equation (24), we have

Ωt = s[r(Nt − 1)∆t + (Nt − 1)∆t] +
s(s− 1)

2
[2r(Nt − 1)∆t + (Nt − 1)2], (31)

Considering Equations (2) and (28), then substituting them into Equation (31), we ob-
tain the following.

If r = 1, then

Ωt = [s(s− 1)3t +
(3s2 + s)(s− 1)2

2
](s + 1)2t. (32)

If r 6= 1, we have

Ωt =
(s− 1)2(1− s2r2)

1− r
(sr + 1)t(s + 1)t +

(s2 − s)r + s2 + s− 2
2(1− r)

(s− 1)2(s + 1)2t. (33)
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According to Equation (22) and the initial condition Dtot(0) = s(s−1)
2 , the result of

Dtot(t) can be obtained by the recursive formula. If r = 1, we have

Dtot(t) = (s + 1)t s2(s2 − 1) + 2(s− 1)3(s + 1)− (3s2 + s)(s− 1)2

2s(s + 1)

+ (s + 1)2t−2(s− 1)3 − 2s(s− 1)3 + (3s2 + s)(s− 1)2

2s(s + 1)

+ t(s + 1)2t (s− 1)3

s + 1
.

(34)

When r 6= 1, we obtain

Dtot(t) = (sr + 1)t{ s(s− 1)
2

− (s− 1)2(1− s2r2)

s(1− r)(sr + 1)

+
[(s2 − s)r + s2 + s− 2](s− 1)2(s + 1)2

2(1− r)[sr + 1− (s + 1)2](sr + 1)
}

+ (s + 1)2t [(s
2 − s)r + s2 + s− 2](s− 1)2

2(1− r)[sr + 1− (s + 1)2]

+ (sr + 1)t(s + 1)t (s− 1)2(1− s2r2)

s(1− r)(sr + 1)
.

(35)

Further, according to the equation Lt =
2

Nt(Nt−1)Dtot(t), substituting Equations (34) and (35)
into it, we can obtain the average weighted shortest path for r = 1,

LB
t =

2[A1(s + 1)t + A2(s + 1)2t + A3t(s + 1)2t]

[(s− 1)(s + 1)t + 1](s− 1)(s + 1)t . (36)

For r 6= 1, we can obtain

LB
t =

2[A4(sr + 1)t + A5(s + 1)2t + A6(sr + 1)t(s + 1)t]

[(s− 1)(s + 1)t + 1](s− 1)(s + 1)t , (37)

where A1, A2, A3, A4, A5, A6 are constants that do not depend on the time step t, they are
only related to s and r. Appendix A contains the detailed values of A1 − A6. Therefore,
we can determine that the lower bound of the average weighted shortest path of network
Gs,r(t) is equal to LB

t .

3.5. ATT on Random Walk with Weight

Next, we derive analytically the average trapping time on random walk with weight
and show how it scales with the network order and parameters r and s. The strength of a
node integrates the information concerning its connectivity and the weights of its edges. Let
si = ∑j∈N(i) wij be the strength of node i. The walker starting from a given node i moves to
its neighbor node j with probability pi→j at each step, and the transition probability from
node i to j is

pi→j =
wij

si
=

wij

∑j∈N(i) wij
, (38)

where N(i) is the neighbors of node i. For the convenience of description, let us denote
all nodes in Gs,r(t− 1) by 1, 2, · · · , Nt−1 − 1, Nt−1, and Nt−1 + 1, Nt−1 + 2, · · · , Nt − 1, Nt

represent other nodes generated at time step t. Let T(t)
i be the MFPT from node i to the

trap. 〈T〉t denotes the ATT, which is defined as the mean of T(t)
i starting from all sources

of nodes over the whole network to the trap node. It is the core issue considered in this
subsection. By definition, 〈T〉t is given by
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〈T〉t =
1

Nt − 1

Nt

∑
i=2

T(t)
i , (39)

and further, we denote the sum of MFPTs for all nodes to absorption at the trap located the
one of the nodes of G(0) as Ttot(t), that is

Ttot(t) =
Nt

∑
i=2

T(t)
i . (40)

Theorem 5. Let r > 0 be a weight factor. When r = 1, the average trapping time of the network
GB

s,r(t) is

〈T〉Bt =
1

(s− 1)(s + 1)t [B1(1 + s)t + B2(1 + s)2t − B3t(1 + s)t], (41)

when r 6= 1, then

〈T〉Bt =
1

(s− 1)(s + 1)t [B4(1 + sr)t + B5(1 + sr)t(1 + s)t − B6(1 + s)t], (42)

where B1 − B6 is in Appendix B. The relationship between the average trapping time and the
network order Nt can be expressed as

〈T〉t ∼
{

Nt, r = 1;

N
logs+1(rs+1)
t , r 6= 1.

(43)

Proof. For a certain time step ti, the nodes generated at time step ti are called new nodes,
and the nodes added to the network before time step ti are called old nodes. Then, we let
X be the MFPT starting from node i to any of its ki(t− 1) old neighbors, and let Y be the
MFPT from any of new neighbors of node i to one of its ki(t− 1) old neighbors; thus, we
can establish the following relations among X and Y,

X =
1

r + 1
+

r
r + 1

(1 + Y),

Y =
1

s− 1
(1 + X) +

s− 2
s− 1

(1 + Y).
(44)

We obtain that the result is X = 1 + sr. Upon the evolution of the weighted network
from time step t to time step t + 1, the trapping time for an arbitrary node i increases by a
factor of 1 + sr, that is

T(t+1)
i = (1 + sr)T(t)

i . (45)

Next, we consider the MFPT of all nodes in light of the classification of new nodes and
old nodes, which is written as the following formula:

T(t)
t,tot = T(t)

t−1,tot + T(t)
t,tot = (1 + sr)T(t−1)

t−1,tot + T(t)
t,tot, (46)

where T(t)
t,tot is the sum of MFPTs for all new nodes. Equation (46) shows that the focus

of our calculation is T(t)
t,tot. According to the construction of network GB

s,r(t), as shown in
Figure 4, for the new complete graph Ks involving a node v, the first passage times for its
s− 1 nodes Q1, Q2, · · · , and Qs−1, and that of its old node v follow the relations,
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T(Q1) = 1 +
1

s− 1
[T(v) + T(Q2) + T(Q3) + · · ·+ T(Qs−1)],

T(Q2) = 1 +
1

s− 1
[T(v) + T(Q1) + T(Q3) + · · ·+ T(Qs−1)],

· · · · · ·

T(Qs−1) = 1 +
1

s− 1
[T(v) + T(Q1) + T(Q2) + · · ·+ T(Qs−2)].

(47)

According to the above equations, we obtain

T(Q1) + T(Q2) + · · ·+ T(Qs−1) = (s− 1)2 + (s− 1)T(v), (48)

summing Equation (48) over all the R(t) = (s + 1)t old Ks pre-existing at the time step t.
Let V(t) be the set of all nodes of the GB

s,r(t). It contains all old nodes in network GB
s,r(t),

T(t+1)
t+1,tot = s(s− 1)2R(t) + ∑

i∈V(t)
[(s− 1) · RB(i, t) · T(t+1)

i ]

= s(s− 1)2(s + 1)t + (s− 1)T(t+1)
t,tot + 2(s− 1)T(t+1)

t−1,tot

+ · · ·+ 2t(s− 1)T(t+1)
0,tot .

(49)

Similarly, it is not difficult to write T(t)
t,tot as

T(t)
t,tot = s(s− 1)2(s + 1)t−1 + (s− 1)T(t)

t−1,tot + 2(s− 1)T(t)
t−2,tot

+ · · ·+ 2t−1(s− 1)T(t)
0,tot.

(50)

Multiplying Equation (50) with 2(1+ sr) and subtracting the result from Equation (49),
we obtain

T(t+1)
t+1,tot = (1 + sr)(1 + s)T(t)

t,tot + s(s− 1)2(s− 2sr− 1)(s + 1)t−1. (51)

Considering T(1)
1,tot =

4s2−32s+16
s−4 , substituting T(1)

1,tot into Equation (51), we can compute
Equation (51) to yield

T(t)
t,tot = [

4s2 − 32s + 16
s− 4

+
s(s− 1)2(s− 2sr− 1)
(1 + sr)(1 + s)− s− 1

](1 + sr)t−1(1 + s)t−1

− s(s− 1)2(s− 2sr− 1)
(1 + sr)(1 + s)− s− 1

(s + 1)t−1,
(52)

substituting Equation (52) into Equation (46) and taking the initial value T(1)
1,tot =

4s2−40s+24
s−4

into consideration. When r = 1, we have

T(t)
t,tot = (1 + s)t[

4s2 − 40s + 24
(s− 4)(s + 1)

− (s− 1)2

s(1 + s)
− 4s2 − 32s + 16

s2 − 4s
]

+ (1 + s)2t[
4s2 − 32s + 16
(s2 − 4s)(1 + s)

− (s− 1)2

s(1 + s)
]

+ t(1 + s)t (s− 1)2

1 + s
.

(53)
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If r 6= 1, we obtain

T(t)
t,tot = (1 + sr)t−1 4s2 − 40s + 24

s− 4
+ [

4s2 − 32s + 16
s− 4

+
s(s− 1)2(s− 2sr− 1)
(1 + sr)(1 + s)− s− 1

](1 + sr)t−1 · (1 + s)[(1 + s)t−1 − 1]
s

− s(s− 1)2(s− 2st− 1)
(1 + sr)(1 + s)− s− 1

· (1 + sr)t−1(1 + s)− (1 + s)t

sr− s
.

(54)

Substituting Equations (53) and (54) into Equation (40), if r = 1, we obtain

〈T〉Bt =
1

(s− 1)(s + 1)t [B1(1 + s)t + B2(1 + s)2t − B3t(1 + s)t], (55)

where B1, B2, B3 are constants independent of t, so 〈T〉Bt ∼ Nt for t → ∞. Additionally,
if r 6= 1, we can obtain

〈T〉Bt =
1

(s− 1)(s + 1)t [B4(1 + sr)t + B5(1 + sr)t(1 + s)t − B6(1 + s)t], (56)

where B4, B5, B6 are parameters that have nothing to do with t, as they are only related to
parameters r and s. The detailed values of B1 − B6 are given in Appendix B. Next, we show
how to express 〈T〉Bt in terms of network order Nt. We can obtain t = logs+1(

1
s−1 Nt − 1

s−1 )

from Nt = (s− 1)(s + 1)t + 1, so we have

〈T〉Bt = N
logs+1(1+sr)
t , (57)

for t → ∞. The above results show that 〈T〉Bt grows linearly with the network order
when r = 1, while 〈T〉Bt grows sub-linearly and super-linearly with Nt if r < 1 and r > 1,
respectively. We find that the weight r can modify not only the prefactor of 〈T〉Bt , but also
the scaling of 〈T〉Bt . This means that the lower bound of the ATT with the weight of the
generalized weighted Koch network Gs,r(t) is 〈T〉Bt .

1Q

2Q

3Q

iQ

3sQ 

2sQ 

1sQ 

Figure 4. The positional relationship between node v and its neighbors.

4. Conclusions

In this paper, we construct a class of random networks according to probability p and
normal Koch networks, and give the necessary and sufficient conditions for such networks
to be scale free. For two deterministic network models GA

s,r(t) and GB
s,r(t) corresponding to

two extreme conditions p = 0 and p = 1, we give exact solutions for topological parameters,
including the clustering coefficient, diameter, average weighted shortest path and average
trapping time. In view of this, we determine the range of topological parameters of random
network Gs,r(t). Furthermore, we reveal the effect of weights on ATT, that is, ATT grows
linearly with the network order when the weight r = 1; otherwise, ATT grows superlinearly
and sub-linearly with the network order when r > 1 and r < 1. These topological features
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and dynamic characteristics allow us to better understand some fundamental properties of
complex networks.
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Appendix A. The Values of A1–A6

In Appendix A, we give the analytical values of A1, A2, A3, A4, A5, A6 involved in
Theorem 4.

A1 =
s2(s2 − 1) + 2(s− 1)3(s + 1)− (3s2 + s)(s− 1)2

2s(s + 1)
,

A2 =
−2(s− 1)3 − 2s(s− 1)3 + (3s2 + s)(s− 1)2

2s(s + 1)
,

A3 =
(s− 1)3

s + 1
,

A4 =
s(s− 1)

2
− (s− 1)2(1− s2r2)

s(1− r)(sr + 1)
+

[(s2 − s)r + s2 + s− 2](s− 1)2(s + 1)2

2(1− r)[sr + 1− (s + 1)2](sr + 1)
,

A5 =
[(s2 − s)r + s2 + s− 2](s− 1)2

2(1− r)[sr + 1− (s + 1)2]
,

A6 =
(s− 1)2(1− s2r2)

s(1− r)(sr + 1)
.

(A1)

Appendix B. The Values of B1–B6

In Appendix B, we give the values of B1, B2, B3, B4, B5, B6 involved in Theorem 5.

B1 =
4s2 − 40s + 24
(s− 4)(s + 1)

− (s− 1)2

s(1 + s)
− 4s2 − 32s + 16

s2 − 4s
,

B2 =
4s2 − 32s + 16
(s2 − 4s)(1 + s)

− (s− 1)2

s(1 + s)
,

B3 = − (s− 1)2

1 + s
,

B4 =
4s2 − 40s + 24
(s− 4)(1 + sr)

− (4s2 − 32s + 16)(1 + s)
s(s− 4)(1 + sr)

− (s− 1)2(s− 2sr− 1)(1 + s)
(1 + s)(s2r2 + sr)

− (s− 1)2(s− 2sr− 1)(1 + s)
(1 + s)(s2r2 + sr)(r− 1)

,

B5 =
4s2 − 32s + 16

s(s− 4)(1 + sr)
+

(s− 1)2(s− 2sr− 1)
(1 + s)(s2r2 + sr)

,

B6 =
(s− 1)2(s− 2r− 1)

[(1 + sr)(1 + s)− s− 1](r− 1)
.

(A2)
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