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Abstract: Space exploration is a hot topic in the application field of mobile robots. Proposed solutions
have included the frontier exploration algorithm, heuristic algorithms, and deep reinforcement
learning. However, these methods cannot solve space exploration in time in a dynamic environment.
This paper models the space exploration problem of mobile robots based on the decision-making
process of the cognitive architecture of Soar, and three space exploration heuristic algorithms (HAs)
are further proposed based on the model to improve the exploration speed of the robot. Experiments
are carried out based on the Easter environment, and the results show that HAs have improved the
exploration speed of the Easter robot at least 2.04 times of the original algorithm in Easter, verifying
the effectiveness of the proposed robot space exploration strategy and the corresponding HAs.

Keywords: space exploration; cognitive computing; Soar; heuristic algorithms; reinforcement learning

1. Introduction

Space exploration refers to the robot exploration of an unknown environment with
the goal of completing a specific task [1]. This problem and the use of mobile robots have
been applied in multiple scenarios, such as searching for rescue operations [2], automating
the self-driving vehicles [3], exploring the ground to clean up garbage, and so on.

To solve the space exploration problem of mobile robots, the most common method
used is the frontier exploration algorithm. The robot explores the environment by moving
to the boundaries of the known parts, and gradually expands the known map to the entire
environment that needs to be explored, completing the space exploration task [4]. Heuristic
algorithms have also been used in space exploration problems [5,6]. Some examples are the
colony algorithm [7], the ant colony algorithm [8], and the particle swarm algorithm [9].

Reinforcement learning is another method used to solve the space exploration problem
of mobile robots in unknown environments [10,11]. This is due to its characteristics that
enable agents to have learning capabilities and recognition, e.g., through image processing.
With reinforcement learning the robot’s state characteristics are defined, and the problem
to be solved is limited by its dimensionality [12]. Therefore, deep reinforcement learning is
utilized to solve the shortcomings of reinforcement learning. Through deep reinforcement
learning, mobile robots can automatically learn state features and reduce the dimensionality
of the problems through interaction with the environment [13–15].

A common weakness in the above methods is that the environment information needs
to be explored or pretrained based on a static information [16]. It cannot be collected or
updated during the space exploration for re-exploring and retraining, limiting the dynamic
capabilities of the solutions.

In contrast, cognitive computing provides a mechanism to continuously learn knowl-
edge in an interactive manner, e.g., in a dynamic environment with data changing continu-
ously [17]. With the use of perceptual data [18], cognitive computing is utilized to simulate
cognitive processes, such as thinking and memorizing operations [19]. By analyzing cog-
nitive mechanism, cognitive agents can construct cognitive computing system, execute
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cognitive processes, and simulate human thinking processes, such as perception, attention,
and memory [20].

Based on cognitive computing—which can process changing data as a human being
can, and which is able to evaluate its cognitive memory through reinforcement learning—in
this paper, we propose a model for mobile robot space exploration. In the construction
of this model we use the cognitive architecture of Soar, where the long-term procedural
memory is optimized. Furthermore, three heuristic algorithms based on the proposed space
exploration model are presented to solve problems in unknown environments.

The contributions of this paper can be summarized as follows:

• Proposing a space exploration model based on the decision-making process of Soar for
the cognitive robot agent. With the model, Soar is utilized to reason relevant tasks and
objectives based on the problem space, so as to solve the space exploration problem.

• Proposing three heuristic space exploration algorithms as the novel planning knowl-
edge based on the space exploration model, which are implemented in Easter to
improve the space exploration speed of the mobile robot.

The rest of this paper is organized as follows. Related work is presented in Section 2. In
Section 3, we briefly overview the architecture of Soar, and then detail its key components,
such as its learning mechanism and decision process. Then, the modeling method of space
exploration based on the Soar is introduced in Section 4. Experiments are carried out based
on the Easter, a demo agent of Soar, in Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

Space exploration in unknown environments is one of the applications of mobile
robots, which can effectively reduce the workload of the staff and even rescue the lives of
victims. For example, in harsh urban search and rescue scenarios, mobile rescue robots can
be deployed to help explore unknown chaotic environments while searching for trapped
victims, reducing the workload for rescuers. To complete tasks of space exploration quickly
and accurately, robots need to have the ability of complex obstacle avoidance and that of
perception to real-time dynamic environments.

The earliest algorithm used to solve the single-robot space exploration problem is
the frontier exploration algorithm. In [21], Erkan et al. combined the frontier exploration
algorithm with the robotic operation system (ROS). They tested a real robot platform, and
compared and analyzed the effects of different frontier target allocation methods through
the total path length and total exploration time. Due to the slow speed of traditional
frontier exploration algorithms, researchers committed to improve the frontier exploration
algorithm to increase its exploration speed. For example, later proposals focused on
combining the frontier-based exploration algorithm with the line-of-sight exploration
algorithm [22] and adding additional parameters to improve the decision-making speed of
frontier exploration algorithm [23].

On the other hand, some authors abstracted the robotic space exploration into the
path planning or traveling salesman problems. For example, Pei-Cheng Song et al. [24]
proposed an improved cuckoo search algorithm based on compact parallel technology for
the 3D path planning problem, which effectively saves the memory of unmanned robots.
Jeng-Shyang Pan et al. [25] proposed a hybrid differential evolution algorithm CIJADE
that combines improved CIPDE (MCIPDE) and improved JADE (MJADE), and applied
the algorithm to the path planning problem of unmanned aerial vehicles. Experimental
results shows that the algorithm can effectively find the optimal or near-optimal flight
path of the UAV. Based on it, researchers converted the single-robot space exploration
problems into a multi-robot collaborative space exploration problems. The idea was to
improve the speed of space exploration by bionic algorithms through multiple robots,
such as particle swarm optimization (PSO) and whale optimization algorithm (WOA).
In [26], the authors applied robotic particle swarm optimization (RPSO) to the robot space
exploration problem, and the method of calculating the PSO global optimal parameters was
utilized to maximize the robot’s exploration area. In [27], a new framework was proposed
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that integrates deterministic coordinated multi-robot exploration (CME) and meta-heuristic
frequency correction WOA technology to simulate the predating behavior of whales for
search and detection. In [28], researchers proposed a random detection algorithm and
applied it to the WOA.

Haoran et al. [3] proposed a decision-making algorithm based on deep reinforcement
learning, which learned exploration strategies from local maps through deep neural net-
works. Farzad et al. [2] combined the traditional frontier-based exploration algorithm with
deep reinforcement learning, in order to enable the robot autonomously to explore the
unknown chaotic environment.

Compared with other space exploration algorithms, the learning-based space explo-
ration technology can explore the environment earlier, allowing a larger space area to be
explored at the same time. However, tasks such as target searching and navigation of
robots require a high-level spatial perception, reasoning, and planning abilities to adapt
to the dynamically changing environment in practical application. Cognitive computing
can enable robots with human-like cognitive level, which is an effective way to solve
the problem mentioned above. FU Yan et al. [29] applied the ACT-R cognitive theory to
establish a new knowledge representation and processing method for robots to improve the
flexibility of natural language and promote the cooperation between humans and robots,
which proved the effectiveness of applying cognitive computing to robot space exploration.

Soar is a cognitive computing architecture for constructing general intelligent systems
developed by the Artificial Intelligence Laboratory of the University of Michigan [30].
It abstracts all goal-oriented behaviors as the selection and application of operators to a
state. Long-term program knowledge is a key part of Soar architecture—without long-term
program knowledge, Soar architecture cannot solve any problem. In this paper, we solve
the space exploration problem of mobile robots in unknown environments by optimizing
the long-term program memory of the Soar architecture.

3. Soar Architecture
3.1. Overview

The cognitive computing architecture of Soar abstracts all goal-oriented behaviors,
such as the operator’s selection and application of a state. State refers to the current
situation that needs to be solved, operator is used to transform from a state to another state,
and the goal is the expectation of the problem that needs to be solved.

Soar architecture consists of four parts: long-term procedural knowledge, learning
mechanism, working memory, and decision procedure. Its structure is illustrated in Figure 1.
During the execution of Soar, it continuously applies the current operator and selects the
next operator until it reaches the goal state [31]. The selection and application process of
operators is shown in Figure 2. The current situation, including data from sensors, results
of intermediate inferences proposed during decision procedure, active goals, and active
operators is held in working memory. Long-term procedural knowledge specifies how to
respond to different situations in working memory and can be thought of as the program for
Soar. The Soar architecture is also able to adjust the operator’s choice knowledge according
to a given reward function through a learning mechanism.

Soar stores the agent’s current environment information and long-term procedural
knowledge possessed by the agent through memory. The current environment information
of the agent is stored in the working memory, which mainly consists of data from sensors,
intermediate inference results, targets, and operators. Long-term procedural knowledge
defines how agents act in different situations and is stored in memory in the form of rules.

The working memory is composed of working memory elements (WMEs). Each WME
contains specific information, such as “the length of A is 5”. Therein, “A” is called as the
identifier, and WMEs which share this identifier are called objects in working memory. The
“length” is an attribute of A, and each object has different attributes. Each attribute has a
value associated with it, called as attribute value. Therefore, each WME is composed of a
triple tuple, namely the identifier–attribute–attribute value.
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Figure 1. Soar architecture.

Figure 2. The execution process of Soar.

Soar regards long-term procedural knowledge as rules stored in production memory,
as shown in Figure 3. Each production has a set of conditions and a set of actions. If the
production conditions match the working memory, the production is triggered and the
operation is executed.

Figure 3. Productions in Soar.

3.2. Learning Mechanism

Soar adopts the reinforcement learning (RL) mechanism to adjust operator selection
knowledge based on a given reward function. In this section, the RL mechanism is de-
tailed and explained how it is integrated with production memory, decision cycles, and
state stacks.

Soar’s RL mechanism learns the Q value of the state–operator pair. Q values are stored
as preferences which are numeric-indifferent, and these preferences are generated by RL
rules. Each rule is represented as a production of Soar. Syntactically, each production [30]
consists of the symbol “sp”, followed by an opening curly brace “{”, the production’s name
(optional), the documentation string (optional), the production’s type (optional), comments
(optional), the production’s conditions (also called the left side, or LHS), the symbol “–>”
(literally: dash–dash–greater than), the production’s actions (also called as the right side, or
RHS), and a closing curly brace “}”. Each element of a rule is separated by white space.
Indentation and linefeeds are used by convention, but are not necessary. It is a RL rule
if—and only if—the LHS of a rule checks the proposed operator and the RHS proposes to
create a numeric-indifferent preference. Numeric-indifferent preference means the value of
the proposed operator is an number.
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For example, Algorithm 1 is an example of a RL rule because its LHS checks the
proposed alternative operator < o > + (the symbol “+” means that the operator < o > is a
candidate for selection) and creates a numeric-indifferent operator < o > whose value is 1.5.
The rule means: check whether there is an operator with attribute value (name = taskName,
x = 3, y = 12). If it exists, then a numeric-independent operator is proposed.

Algorithm 1 RL rule in the form of production.

1: sp {
2: (state〈s〉 ∧name taskName ∧x 3 ∧y 12
3: ∧operator 〈o〉+)
4: (〈o〉 ∧name move ∧direction le f t)
5: →
6: (〈s〉 ∧operator 〈o〉 = 1.5)
7: }

Soar’s RL mechanism is integrated with the decision cycle to update RL rules. When-
ever the RL operator is selected, the value of the corresponding RL rule will be updated.
There are two types of RL mechanism in Soar—Sarsa and Q-Learning. The algorithm
presented in this paper adopts the Q-Learning learning mechanism. For Q-Learning, its
updating formula is shown in Formula (1).

δt = α

(
rt+1 + γ max

a∈At+1
Q(St+1, a)−Q(St, at)

)
(1)

Therein, Q(st, at) represents the Q value of state S and operator a corresponding to the
current decision cycle t, At+1 represents the set of operators proposed in the next decision
cycle, maxa∈At+1 Q(st+1, a) indicates the maximum value of Q that the state can obtain in
the next decision cycle, rt+1 indicates the total reward value collected in the next decision
cycle, while α and γ represent the learning rate and discount factor of the Q-Learning
algorithm, respectively.

3.3. Decision Process

The execution of a Soar program goes through a series of decision cycles. Each decision
cycle consists of five phases: the input phase, the proposal phase, the decision phase, the
application phase, and the output phase. In the input phase, new sensor data is transferred
to the working memory. In the proposal phase, all rules can be triggered in parallel and
withdrawn as the state changes. Soar selects the next operator in the decision phase. Soar
executes the operator selected in decision cycle phase, and acts on the external environment
in the output phase.

Soar interacts with the external environment that allows it to receive input from the
environment and affects the environment. To accomplish the interaction, Soar adopts the
mechanism provided named as input-link and output-link. The input-link adds and deletes
elements from working memory according to changes of the external environment. The
output-link makes it act based on the external environment. The input-link is processed
at the beginning of each execution process, and the output-link occurs at the end of each
execution process.

4. Space Exploration Modeling

In order to solve the space exploration problem of the mobile robot through the
cognitive architecture of Soar, this section constructs a model for space exploration of
cognitive robot agent based on the decision-making process of Soar. Firstly, the external
information perceived by the cognitive agent and the internal operation information are
stored in the working memory of the agent. Then, the long-term procedure memory is set,
and the processing mechanism of Soar is utilized to reason relevant tasks and objectives
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based on the problem space, so as to simulate human behaviors and be applied to the space
exploration of mobile robots.

The model is depicted in Figure 4. Therein, long-term procedural knowledge mainly
consists of task knowledge, feature knowledge, and planning knowledge. Task knowledge
refers to the tasks that the mobile robot agent needs to complete, planning knowledge
refers to the planning strategy representation of the robot agent to complete the task, and
feature knowledge refers to the environment description of the problem that needs to be
solved by Soar and the memory structure that needs to be initialized.

Figure 4. Soar-based space exploration model.

The space exploration process is described in Algorithm 2. Notice that the long-term
procedure memory, which was introduced in Section III, is set in the form of productions,
and it includes task knowledge, feature knowledge, and planning knowledge. Secondly,
the working memory are initialized as shown in line 2, where the initial state s0 and the
goal state g are initialized. Then the cognitive robot agent will acquire the perception
information from external environment and transmit data into working memory through
the input-link as shown in line 3. Next, Soar will propose production according to the
feature knowledge and select an action according to planning knowledge in long-term
procedure memory, as shown in lines 4–5. Afterwards, Soar will apply the action by
transmitting it through output-link to perform the action on the external environment. At
the same time, the action will be appraised by RL mechanism with rewards as shown in
line 8. In lines 9–13, the agent will be decided whether it has achieved the goal state. If it
does, then it stops the iteration, otherwise it returns to line 3.

Algorithm 2 Space exploration process based on Soar.

1: Set the long-term procedure memory: task knowledge, feature knowledge and
planning knowledge

2: Initialize working memory, such as the initial state s0 and the goal state g
3: Perceive the data from the environment
4: Transmit data through input-link
5: Propose production according to the feature knowledge
6: Select action according to planning knowledge
7: Transmit the selected action a through output-link
8: Appraise action by a RL mechanism
9: Apply the selected action a to arrive next state s−

10: if s−=g
11: stop
12: else if s=s−
13: return to line 3
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5. Heuristic Space Exploration Algorithms

As described in Algorithm 2, the action of the space exploration process is determined
by the planning knowledge. Although Soar can be utilized to construct general intelligent
systems, the practical intelligent application system is still under research. One of the
research systems is Easter (https://github.com/SoarGroup/Domains-Eaters-TankSoar/
tree/master/agents/eaters, accessed on 16 January 2022), a mobile robot game created
based on Soar, which is provided by the research team of Soar. We have applied the
planning knowledge in Easter. To further improve the efficiency of the space exploration,
three heuristic space exploration algorithms are proposed as the novel planning knowledge,
including the left-hand algorithm, the right-hand algorithm, and the depth-first algorithm,
which are also implemented in Easter.

5.1. Easter Overview

In Easter, eaters compete to consume food in a simple grid world, and the external
environment is an L × L grid world, where L is the number of cells in the horizontal or
vertical direction of the grid. The grid is surrounded by closed walls, and the intersection is
differentiated as a normal food cell, a bonus food cell or an obstacle. The reward food cells
and obstacles are randomly distributed in the intersections of the grid. Therein, the reward
food cell has two types of reward values: Rnormal and Rbonus. The cell with Rnormal reward
values is called as a normal food cell, and the cell with Rbonus reward values is called as a
bonus food cell. As it is shown in Figure 5, the bonus food cells are the red intersections,
and the normal food cell are blue intersections, while the obstacles are black intersections.

Figure 5. The food distribution in grid world.

The Easter robot agent starts from a random cell, and continues to move up, down,
left, or right through space exploration strategy. When the robot agent moves in a cell
without obstacles, it will receive corresponding rewards according to the type of cell. For
example, it will receive Rbonus rewards when it reaches the bonus food cell, while it will
receive Rnormal rewards when it reaches the normal food cell. If all the food in the grid
is obtained, then the robot stops exploring, or it continues the exploring process, which
means that the goal of Easter is to eat all the food in the grid environment.

5.2. Space Exploration Algorithms

In the original Easter, a random exploration strategy is implemented, as can be seen
in Algorithm 3. Therein, an Easter agent checks bonus food, normal food, and space,
sequentially. If the number of the checked cell is more than one, then the Easter agent
randomly chooses one of the checked cell and move to it. Otherwise, the agent moves to the
unique cell. This section proposes an heuristic space exploration strategy to improve the
exploration efficiency, as shown in Algorithm 4. The same as that in Algorithm 3, an Easter
agent checks bonus food, normal food, and space, sequentially, in Algorithm 4. However,
the Easter agent will move according to one of the proposed heuristic algorithms (HAs),

https://github.com/SoarGroup/Domains-Eaters-TankSoar/tree/master/agents/eaters
https://github.com/SoarGroup/Domains-Eaters-TankSoar/tree/master/agents/eaters
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such as the left-hand algorithm (Algorithm 5), the right-hand algorithm (Algorithm 6), or
the depth-first algorithm (Algorithm 7), depicted as follows.

• Left-hand algorithm (LA): In the current state, the agent first judges whether there is
an obstacle in the left cell. If not, then it moves to the left. Otherwise, it continues to
judge if there is an obstacle in the front cell. If not, then it moves ahead, or it moves to
the right.

• Right-hand algorithm (RA): In the current state, the agent first judges whether there
is an obstacle in the right cell. If not, then it moves to the right. Otherwise, it continues
to judge if there is an obstacle in the front cell. If not, then it moves ahead, or it moves
to the left.

• Depth-first algorithm (DFA): In the current state, the agent first judges whether there
is an obstacle in the front cell. If not, then it moves ahead. Otherwise, it continues to
judge if there is an obstacle in the left cell. If not, then it moves to the left, or it moves
to the right.

Algorithm 3 Random space exploration.

1: Initial start state
2: if There is Nbonus bonus food around
3: if Nbonus > 1
4: Move to one of bonus food points randomly
5: else
6: Move to the unique bonus food point
7: elseif There is Nnormal normal food around
8: if Nnormal > 1
9: Move to one of normal food points randomly

10: else
11: Move to the unique normal food point
12: else
13: if Nspace > 1
14: Move to one of Nspace space food points randomly
15: else
16: Move to the unique space food point

Algorithm 4 Space exploration with heuristic algorithms.

1: Initial start state
2: if This is Nbonus bonus food around
3: if Nbonus > 1
4: Move according to HA
5: else
6: Move to the unique bonus food point
7: elseif There is Nnormal normal food around
8: if Nnormal > 1

Move according to HA
9: else

10: Move to the unique normal food point
11: else
12: if Nspace > 1
13: Move according to HA
14: else
15: Move to the unique space food point



Entropy 2022, 24, 426 9 of 14

Algorithm 5 Left-hand algorithm.

1: Initial start state
2: if no obstacles on the left
3: Move left
4: elseif no obstacles ahead
5: Move ahead
6: else
7: Move right

Algorithm 6 Right-hand algorithm.

1: Initial start state
2: if no obstacles on the right
3: Move right
4: elseif no obstacles ahead
5: Move ahead
6: else
7: Move left

Algorithm 7 Deep-first algorithm.

1: Initial start state
2: if no obstacles ahead
3: Move ahead
4: elseif no obstacles on the left
5: Move left
6: else
7: Move right

6. Experiments and Performance Analysis

Experiments were carried out based on the Easter environment. Although the pro-
posed model and HAs can also be implemented in other robot agents, currently only Easter
is applicable for us, while the other practical intelligent robot systems are still under re-
search. Therefore, we compared the proposed heuristic space exploration algorithms with
the original one in Easter. In the remainder of this section, the experimental environment is
first presented, followed by the comparative experiments. Analysis is further expanded
based on the experimental results.

6.1. Configuration of the Experiments

Based on Easter, all the comparative algorithms were implemented in the Soar gram-
mar, and their running environment was SoarJavaDebugger.

In order to enable the robot to recognize the attributes of the current state in the process
of space exploration, the feature knowledge is defined as the alternative moving directions
of the robot in the current state. Especially, it is represented in form of a triple tuple as
(direction_one, action, direction_two). Therein, direction_one in the tuple is the source
direction, action is the moving action of the agent, and direction_two is the destination
direction. For example, in Figure 6, when the robot agent reaches the state S2 from the
state S1, the feature knowledge is defined as (north, left, east), (north, ahead, north), (north,
right, west). The meaning of the feature knowledge is described below.

• (north, left, east) The agent is from S1 by moving north and has a state S2. If it
continues moving left, then the destination direction is east.

• (north, ahead, north) The agent is from S1 by moving north and has a state S2. If it
continues moving ahead, then the destination direction is north.

• (north, right, west) The agent is from S1 by moving north and has a state S2. If it
continues moving right, then the destination direction is west.
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Figure 6. Mobile robot enters state S2 from state S1.

Algorithms are compared by evaluating the exploration speed, V, which is defined as
the number of explored effective grid intersections per unit step, as shown in Formula (2).

V = (nt − no)× 103/n (2)

no represents the total number of obstacles in the grid, nt represents the total number of
grid intersections, and n represents the number of steps required to obtain all the food in
the grid world.

The speed rate r between the speed of the heuristic space exploration algorithms and
that of the original space exploration algorithm in Easter is defined in Equation (3). Therein,
VOriginal is the speed of the original space exploration algorithm in Easter, and Valg is the
heuristic space exploration algorithm, where alg ∈ {LA, RA, DFA}.

r = Valg/VOriginal (3)

6.2. Results and Analysis

In Soar’s Q-Learning mechanism, the learning rate α is set as 0.3 and the discount factor
γ is set as 0.9. Other experimental parameters are listed in Table 1, such as L, Rnormal , Rbonus,
and Rtotal . Therein, Rtotal is the total reward of the whole grid world. The experimental
results are shown in Table 2 (Rtotal is set to 1500), Table 3 (Rtotal is set to 3000), Table 4 (Rtotal
is set to 4500), Table 5 (Rtotal is set to 6000).

Table 1. Parameters setting.

Parameter Value

L 15
Rtotal 1500, 3000, 4500, 6000
Rbonus 10
Rnormal 5

Table 2. Exploration speed with Rtotal = 1500.

Algorithm no nt n V r

Original 37 255 3496 62.36 /
LA 45 255 1653 127.04 2.04
RA 38 255 1629 133.21 2.14

DFA 42 255 862 247.10 3.96
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Table 3. Exploration speed with Rtotal = 3000.

Algorithm no nt n V r

Original 43 255 4261 49.75 /
LA 47 255 1311 158.65 3.19
RA 45 255 1210 173.55 3.49

DFA 45 255 1169 179.64 3.61

Table 4. Exploration speed with Rtotal = 4500.

Algorithm no nt n V r

Original 48 255 3076 67.29 /
LA 40 255 1287 167.05 2.48
RA 41 255 1414 151.34 2.25

DFA 45 255 778 269.92 4.01

Table 5. Exploration speed with Rtotal = 6000.

Algorithm no nt n V r

Original 53 255 4263 47.38 /
LA 43 255 1429 127.36 2.69
RA 49 255 1253 148.36 3.13

DFA 45 255 1346 156.02 3.29

Experimental results show that the exploration speed of HAs is always bigger than
that of the original planning algorithm in Easter in different circumstances. Especially,
the HAs can improve the exploration speed at least 2.04 times the original algorithm in
Easter when Rtotal = 1500, and at most 4.01 times the original algorithm in Easter when
Rtotal = 4500.

It can also be seen that none of the space exploration speed of HAs is larger than
that of the other two algorithms. For example, when Rtotal = 1500, VLA > VRA. In other
circumstances, VLA < VRA.

Robustness experiments were further carried out with parameter values listed in
Table 6, where L varies with the same values of Rbonus and Rnormal , and Rtotal changes along
with L. The results are shown in Table 2 (L = 15), Table 7 (L = 20), and Table 8 (L = 25). It
can be seen that with the rise of L, the space exploration speeds up the original algorithm
and HAs decreases. For example, when the grid size L rises from 15 to 20, the speed of
LA decreases from 328.55 to 197.82. Although none of the HAs overwhelms others, the
exploration speed of HAs is always faster than that of the original algorithm. Especially,
when the grid size L is 20, the speed of RA is 8.36 times the original.

Table 6. Robustness experimental parameters.

L Parameter Value

15
Rtotal 1500
Rbonus 10
Rnormal 5

20
Rtotal 2700
Rbonus 10
Rnormal 5

25
Rtotal 4125
Rbonus 10
Rnormal 5
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Table 7. Exploration speed with L = 20.

Algorithm no nt n V r

Original 84 400 10612 29.78 /
LA 91 400 1562 197.82 6.64
RA 85 400 1265 249.01 8.36

DFA 74 400 2184 149.27 5.01

Table 8. Exploration speed with L = 25.

Algorithm no nt n V r

Original 144 625 18453 26.07 /
LA 135 625 4115 119.08 4.57
RA 148 625 3028 157.53 6.04

DFA 139 625 4181 116.24 4.46

These results indicate that by applying the HAs in the planning knowledge, the space
exploration speed of the mobile robot can be effectively improved.

7. Conclusions

This paper proposes a new space exploration model based on Soar that optimizes its
long-term procedural memory to solve the space exploration problem of mobile robots in
unknown environments. Three heuristic space exploration algorithms are also proposed to
improve the exploration speed of the robot. The proposed model and the algorithms are
implemented in the Easter environment. Experimental results show that when comparing
the proposed heuristic algorithms with the original space exploration algorithm of Easter,
the exploration speed is improved at least 2.04 times and at most 8.36 times. Results verify
the effectiveness of the robot space exploration method based on the Soar architecture.

Currently, the proposed model and the corresponding HAs have only been imple-
mented and compared in Easter, because most Soar-based intelligent robot agents are still
under research. In the meantime, the proposed space exploration model still utilizes Soar’s
native Q-Learning method. In the future, we will provide a general experimental environ-
ment to implement the model, and further improve the model with the improvement of
the learning mechanism in Soar.
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