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Abstract: In this paper, we considered the representation power of local overlapping histograms for
discrete binary signals. We give an algorithm that is linear in signal size and factorial in window size
for producing the set of signals, which share a sequence of densely overlapping histograms, and we
state the values for the sizes of the number of unique signals for a given set of histograms, as well as
give bounds on the number of metameric classes, where a metameric class is a set of signals larger
than one, which has the same set of densely overlapping histograms.
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1. Introduction

A histogram is a central tool for analyzing the content of signals while disregarding
positional relations. It is useful for tasks such as setting thresholds for detecting extremal
events and for designing codes in communication tasks. In [1], the three fundamental scales
for histograms for discrete signals (and images) were presented: the intensity resolution
or the bin-width, the spatial resolution, and the local extent, for which a histogram is
evaluated. Even when fixing these scale parameters, it is still essential to consider the
sampling phase, since in general, we do not know the location of the interesting signal
parts, and thus, we must consider all phases, or equivalently, all overlapping histograms
and all histograms for different positions of the first left bin-edge.

A natural question, when using local histograms for signals and image analysis,
is: How many signals share a given set of overlapping, local histograms (illustrated in
Figure 1)? Out of pure theoretical interest, in this paper, we took a first step in answering
this question by considering densely overlapping histograms of binary signals.

As an example, consider the signal [0; 0; 1]. Its global histogram is (2, 1), i.e., there are
two “0” values and one “1” value.

[0; 0; 1]
histogram−−−−−→ (2, 1). (1)

Given the histogram, the only possible signals are [0; 0; 1], [0; 1; 0], [1; 0; 0], i.e.,

(2, 1)
histogram←−−−−−


[0; 0; 1],
[0; 1; 0],
[1; 0; 0].

(2)

This is a much smaller number than 23 possible signals, but it is not a bijective relation.
The representation power of the histogram may be quantified as the conditional entropy of
signals given their histogram. For binary signals of length three, the histogram of a signal
may be summarized by its count of “1”-values, since the number of “0”-values will be
three minus this count. For length three binary signals, there are eight different signals
[0; 0; 0], [0; 0; 1], . . . [1; 1; 1], which have four different histograms where the counts of “1”
values are 0, 1, 2, and 3, respectively, and the corresponding number of signals counted by
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their “1”-values is 1, 3, 3, and 1. Given a histogram, the conditional probability of each of
these corresponding signals is thus 0, log2 3, log2 3, 0, and the conditional entropy may thus
be found to be approximately 1.2 bit.
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Figure 1. Local, overlapping histograms are calculated from a signal. Does the set of histograms
uniquely identify a signal?

In this paper, we did not focus on coding schemes for signals, but on the expression
power of local overlapping histograms. Thus, consider again the signal in (1), but now with
a set of local histograms of extent two, in which case, the histograms are calculated for the
overlapping sub-signals,

[0; 0; 1]
sliding window−−−−−−−−→

[0; 0]
histogram−−−−−→ (2, 0)

[0; 1]
histogram−−−−−→ (1, 1).

(3)

In this case, there is only one signal that has this sequence of overlapping histograms, since,
by the first histogram, we know that the first two values are “0”, and in combination with
the second histogram, we conclude that the last value must be “1”; thus, the signal must be
[0; 0; 1]. In contrast, the signals, [0; 1; 0] and [1; 0; 1] have the same local histograms,

[0; 1; 0]
sliding window−−−−−−−−→

[0; 1]
histogram−−−−−→ (1, 1)

[1; 0]
histogram−−−−−→ (1, 1),

(4)

and:

[1; 0; 1]
sliding window−−−−−−−−→

[1; 0]
histogram−−−−−→ (1, 1)

[0; 1]
histogram−−−−−→ (1, 1),

(5)

in which case the signal↔histograms is not a bijective relation. However, the local his-
togram and the global histogram together uniquely identify the signals. As these examples
show, the relation between local histograms and signals is non-trivial, and in this paper, we
considered the space of possible overlapping local histograms and the number of signals
sharing a given set of local histograms.

In the early 20th Century, much attention was given to the lossless reconstruction of
signals, in particular using error-correction codes, where the original signal is sent together
with added information [2]. Such additional information could be related to the histogram
of the original signal. Later, the reconstruction of signals and images became more pressing



Entropy 2022, 24, 433 3 of 11

problems, primarily as a way to compress images without losing essential content, and this
resulted in still widely used image representation standards such as mpeg, tiff, and jpeg.

While signal representation has still been of some concern in the 21st Century, ad-
vances in hardware means that more attention has been given to image representation and,
in particular, to qualifying the information content of image features. In [3], the authors
introduced the concept of metameric classes for local features. The authors considered
scale-space features and investigated the space of images that share these features. They
further presented several algorithms for picking a single reconstruction. An extension of
this approach was presented in [4], where patches at interest points of an original image
were matched with patches from a database by a feature descriptor such as SIFT [5]. The
database patches were then warped and stitched to form an approximation of the original
image. In [6], the authors presented a reconstruction algorithm based on binarized local
Gaussian weighted averages and using convex optimization. The theoretical properties
of the reconstruction algorithm is still an open research question. In [7], images were
reconstructed from a histogram of a densely sampled dictionary of local image descriptors
(bag-of-visual-words) as a jigsaw puzzle with overlaps. They showed that their method
resulted in a quadratic assignment problem and used heuristics to find a good reconstruc-
tion. In [8], the authors investigated the reconstruction of images from a simplified SIFT
transform. The reconstruction was performed based on the SIFT-key points and their dis-
cretized local histograms of the gradient orientations, and several models were presented
for choosing a single reconstruction from the possible candidates. In [9], a convolutional
neural network was presented that reconstructs images from a regularly, but sparsely
sampled set of image descriptors. The network was able to learn image priors and was
able to reconstruct images from both classical features such as SIFT and representations
found in AlexNET [10]. This was later extended in [11], where an adversarial network was
investigated for reconstruction from local SIFT features.

Our work is closely related to [12], which discussed the relation between FRAME [13]
and Julesz’s model for human perception of textures [14]. In [13], the authors defined a
Julesz ensemble as a set of images that share identical values of basic features statistics.
Although not considered in their works, histogram bin-values can be considered a feature
statistics, and hence, the metameric classes presented in this paper are Julesz ensembles
in the sense of [13]. In [12], they considered normalized histograms of images filtered
with Gabor kernels [15], and they considered the limit of the spatial sampling domain
converging to Z2. Their perspective may be generalized to local histograms; however, their
results only hold in the limit.

This paper is organized as follows: First, we define the problem in Section 2. Section 3
describes an algorithm for finding the signal(s) that has (have) a specific set of local
histograms. In Section 2, constraints on possible local histograms and the size of metameric
classes are discussed, and finally, in Section 5, we present our conclusions.

2. Metameric Signal Classes

We were interested in the number of signals that have the same set of local histograms.
In case there is more than one, then we call this a metameric signal class (or just a metameric
class) defined by their shared set of local histograms. We define signals and their local his-
tograms as follows: Consider an alphabet A = {0, 1}, l = |A| = 2 and a one-dimensional
signal S ∈ An, n > 1, which we denote S = [s0; s1; . . . ; sn−1] and where si ∈ A is the value
of S at position i. For a given window size 1 < m ≤ n, we considered all local windows
Sj = [sj; sj+1; . . . ; sj+m−1], 0 ≤ j ≤ n−m and their histograms hj : A→ Z+,

hj = (hj(0), hj(1)) (6)

hj(a) =
j+m−1

∑
i=j

δ(si − a), (7)
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where δ is the Kronecker delta function, defined as:

δ(x) =

{
1, when x = 0,
0, otherwise.

(8)

All local histograms of for the signal S are HS = [h0; h1; . . . ; hn−m].
As an example, consider the signal,

S = [0; 1; 1; 1; 0], (9)

in which case n = 5. For m = 3, the windows are:

S0 = [0; 1; 1], (10)

S1 = [1; 1; 1], (11)

S2 = [1; 1; 0], (12)

and the corresponding histograms are:

h0 = (1, 2), (13)

h1 = (0, 3), (14)

h2 = (1, 2), (15)

or equivalently, in short form,

HS = [(1, 2); (0, 3); (1, 2)]. (16)

In some cases, two different signals will have the same set of histograms, and we
call these signals metameric, i.e., they appear identical w.r.t. their histograms. We say that
they belong to the same metameric class given by their common histogram sequence. For
example, when n = 5 and m = 2, the signals,

S = [0; 1; 0; 1; 0], (17)

S′ = [1; 0; 1; 0; 1], (18)

have the same sequence of n−m + 1 = 4 histograms,

HS = HS′ = [(1, 1); (1, 1); (1, 1); (1, 1)], (19)

and thus, S and S′ belong to the same metameric class denoted by [(1, 1); (1, 1); (1, 1); (1, 1)].
We were interested in the ability of local histograms to represent signals. Hence, for a

given signal and window sizes, we sought to calculate µ, the number of signals S, which
are uniquely identified by HS and κ, the number of metameric classes. The values of µ and
κ for small values of n are shown in Table 1. These values were counted by considering
all 2n different possible signals, which is an approach only possible for small values of n.
From the table, we observe that we did not find any combination of signal lengths and
window sizes without a metameric class; hence, none of the tested combinations yielded a
unique relation between the local histograms and the signal. Further, the number of unique
signals µ appeared to grow with n/m, and the number of metameric classes κ appeared to
be convex in m for a large value of n.
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Table 1. For different signal (n) and window (m) sizes, we calculated the total number of different
signals (2n), the number of signals not belonging to a metameric class, i.e., invertible (µ), and the
number of different metameric classes (κ).

n 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6
m 2 2 3 2 3 4 2 3 4 5 2 3 4 5 6
2n 4 8 8 16 16 16 32 32 32 32 64 64 64 64 64
µ 2 6 2 14 6 2 30 18 6 2 62 46 18 6 2
κ 1 1 2 1 4 3 1 6 7 4 1 8 15 10 5

3. An Algorithm for Reconstructing the Complete Set of Signals from a Sequence
of Histograms

We constructed an algorithm for reconstructing the one or more signals, which has or
have a given sequence of histograms. It was constructed using the following facts:

Fact 1 There is a non-empty and finite set of signals of size m, which share the same
histogram h. These can be produced as all the distinct permutations of the
following signal:

S = [0; . . . ; 0︸ ︷︷ ︸
h(0)

; 1; . . . ; 1︸ ︷︷ ︸
h(1)

], (20)

and the number of distinct signals is given by the binomial coefficient:(
h(0) + h(1)

h(0)

)
=

(
h(0) + h(1)

)
!

h(0)!h(1)!
; (21)

Fact 2 Consider the windows Si−1 and Si and their corresponding histograms hi−1 and hi
for i = 0..n−m. If si−1 = si+m−1, the histograms will be identical; otherwise, the
histograms will differ by the count of one at si−1 and at si+m−1, and si+m−1 = s̄i−1,
where ·̄ is the Boolean “not” operator;

Fact 3 From Fact 2, it follows that the histogram of [si; si+1; . . . ; si+m−2] is equal to hi, but
where hi(si+m−1) has been reduced by one. We call this h′i;

Fact 4 The difference,

di(a) = hi−1(a)− h′i(a) =

{
1, when a = si−1,
0, otherwise.

(22)

As a consequence, for candidate signals S′i that have histogram hi, but that have
the wrong value placed at si+m−1, the difference will have both negative and
positive values.

Thus, we constructed the following algorithm:

Step 1 Produce a candidate set of all the distinct signals of size m that have the histogram
hn−m;

Step 2 For i = n−m− 1 . . . 0 and for each element in the candidate set Si:

Step 2.1 Calculate di.
Step 2.2 If di does not have the form of (22), then discard it;
Step 2.3 Else, derive si−1 from di, and extend the candidate with this value:

The computational complexity of our algorithm is O
(
Km(n−m)

)
, where Km is the

maximum value of (21), since initially, all signals of hn−m−1 must be considered, and this
set can only shrink when considering earlier values.

A working code in F# is given at:

https://github.com/sporring/reconstructionFromHistograms/reconstructionF
romHistograms.fsx. For the specific version discussed in this paper, see the com-
mit of 24 December 2021, https://github.com/sporring/reconstructionFromHi

https://github.com/sporring/reconstructionFromHistograms/reconstructionFromHistograms.fsx
https://github.com/sporring/reconstructionFromHistograms/reconstructionFromHistograms.fsx
https://github.com/sporring/reconstructionFromHistograms/commit/333506e72fd8bea2132857869aca15b54392aa75
https://github.com/sporring/reconstructionFromHistograms/commit/333506e72fd8bea2132857869aca15b54392aa75
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stograms/commit/333506e72fd8bea2132857869aca15b54392aa75 (accessed on
24 December 2021).

The code does not give any output, when run, but running in F#-interactive mode allows
the user to inspect the key values after running the program, which are:

signal : int list = [0; 1; 0; 1; 1],
histogramList : Map<int,int> list = [map [(0, 2); (1, 1)]; map [(0, 1); (1, 2)]; map [(0, 1); (1, 2)]] ,
solutions : int list list = [[0; 0; 1; 1; 0]; [0; 1; 0; 1; 1]].

The signal is a sequence of binary digits, and the histogram sequence is represented as a
sequence of maps, where each map-entry is an (intensity, count) pair, i.e., map [(0, 2); (1, 1)]

above is equal to the histogram (2, 1). Finally, the solutions is represented as a sequence
of sequences of binary digits. In this case, there is, as we can see, a metameric class of
two signals, which shares a sequence of histograms. We verified that the algorithm is able
to correctly reconstruct all the signal considered in Table 1 including all the members of the
metameric classes.

4. Theoretical Considerations on µ and κ

In the following, we consider classes of histogram sequences and relate them to the
number of metameric classes for a given family of signals and their sizes.

As a preliminary fact, note that for a window size m, all the histograms must have:

hj(0) + hj(1) = m, (23)

since all entries in si are counted exactly once.

4.1. Constant Sequence of Histograms (h0 = hj)

There are two different constant signals of length n: [0; 0; . . . ; 0] and [1; 1; . . . ; 1]. All
neighborhoods and histograms of the constant signals are identical, and a histogram will
have one non-zero element with value m. These signals cannot belong to a metameric class,
since permuting the position of the values in S0 does not give a new signal, and they are
trivially unique.

In general signals with constant histogram sequences, h0 = hj, the signal must be
periodic, since the only difference in the histogram count of hj and hj+1 is that hj includes
sj+m and hj+1 does not include sj. Hence, for hj = hj+1, then sj = sj+m. For example,
[1; 0; 1; 0; 1] is a periodic signal for m = 2 with histogram hj = (1, 1), j = 0 . . . 3. Any
constant sequence of histograms describes a periodic signal, and for non-constant signals
(∀a : h(a) < m) and m > 1, these histograms describe a metameric class, since some
permutations of S = [S0|S0| . . .] will produce new signals without changing the histograms
due to periodicity. For any n > m, there are 2m − 2 such periodic binary signals.

4.2. Global Histogram (m = n)

For a particular h = h0, all permutations of the signal belong to the same metameric
class. Thus, the number of metameric class is equal to the number of different histograms
with sum m, except those for constant signals. This corresponds to picking m numbers
from A where repetition is allowed and order does not matter.

Following the standard derivation of unordered sampling with replacement, we
visually rewrite the terms in (23) with a list of “·’s”, where each “·” represents the count
of one for a given bin. For example, for m = 3, we may have the histogram (2, 1), which
implies that 3 = 2 + 1 =··+·. A different histogram could be (0, 3), implying that 3 =
0 + 3 =+···. Hence, any permutation of three “·’s” and one “+” will in this representation
give the sum of three, and the number of permutations is equal to the number of ways

https://github.com/sporring/reconstructionFromHistograms/commit/333506e72fd8bea2132857869aca15b54392aa75
https://github.com/sporring/reconstructionFromHistograms/commit/333506e72fd8bea2132857869aca15b54392aa75
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we can choose m out of m + 1 positions. Thus, the number of different ways we can pick
histograms is given as the binomial coefficient:(

m + 1
m

)
=

(
m + 1

1

)
=

(m + 1)!
1!m!

= m + 1. (24)

Out of these, two histograms stem from the constant signals. The remaining histograms
have ∀a : h(a) < m, and each of these histograms defines a metameric class, since there
will always be more than one signal with such a histogram by (21). Hence, the number of
different histograms is,

κ(m, m) = m− 1. (25)

This equation confirms the values in Table 1 where n = m.

4.3. Smallest Histogram (m = 2)

For the case of m = 2, we now show that:

κ(n, 2) = 1. (26)

Consider the sequence of histograms [h0; h1; . . . ]. For h0, there are three different histograms
corresponding to 22 different signals. These signals fall into two classes: s0 = s1 is trivially
solvable; however, for s0 6= s1, the values of s0 and s1 are easily identifiable from the
histogram h0, but their positions are not. Write h0 = [(s0, 1); (s1, 1)]. Now, consider h1.
Again, if s1 = s2, then their values are trivially solvable, and since s1 is known, then s0 can
be deduced from h0. Therefore, assume that s1 6= s2, and write h1 = [(s1, 1); (s2, 1)]. Now,
consider h2; as before, if s2 = s3, then their values are trivially solvable by h2; hence, s1 can
be deduced from h1 and s2, and in turn, s0 can be deduced from s1 and h0. The general
structure of the problem is illustrated in Figure 2, and by induction, we see that only the
constant sequence of histograms hj = (1, 1), j = 0 . . . n−m− 1 is a metameric class; hence,
κ(n, 2) = 1.

Figure 2. The reconstruction of the signal from a stream of local histograms. If the current point in
the sequence can be resolved, the complete signal up until this point can be resolved.

4.4. The General Case (n > m > 2)

Since the sum of a histogram is m (see (23)) and since the histograms for binary signals
only have two bins, we can identify each histogram by:

σj = hj(1) = m− hj(0) =
j+m−1

∑
i=j

si, (27)
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i.e., as the number of one-values in Sj. Thus, in the following, we identify hj by σj. In
the following, we consider consecutive pairs of histograms for signals of varying lengths
n > m.

Firstly, consider the case n = 3 and m = 2 and all possible combinations of histograms
h0 and h1, i.e., σ0, σ1 ∈ {0, 1, 2}. The organization of all the 23 signals in terms of σ0 and σ1
is shown in Table 2. We call such tables transition tables, and we say that each table cell
contains a set of signal pieces. For n = 3 and m = 2, the table illustrates that there is one
metameric class shown in cell σ0 = σ1 = 1, since this table cell contains two elements. This
case is also discussed in relation to (26).

Table 2. All signals grouped by the sum of their local histograms when n = 3 and m = 2. Arrows
show the relations between the (σj, σj+1) and (σj+1, σj+2) tables.

σj\σj+1 0 1 2

0 [0; 0; 0] [0; 0; 1] -

1 [1; 0; 0] [0; 1; 0]
[1; 0; 1] [0; 1; 1]

2 - [1; 1; 0] [1; 1; 1]

Now, consider the case n = 4 and m = 2. The transition table for (σ1, σ2) is identical
to Table 2. Further, an element in (σ0, σ1) is related to an element in (σ1, σ2) by the arrows
in the table. For example, if [s0; s1; s2] = [0; 0; 1], then σ0 = 0 and σ1 = 1. If s3 = 0, then
[s1; s2; s3] = [0; 1; 0], σ0 = 1, and σ1 = 1, while if s3 = 1, then [s1; s2; s3] = [0; 1; 1], σ0 = 1,
and σ1 = 2.

Transition tables contain zero or more [sj; sj+1; . . . ; sm] elements that have histograms
σj and σj+1. The tables have a particular structure:

Fact 5 (σj, σj+1) is a tridiagonal table: Since σj and σj+1 only differ by the values sj and
sj+m, then the differences between σj and σj+1 can maximally be one. Hence, the
table will have a tridiagonal structure;

Fact 6 Elements on the main diagonal have sj = sj+m: On the diagonal σj+1 = σj, hence:

σj =
m−1

∑
i=0

sj+i = sj +
m−1

∑
i=1

sj+i (28)

σj+1 =
m−1

∑
i=0

sj+1+i = sj+m +
m−2

∑
i=0

sj+1+i = sj+m +
m−1

∑
i=1

sj+i = σj (29)

Thus, sj = sj+m;
Fact 7 Elements on the first diagonal above have sj = 0∧ sj+m = 1: On the first diagonal

above, σj+1 = σj + 1, and thus,

σj = sj +
m−1

∑
i=1

sj+i (30)

σj+1 = sj+m +
m−1

∑
i=1

sj+i = σj + 1 (31)

Thus, sj = sj+m − 1⇒ sj = 0∧ sj+m = 1;
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Fact 8 Elements the first diagonal below have sj = 1 ∧ sj+m = 0: On the first diagonal
below, σj+1 = σj − 1, and thus,

σj = sj +
m−1

∑
i=1

sj+i (32)

σj+1 = sj+m +
m−1

∑
i=1

sj+i = σj − 1 (33)

Thus, sj = sj+m + 1⇒ sj = 1∧ sj+m = 0.

For counting the number of elements in the table, let γ(σi, σj) be the number of elements in
cell (σi, σj):

Fact 9 For (σ′j , σ′j+1) ∈ {(0, 0), (1, 0), (0, 1), (m, m), (m− 1, m), (m, m− 1)},

γ(σ′j , σ′j+1) = 1 : (34)

In all six cases, the histograms are from signals where either or both Sj and Sj+1
are constant, and hence, we can trivially reconstruct the corresponding m + 1
values from the histograms. We call such a histogram pair a two-trivial pair;

Fact 10 On the main diagonal, except σj = σj+1 = 0 and σj = σj+1 = m,

γ(σj, σj) =

(
m− 1

σj

)
+

(
m− 1
σj − 1

)
: (35)

By Fact 6, sj = sj+m. For sj = 0, the possible signals for sj+k, 1 ≤ k ≤ m− 1 are
signals summing to σj, i.e., (m−1

σj
), and for sj = 1, we have (m−1

σj−1). Since 0 < σj < m,

therefore γ(σj, σj) ≥ 2;
Fact 11 On the first diagonal above,

γ(σj, σj + 1) =
(

m− 1
σj

)
: (36)

By Fact 7, sj = 0 ∧ sj+m = 1. Hence, the possible signals for sj+i, 1 ≤ i ≤ m− 1
are signals summing to σj. Further, since 1 < σj+1 < m and σj+1 = σj + 1,
therefore 0 < σj < m− 1, and therefore, γ(0, σj + 1) = γ(m− 1, σj + 1) = 1 and
γ(σj, σj + 1) ≥ 2 for all other cases;

Fact 12 On the first diagonal below,

γ(σj, σj − 1) =
(

m− 1
σj+1

)
: (37)

By Fact 8, sj = 1 ∧ sj+m = 0. Hence, the possible signals for sj+i, 1 ≤ i ≤ m− 1
are signals summing to σj − 1 = σj+1. Further, since 1 < σj < m and σj+1 =
σj − 1, then 0 < σj+1 < m− 1, and therefore, γ(σj, 0) = γ(σj, m− 1) = 1 and
γ(σj, σj − 1) ≥ 2 in all other cases.

For transitions, the following facts hold:

Fact 13 Any signal of any length n > 2, m = 2 can be described as a route following the
arrows in the table;

Fact 14 An element in column j transitions to an element in row j, and as a consequence,

(σj, σj)→ (σj, σk) (horizontal motion), (38)

(σj, σj+1)→ (σj+1, σk) (down motion), (39)

(σj+1, σj)→ (σj, σk) (up motion), (40)
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for 0 ≤ j− 1 ≤ k ≤ j + 1 ≤ m + 1. Hence, only cells on the diagonal can contain
intracellular paths;

Fact 15 Any entry is maximally m− 1 steps away from a two-trivial element, since starting
at element [s0, . . . , sm−2, sm], there is an m− 1 path leading to [sm−2, sm, . . . , sm].

W.r.t. the number of metameric classes:

Fact 16 Intracellular paths for 0 < i, j < m + 1, |j− i| ≤ 1, are ambiguous, since these
cells contain several indistinguishable elements, and we cannot determine the
path’s starting point from its histogram sequence;

Fact 17 Cell pairs, connected by more than one arrow in the same direction, give rise to
ambiguous pairs, and paths that only contain such crossings or intracellular paths
are ambiguous, since the paths cannot be distinguished by their histograms;

Fact 18 For m = n− 1, the number of metameric classes is equal to the number of non-
empty cells in the tridiagonal table minus the six two-trivial cells.

κ(2, n, n− 1) = n + 2(n− 1)− 6 = 3n− 8. (41)

For 2 ≤ m < n− 1, an upper bound on the number of metameric classes is equal
to the number of ambiguous paths. We have yet to come up with a closed form
for κ(n, m).

We verified the above facts by considering the transition table for m = 3, as shown in
Table 3. For n = m + 1 = 4, we see that there are six uniquely identifiable signals and
four metameric classes, as also confirmed by the algorithm in Table 1. For n = m + 2 = 5,
we identified two intracellular cycles in (σi, σj) = (1, 1) and (2, 2). Further, there are four
ambiguous cell pairs (1, 1) → (1, 2), (1, 2) → (2, 2), (2, 2) → (2, 1), and (2, 1) → (1, 1).
Hence, in total, there are six metameric classes. All other arrows corresponds to non-
metameric paths of which there are 18. These numbers also correspond to the results by the
algorithm shown in Table 1. For n = m + 3 = 6 and leaving out the arrows for brevity, we
identified the following ambiguous paths (1, 1)3, (1, 1)2(1, 2), (1, 1)(1, 2)(2, 2), (1, 2)(2, 2)2,
and (1, 2)(2, 2)(2, 1) and a similar set of paths starting in (2, 2). Hence, we have the upper
bound on the 10 metameric signals, and after a careful study, we realized that of these,
there are two unique paths (1, 2)(2, 2)(2, 1) and likewise for (2, 1)(1, 1)(1, 2); hence, the
number of metameric classes is eight, as confirmed by our algorithm; see Table 1. We have
yet to identify an efficient algorithm to count all the ambiguous paths in such tables.

Table 3. All signals grouped by the sum of their local histograms when n = 4 and m = 3.

σ0\σ1 0 1 2 3

0 [0; 0; 0; 0] [0; 0; 0; 1] - -

1 [1; 0; 0; 0]
[0; 0; 1; 0]
[0; 1; 0; 0]
[1; 0; 0; 1]

[0; 0; 1; 1]
[0; 1; 0; 1] -

2 - [1; 0; 1; 0]
[1; 1; 0; 0]

[0; 1; 1; 0]
[1; 0; 1; 1]
[1; 1; 0; 1]

[0; 1; 1; 1]

3 - - [1; 1; 1; 0] [1; 1; 1; 1]

5. Conclusions

From the concept of locally orderless images [1] in image processing, we were intrigued
by characterizing the metameric classes for a given set of local histograms. In this article,
we took the first step by studying binary signals. We gave a sifting algorithm with a
computational complexity that was factorial in the size of the window and linear in the
signal size. We further identified all unique signals and an upper bound on the number of
metameric classes for all signal and window sizes. While the transition tables illuminated
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important aspects in identifying metameric classes, we have yet to discover an efficient
algorithm for this purpose. Future work includes extending our work to signals of more
complex types, sets of histograms with varying window sizes, and signals of higher
dimensions such as images.
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