
����������
�������

Citation: Smith, A.; Sinha, K.;

Jarzynski, C. Quantum Coherences

and Classical Inhomogeneities as

Equivalent Thermodynamics

Resources. Entropy 2022, 24, 474.

https://doi.org/10.3390/e24040474

Academic Editor: Ronnie Kosloff

Received: 8 March 2022

Accepted: 24 March 2022

Published: 29 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantum Coherences and Classical Inhomogeneities as
Equivalent Thermodynamics Resources
Andrew Smith 1, Kanupriya Sinha 2,3 and Christopher Jarzynski 1,4,5,*

1 Department of Physics, University of Maryland, College Park, MD 20742, USA;
andrew.maven.smith@gmail.com

2 Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA;
kanu.sinha@asu.edu

3 School of Electrical, Computer and Energy Engineering, Arizona State University, Phoenix, AZ 85287, USA
4 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
5 Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
* Correspondence: cjarzyns@umd.edu

Abstract: Quantum energy coherences represent a thermodynamic resource, which can be exploited
to extract energy from a thermal reservoir and deliver that energy as work. We argue that there
exists a closely analogous classical thermodynamic resource, namely, energy-shell inhomogeneities
in the phase space distribution of a system’s initial state. We compare the amount of work that can
be obtained from quantum coherences with the amount that can be obtained from classical inhomo-
geneities, and find them to be equal in the semiclassical limit. We thus conclude that coherences
do not provide a unique thermodynamic advantage of quantum systems over classical systems,
in situations where a well-defined semiclassical correspondence exists.

Keywords: quantum thermodynamics; quantum coherence; work extraction

1. Introduction

This paper considers the question: How much workW is extracted when a quantum
system S undergoes a cyclic thermodynamic process? The answer depends on details such
as the duration of the process; whether or not the system exchanges energy with heat baths
along the way; how the system is driven during the process; and the system’s initial state,
ρ̂i. We are specifically interested in the potential thermodynamic consequences of energy
coherences—non-zero matrix elements 〈m|ρ̂i|n〉 for eigenstates of different energies—in the
initial state. The thermodynamic utility of such coherences has been investigated in recent
years [1–19], using a variety of approaches. Of particular relevance to the present paper,
Kammerlander and Anders [9], using the definition of work [20,21] that we will use, have
argued that if ρ̂i contains coherences in the system’s energy basis, then more work can
be extracted than would be possible in the absence of coherences. In this sense, quantum
energy coherences represent a thermodynamic resource.

It seems natural to view the presence of energy coherences in ρ̂i as a uniquely quantum
thermodynamic resource, with no classical counterpart—in much the same way that
superpositions of qubit states represent a quantum computational resource unavailable to
classical computers [22]. We will argue otherwise. We will identify a classical analogue
of quantum energy coherences, namely energy-shell inhomogeneities in the initial classical
phase space distribution ρi(Γ). We will show that the presence of such inhomogeneities in
ρi(Γ) allows more work to be extracted than would be possible in their absence. Thus, both
quantum energy coherences and classical energy-shell inhomogeneities can be viewed as
thermodynamic resources from which work can be extracted. We will further argue that
for systems that support a well-defined semiclassical limit, a fair comparison reveals that
equal amounts of work can be extracted from the two resources. We therefore conclude
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that quantum energy coherences do not provide a quantum “thermodynamic advantage”,
as the same gain can be obtained from classical energy-shell inhomogeneities.

In Section 2, we introduce the framework and notation we will use to study a quantum
system undergoing a cyclic thermodynamic process, in the presence of a thermal reservoir,
and we analyze the work that can be extracted from energy coherences during such a
process. In Section 3, we introduce the analogous classical framework and analyze the
work that can be extracted from energy-shell inhomogeneities. In Section 4, we argue that
when a fair comparison is made, the maximum amount of work that can be extracted in the
quantum case is the same as that in the classical case. In Section 5, we extend these results
to a broader class of processes. We conclude with a brief discussion in Section 6.

Throughout this paper, we will adopt an ensemble perspective, in which the state
of an open quantum system is specified by a density matrix ρ̂, and the state of a classical
system is specified by a phase space distribution ρ(Γ) rather than a phase point Γ.

2. Quantum Setup and Notation

Let S denote a quantum system of interest, and Ĥ its Hamiltonian. We consider the
following situation, illustrated schematically in Figure 1: S is prepared in an initial state ρ̂i
at time t = 0, then from t = 0 to τ it evolves in time as its Hamiltonian is varied according
to a schedule, or protocol, Ĥ(t). We take this process to be cyclic, in the sense that

Ĥ(0) = Ĥ(τ) = Ĥ0 (1)

where Ĥ0 is a fixed reference Hamiltonian. We then ask the question: How much work is
extracted during this cyclic process?

Figure 1. Schematic illustration of the quantum process described in the text. The system begins in
state ρ̂i, then evolves in contact with a thermal bath to a final state ρ̂ f as the Hamiltonian is driven
through a cycle from Ĥ(0) = Ĥ0 to Ĥ(τ) = Ĥ0. We impose the constraint diag ρ̂i = diag ρ̂ f , which
indicates that the initial and final energy distributions are identical, while the coherences may differ.

We assume the reference Hamiltonian Ĥ0 has a discrete, non-degenerate spectrum
with eigenstates |n〉 and eigenvalues εn. The assumption of non-degeneracy ensures an
unambiguously defined energy basis in which coherence can be considered. It further
implies that no operators commute with Ĥ0, aside from ones that are functions of Ĥ0 itself:

[K̂, Ĥ0] = 0 iff K̂ = k(Ĥ0) (2)

for some scalar function k(·) of a single variable.
During the cyclic process described above, the system is in contact with a thermal

bath B, at temperature β−1. As a result, the evolution of S is not unitary, rather, we will
say that S evolves under isothermal dynamics. This terminology is not meant to suggest that
the system’s temperature is constant, or even well-defined, merely that the system is in
contact with a bath whose bulk temperature β−1 is well-defined. We will not specify the
equations of motion for the system, as our discussion will be relatively insensitive to the
exact dynamics used to model the system’s evolution. However, we will demand that the
isothermal dynamics of S satisfy the following thermodynamically motivated conditions:
(1) if Ĥ is held fixed then the system relaxes to the canonical equilibrium state, and (2) the
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dynamics support a generalized second law linking suitably defined notions of free energy
and work.

More precisely, condition (1) means that if Ĥ is fixed, then the isothermal dynamics
cause the system to relax to the equilibrium state

π̂ =
1

Zq e−βĤ (3)

where
Zq(Ĥ) = Tr e−βĤ , F q,eq(Ĥ) = −β−1 ln Zq(Ĥ) (4)

are the partition function and free energy associated with this state. (The superscript q
stands for “quantum” and distinguishes this case from the classical setup that will be
introduced later. The dependence of Zq and F q,eq on β is notationally suppressed.) We
assume this relaxation occurs over a finite characteristic timescale τrel . As a consequence, if
the system Hamiltonian is varied quasistatically, then the state of S tracks the instantaneous
equilibrium state: ρ̂(t) = π̂(t), where π̂(t) is the canonical state associated with Ĥ(t). In
this quasistatic limit, the system’s evolution is isothermal in the strong sense of the word:
its temperature is well-defined and constant at all times. A system that evolves under a
detailed balanced Lindblad master equation satisfies condition (1) [23].

By condition (2), we mean that the system obeys a generalized second law

W q ≤ −∆F q = F q(0)−F q(τ) (5)

where the work extracted, non-equilibrium free energy, internal energy, and entropy are
respectively defined by the following functional and functions of ρ̂(t) and Ĥ(t):

W q[ρ̂(t), Ĥ(t)] = −
∫ τ

0
Tr
[

dĤ
dt

ρ̂

]
dt (6)

F q(ρ̂, Ĥ) = U q − Sq/β (7)

U q(ρ̂, Ĥ) = Tr[Ĥρ̂] (8)

Sq(ρ̂) = −Tr[ρ̂ lnρ̂] ≥ 0. (9)

For convenience, as in Equation (5), we will often use the shorthand X (t) ≡ X (ρ̂(t), Ĥ(t)),
or the even more concise Xi = X (0) and X f = X (τ), where X stands for F q, U q, or Sq, or
the classical counterparts of these quantities, defined below in Section 3.

Equations (7)–(9) generalize familiar equilibrium notions [24] of free energy, internal
energy, and entropy to non-equilibrium states ρ̂ [25]. They reduce to the usual equilibrium
values when ρ̂ = π̂. The bound given by Equation (5) is not restricted to transitions
between equilibrium states, and has been derived using a variety of approaches for mod-
eling the dynamics of a quantum system in contact with a thermal reservoir, see, e.g.,
Refs. [26–30]. Note that we follow engineering convention and work extraction is positive.
While Equation (6) should be interpreted as the average work extracted from an ensemble,
fluctuations will not be considered in this paper, hence we will simply refer to Equation (6)
as extracted work.

The non-equilibrium free energy defined by Equation (7) can equivalently be written as

F q(ρ̂, Ĥ) = F q,eq(Ĥ) + β−1D(ρ̂|π̂) (10)

where π̂ and F q,eq are given by Equations (3) and (4), and

D(ρ̂1|ρ̂2) = Tr[ρ̂1(ln ρ̂1 − ln ρ̂2)] ≥ 0 (11)
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is the quantum relative entropy, or Kullback–Leibler divergence [31], between arbitrary
states ρ̂1 and ρ̂2. For a cyclic process, as defined above, Equation (5) becomes

W q ≤ β−1
[

D(ρ̂i|π̂0)− D(ρ̂ f |π̂0)
]

(12)

where ρ̂i, f are the states of the system at t = 0, τ, and π̂0 is the equilibrium state associated
with the reference Hamiltonian Ĥ0. Although relative entropy D(ρ̂1|ρ̂2) is not a proper
distance measure, it vanishes when ρ̂1 = ρ̂2 and is strictly positive otherwise, and can be
viewed as quantifying the degree to which ρ̂1 differs from ρ̂2. In this sense, Equation (12)
implies that the extracted work is bounded from above by the degree to which the system
is brought closer to the equilibrium state π̂0, during the cyclic process. This interpretation
is in agreement with the intuition, from classical thermodynamics, that non-equilibrium
states represent a thermodynamic resource: work can be extracted by cleverly facilitating a
system’s evolution toward equilibrium.

We take Equation (6) as our definition of work for several reasons. First, it is an
established notion of thermodynamic work in quantum systems [20,21,32]. Moreover, it
agrees with the notion of average work derived from the quantum work (quasi)distribution
in Ref. [33], which satisfies a fluctuation theorem. Finally, this definition closely resembles
those used in classical stochastic thermodynamics [34,35] and, as we will see in later sections,
it allows us to establish connections with results from classical statistical physics. For the
special case of isolated quantum systems, the definition given by Equation (6) is called
“untouched work” in Ref. [36]. We will not discuss here how (or whether) Equation (6)
connects to the traditional thermodynamic concept of raising a mass against gravity, or
otherwise delivering energy to a work reservoir [24]; this question involves subtle issues
related to backaction as well as potential quantum coherences in the work reservoir.

We note that other definitions of work are also commonly used in quantum thermo-
dynamics, particularly when fluctuations in work are of interest. For instance, defining a
work distribution according to the two-time energy measurement protocol [37–39] leads to
a mean value that differs from Equation (6) whenever the initial state ρ̂i has non-vanishing
energy coherences. Additionally, some definitions of work developed in quantum resource
theory [40] have a so-called work-locking property [41] which prevents the extraction of
work from coherence. These resource theory definitions, which explicitly model the heat
bath and demand that work be transferred deterministically, also differ from Equation (6).

Removing Coherences

To this point, we have discussed subjecting the system S to a cyclic process under
isothermal dynamics. Now, following Ref. [9], we impose an additional condition:

diag ρ̂ f = diag ρ̂i (13)

where
diag ρ̂ = ∑

n
|n〉〈n|ρ̂|n〉〈n| (14)

is the density matrix obtained from ρ̂ by setting to zero its off-diagonal elements, in the
reference energy basis. In other words, we now restrict ourselves to processes that alter
the system’s energy coherences 〈m|ρ̂|n〉, m 6= n, while leaving the probabilities 〈n|ρ̂|n〉
unchanged. We will refer to Equation (13), and to its classical counterpart, Equation (42),
as the isoenergetic constraint. As in Ref. [9], our motivation for imposing this condition is
to isolate and accentuate the thermodynamic implications of quantum energy coherences.
From Equation (13), it follows that Tr[Ĥ0ρ̂i] = Tr[Ĥ0ρ̂ f ], i.e.,

U q
i = U q

f (15)
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which in turn implies that the generalized second law, Equation (5), becomes

W q ≤ β−1
(
Sq

f − S
q
i

)
. (16)

This bound relates the maximum extractable work to the change in the system’s
entropy. The thermodynamic interpretation is clear: since the system’s energy undergoes
no net change (Equation (15)), the only way to extract work is to withdraw energy from the
bath, causing the entropy of the bath to decrease by an amount βW q. This decrease in the
bath’s entropy must be compensated, or over-compensated, by an increase in the entropy
of the system, as reflected by Equation (16).

We are now in a position to investigate the maximum amount of work that can be
extracted from energy coherences. For a given reference Hamiltonian Ĥ0 and initial state
ρ̂i, letW q? denote the maximum extracted work, over all protocols Ĥ(t) that begin and
end in Ĥ0, subject to the isoenergetic constraint (13). Since the right side of Equation (16) is
a function of ρ̂i and ρ̂ f , we can place a bound onW q? by maximizing that function with
respect to ρ̂ f :

W q? ≤ β−1 max
ρ̂ f |diag ρ̂ f =diag ρ̂i

[
Sq(ρ̂ f )− Sq(ρ̂i)

]
(17)

For fixed diagonal elements of a density matrix ρ̂, the value of Sq = −Trρ̂ ln ρ̂ is
maximized when the off-diagonal elements are all zero. We therefore obtain

W q? ≤ β−1[Sq(diag ρ̂i)− Sq(ρ̂i)]. (18)

This result does not yet tell us whether the bound can be saturated, that is, whether
there exist protocols for extracting this amount of work. Rather, it states that under no
circumstances can we extract more than this much work, in a cyclic, isothermal process
satisfying Equation (13). Moreover, if a protocol for saturating this bound exists, then that
protocol will result in the system ending in the state diag ρ̂i at t = τ. In other words, the
saturating protocol (if it exists) removes all energy coherences from the system’s initial
state, and effectively converts these coherences into extracted work.

In fact, protocols for saturating the bound given by Equation (18) do exist [9,28].
A simple example is given by:

Ĥ(t) =


Ĥ0 t ≤ 0
−β−1 ln[(1− λ)ρ̂i + λ(diag ρ̂i)] 0 < t < τ

Ĥ0 τ ≤ t

(19)

where λ ≡ t/τ varies from 0 to 1 during the process, and τ is taken to be sufficiently large
that the process is quasistatic. This protocol can be understood as follows. At the start of
the process, there is a sudden change, or quench, in the system’s Hamiltonian, from Ĥ0 at
t = 0 to −β−1 ln ρ̂i at t = 0+. Thus, at t = 0+ the system’s state ρ̂i is in equilibrium with
respect to the immediate post-quench Hamiltonian. (The term “quench” is often used in
situations in which the system is in equilibrium before the quench, and out of equilibrium
after it. Thus, the first step of this protocol (19) might be viewed as an anti-quench.) From
t = 0+ to τ−, the Hamiltonian is varied quasistatically from −β−1 ln ρ̂i to −β−1 ln(diag ρ̂i),
and the system is dragged through the corresponding sequences of equilibrium states, from
ρ̂i to diag ρ̂i—see comments after Equation (4). At t = τ, a second quench abruptly returns
the Hamiltonian to Ĥ0, completing the cycle. The evolution of the system’s state is thus
given by

ρ̂(t) =


ρ̂i t = 0
(1− λ)ρ̂i + λ(diag ρ̂i) 0 < t < τ

diag ρ̂i τ ≤ t.

(20)
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We show in Appendix A that the work extracted during this process is given by the
right side of Equation (18), that is the bound is saturated. Hence, under the isoenergetic
constraint (13), work extraction is optimized by removing all coherences from the system’s
state, and the value of this optimized work is:

W q? = β−1[Sq(diag ρ̂i)− Sq(ρ̂i)]. (21)

This result is equivalent to Equation (1) of Kammerlander and Anders [9].

3. Classical Setup and Notation

Now, imagine a classical system with N degrees of freedom and phase space variables

Γ = (x1, ..., xN , p1, ..., pN). (22)

Adopting (as in the quantum case) an ensemble perspective, let the system’s state at time t
be described by a phase space density ρ(Γ, t). We will consider a thermodynamic process
in which the system begins in a state ρ(Γ, 0) = ρi(Γ), then evolves from t = 0 to τ as its
Hamiltonian is varied according to a cyclic protocol H(Γ, t), with

H(Γ, 0) = H(Γ, τ) = H0(Γ) (23)

where H0(Γ) specifies a reference Hamiltonian; see Figure 2. We assume that no observables
commute with H0(Γ) under the Poisson bracket, except those that are functions of H0:

{K, H0} = 0 iff K(Γ) = k(H0(Γ)) (24)

for some function k(·) (compare with Equation (2)). This assumption implies that energy is
the only non-trivially conserved quantity along all trajectories Γ(t) obeying Hamiltonian
dynamics dΓ/dt = {Γ, H0}. (This conclusion follows from the identity (d/dt)A(Γ(t)) =
{A, H0}, which applies to any observable A(Γ) and any trajectory Γ(t) obeying dΓ/dt =
{Γ, H0}). This is a necessary but not sufficient condition for the dynamics to be ergodic on
constant-energy surfaces in phase space—an assumption often made in statistical physics.
(Roughly speaking, ergodicity means that a generic Hamiltonian trajectory of energy E
visits all regions of the surface H0 = E, given sufficient time.) For our purposes, we do not
need the assumption of ergodicity, only the weaker assumption given by Equation (24).

Figure 2. Schematic illustration of the classical process. The system begins in state ρi(Γ), then evolves
in contact with a thermal bath to a final state ρ f (Γ) as the Hamiltonian is driven through a cycle from
H(Γ, 0) = H0(Γ) to H(Γ, τ) = H0(Γ). The constraint diag ρi(Γ) = diag ρ f (Γ) indicates that the initial
and final energy distributions are identical, while inhomogeneities may differ.

If the system were thermally isolated, then its state ρ(Γ, t) would evolve under the
Liouville equation, ∂ρ/∂t = {H, ρ}. However, we assume that the system is in contact
with a thermal bath as it undergoes the cyclic process, hence its evolution follows classical
isothermal dynamics, rather than Hamiltonian dynamics. As in the quantum case, we will
not specify the equations of motion that describe the isothermal dynamics, but we will
make the following assumptions.
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(1) If the system’s Hamiltonian is held fixed, then the isothermal dynamics drive the
system to the equilibrium state

π(Γ) =
1

Zc e−βH(Γ) (25)

with partition function and free energy

Zc[H(Γ)] =
∫

dΓ e−βH(Γ) , F c,eq[H(Γ)] = −β−1 ln
(

Zc/hN
)

. (26)

Here, h is a constant with dimensions of action that ensures the argument of the logarithm
is dimensionless. We choose h to coincide with Planck’s constant as this will facilitate
comparisons of quantum and classical work extraction in Section 4. We assume this
relaxation takes place over a finite timescale τrel. As a consequence, if H(Γ, t) is varied
quasistatically, then the system’s state follows the instantaneous equilibrium state, ρ(Γ, t) =
π(Γ, t).

(2) When the system evolves over a time interval 0 ≤ t ≤ τ under isothermal dynamics
and a time-dependent Hamiltonian H(Γ, t), it obeys a generalized second law

W c ≤ −∆F c (27)

with

W c[ρ(Γ, t), H(Γ, t)] =−
∫ τ

0

(∫
∂H
∂t

ρdΓ
)

dt (28)

F c[ρ(Γ), H(Γ)] = U c − S c/β (29)

U c[ρ(Γ), H(Γ)] =
∫

H(Γ)ρ(Γ)dΓ (30)

S c[ρ(Γ)] =−
∫

ρ(Γ)ln[hNρ(Γ)]dΓ. (31)

Unlike the quantum von Neumann entropy (9) which is always non-negative, the
classical Shannon differential (or continuous) entropy (31) can become arbitrarily negative
for probability distributions that are highly concentrated in phase space, as we will see
in Section 4.1. (For brevity, we will henceforth refer to the Shannon differential entropy
simply as the Shannon entropy.) As with the quantum bound (Equation (5)), Equation (27)
is not restricted to transitions between equilibrium states, and has been derived under a
variety of modeling approaches, see, e.g., Refs. [26–30,42–44].

The classical non-equilibrium free energy (29) can be rewritten as

F c[ρ, H] = F c,eq[H] + β−1D[ρ|π] (32)

where

D[ρ1|ρ2] =
∫

dΓ ρ1(Γ) ln
ρ1(Γ)
ρ2(Γ)

≥ 0 (33)

is the classical relative entropy or Kullback–Leibler divergence. Thus, for a cyclic process,
Equation (27) becomes

W c ≤ β−1
(

D[ρi|π0]− D[ρ f |π0]
)

(34)

where ρi(Γ) = ρ(Γ, 0) and ρ f (Γ) = ρ(Γ, τ) are the system’s initial and final states, and
π0(Γ) is the equilibrium state for the reference Hamiltonian. As in the quantum case
(Equation (12)), the right side of Equation (34) provides a measure of the degree to which
the process brings the system closer to equilibrium.
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3.1. Energy-Shell Inhomogeneities

The evident similarity between the quantum framework for cyclic isothermal pro-
cesses described by Equations (1)–(12) and the classical framework of Equations (23)–(34)
motivates us to seek a classical analogue of the statement that quantum energy coherences
represent a thermodynamic resource. As a step in this direction, we note that in the quan-
tum case, density matrices that are stationary under the unitary evolution generated by Ĥ0
are exactly those that lack energy coherences in the eigenbasis of Ĥ0:

dρ̂

dt
=

1
ih̄
[
Ĥ0, ρ̂

]
= 0 iff ρ̂ = diag ρ̂. (35)

In the classical case, phase space densities that are stationary under the Hamiltonian
dynamics generated by H0(Γ) are exactly those that are functions of H0(Γ):

∂ρ

∂t
= {H0, ρ} = 0 iff ρ(Γ) = k(H0(x)) (36)

for some function k(·). (Equations (2) and (24) are needed for the “only if” parts of
Equations (35) and (36).) These observations suggest that we ought to view phase space
distributions of the form ρ = k(H0) as analogues of density matrices that are diagonal in
the eigenbasis of Ĥ0.

To pursue this idea, let η(E) denote the distribution of energies associated with a
phase space density ρ(Γ):

η(E) =
∫

dΓ ρ(Γ) δ[E− H0(Γ)]. (37)

In addition, let ωE(Γ) denote the classical microcanonical density of energy E:

ωE(Γ) = lim
∆E→0

I[E,E+∆E](H0(Γ))∫
dΓ′ I[E,E+∆E](H0(Γ′))

=
δ[E− H0(Γ)]

Ω(E)
(38)

where I[E,E+∆E](·) is the indicator function over the interval [E, E + ∆E] (that is, I[a,b](x) = 1
when x ∈ [a, b], otherwise I[a,b](x) = 0), and

Ω(E) =
∫

dΓ δ[E− H0(Γ)] (39)

is the classical density of states. The microcanonical density ωE(Γ) is singular, uniformly
distributed over the energy shell E (the level set H0 = E), and zero elsewhere. Here,
“uniformly distributed” is defined by Equation (38): as ∆E approaches zero, the phase space
density remains uniform, with respect to the Liouville measure dN x dN p, in the region
between shells E and E + ∆E, and zero elsewhere.

Using Equations (37)–(39), a phase space density of the form ρ = k(H0) can be
written as

ρ(Γ) =
∫

dE η(E)ωE(Γ) (40)

with η(E) = k(E)Ω(E). Such a density is a statistical mixture of microcanonical ensembles
(just as a diagonal density matrix is a mixture of energy eigenstates: ρ̂ = diag ρ̂ = ∑n pn|n〉〈n|),
hence ρ(Γ) is uniform, or homogeneous, over any specific energy shell E, while its value differs
from one shell to another. By contrast, a phase space density that is not of the form ρ = k(H0)
is inhomogeneous on energy shells: there exist points Γ and Γ′ such that H0(Γ) = H0(Γ′) but
ρ(Γ) 6= ρ(Γ′).

We will henceforth use the terms homogeneous/inhomogeneous to distinguish be-
tween phase space densities that can/cannot be written as ρ = k(H0). For instance, the
equilibrium distribution π0(Γ) ∝ exp−βH0(Γ) is a homogeneous density. By the stationar-
ity argument given above (Equations (35) and (36)), homogeneous phase space densities
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will be viewed as classical counterparts of diagonal density matrices, and inhomogeneous
densities as counterparts of quantum states with energy coherences. In other words, for our
purposes the counterparts of quantum energy coherences are classical energy-shell inhomogeneities.

We introduce the notation

diag ρ(Γ) =
∫

dE η(E)ωE(Γ) (41)

with η(E) given by Equation (37), to denote the phase space density obtained by “ho-
mogenizing” ρ(Γ). That is, diag ρ is the homogeneous density that has the same energy
distribution as ρ.

3.2. Removing Inhomogeneities

Let us now focus our attention on classical, cyclic isothermal processes that satisfy the
isoenergetic constraint (compare with Equation (13)):

diag ρ f (Γ) = diag ρi(Γ) (42)

where ρi, f denote the system’s initial and final states. Such processes leave the energy
distribution undisturbed, ηi(E) = η f (E), while allowing energy-shell inhomogeneities to
change. Equation (42) implies

U c
i = U c

f (43)

hence, Equation (27) becomes

W c ≤ β−1
(
S c

f − S
c
i

)
. (44)

Let W c? denote the maximum amount of work that can be extracted, over all con-
ceivable cyclic protocols, for a given reference Hamiltonian H0(Γ) and initial state ρi(Γ).
Equation (44) implies

W c? ≤ β−1 max
ρ f |diag ρ f =diag ρi

(
S c[ρ f ]− S c[ρi]

)
= β−1(S c[diag ρi]− S c[ρi]) (45)

since, among all states with a given energy distribution, the Shannon entropy is maximized
by the homogeneous state (This follows from the fact that Shannon entropy increases under
coarse-graining, which in turn is a consequence of Jensen’s inequality, 〈ln x〉 ≤ ln〈x〉).

Similarly to the quantum case (Equation (19)), the bound given by Equation (45) is
saturated [27,28] by the protocol

H(Γ, t) =


H0(Γ) t ≤ 0
−β−1 ln[(1− λ)ρi(Γ) + λ diag ρi(Γ)] 0 < t < τ

H0(Γ) τ ≤ t

(46)

with λ = t/τ, and τ sufficiently long that the process is effectively quasistatic. The protocol
begins with a classical quench at t = 0. Immediately after this quench, the system’s
state ρi(Γ) is in equilibrium with its instantaneous Hamiltonian, H(Γ, 0+) = −β−1 ln ρi(Γ).
During the interval t ∈ (0, τ), the quasistatic switching of the Hamiltonian drags the system
through a sequence of equilibrium states from ρi to ρ f = diag ρi, and at t = τ the cyclic
process is completed by suddenly returning the Hamiltonian to H0. The evolution of the
system’s state ρ(Γ, t) is entirely analogous to that given by Equation (20). Summing over
the work extracted during the initial quench, the quasistatic driving, and the final quench,
we find (see Appendix A) that the total extracted work is

W c? = β−1(S c[diag ρi]− S c[ρi]), (47)
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i.e., the bound in Equation (45) is saturated. By Equation (44), any protocol satisfying
Equation (42) that would bring the system to a final state ρ f 6= diag ρi would necessarily
result in less work extracted.

4. Quantum–Classical Comparison

We have seen that the maximum work extracted in the quantum case, subject to
the isoenergetic constraint, diag ρ̂i = diag ρ̂ f , is achieved by quasistatically removing
all energy coherences from the system’s initial state: ρ̂i → diag ρ̂i. Similarly, the max-
imum work extracted in the classical case is achieved by quasistatically removing all
energy-shell inhomogeneities. The optimized work values W q? and W c? are given by
Equations (21) and (47). The close similarity between these results supports our view that
classical energy-shell inhomogeneities are thermodynamic counterparts of quantum energy
coherences. Both are resources that can be leveraged to extract work.

While the expressions forW q? andW c? are nearly identical, it still remains to compare
them quantitatively. Ideally, we would like to compare the values ofW q? andW c? for a
given quantum reference Hamiltonian Ĥ0 and initial state ρ̂i, and appropriately defined
classical counterparts H0(Γ) and ρi(Γ). To this end, throughout this section and the next
we assume that Ĥ0 is a function of position and momentum operators (x̂1, · · · x̂N) and
( p̂1, · · · p̂N), and we further assume that Ĥ0 has a well-defined counterpart H0(Γ). This
condition is satisfied, for instance, by Hamiltonians of the kinetic-plus-potential form
Ĥ0 = K( p̂1, · · · p̂N) + V(x̂1, · · · x̂N), for which H0(Γ) is obtained by replacing momentum
and position operators with classical momentum and position variables.

Identifying a correspondence between quantum and classical states ρ̂ and ρ(Γ) is trick-
ier. Common approaches that map density operators into phase space distributions [45,46]
suffer from undesirable properties. For instance, neither the Wigner [47] nor Husimi [48]
function representation of the quantum thermal state corresponds to the classical thermal
phase space distribution. Additionally, the Wigner function in general can become negative
while the Husimi function depends on the choice of coherent states.

To circumvent such issues, we will compare quantum and classical energy distributions
rather than individual states. Instead of focusing on the maximum work that can be
extracted from a particular initial state, we will consider the maximum work that can
be extracted given a particular initial energy distribution. We begin by defining energy
equivalence classes in Section 4.1, then in Sections 4.2 and 4.3 we compare maximum work
values for corresponding quantum and classical energy equivalence classes.

4.1. Energy Equivalence Classes

We define a quantum energy equivalence class to consist of all states ρ̂ that share a
particular energy distribution, that is, a particular set of diagonal density matrix elements,
with respect to Ĥ0. An example is the thermal energy equivalence class given by

Πq = {ρ̂ |diag ρ̂ = π̂0} (48)

where π̂0 = exp(−βĤ0)/Zq is the thermal equilibrium state. In addition to the state π̂0,
the set Πq includes exotic non-equilibrium states with significant energy coherences such
as the pure state |π0〉〈π0|, where

|π0〉 = ∑
n

√
e−βεn

Zq |n〉. (49)

Examples of this state arise in quantum optics [49,50].
More generally (that is, not restricting ourselves to the thermal energy equivalence

class, Equation (48)), every quantum state ρ̂ belongs to a unique energy equivalence class Σq
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defined by the diagonal elements of ρ̂ in the Ĥ0 basis. Within this class, the von Neumann
entropy is maximized by the state σ̂ ≡ diag ρ̂ = ∑n pn|n〉〈n|:

max
ρ̂∈Σq
Sq(ρ̂) = Sq(σ̂) = −∑

n
pn ln pn ≥ 0 (50a)

where pn = 〈n|ρ̂|n〉. The von Neumann entropy is minimized within Σq by pure states
such as |ψ〉〈ψ|, where |ψ〉 = ∑n

√
pn|n〉, and for these states the entropy vanishes:

min
ρ̂∈Σq
Sq(ρ̂) = Sq(|ψ〉〈ψ|) = 0. (50b)

A classical energy equivalence class contains all phase space distributions ρ(Γ) with a
given energy distribution η(E). An example is the thermal energy equivalence class

Πc = {ρ(Γ) |diag ρ(Γ) = π0(Γ)} (51)

where π0(Γ) = exp[−βH0(Γ)]/Zc. While the state π0(Γ) is homogeneous, the class Πc

contains states with substantial energy-shell inhomogeneities. For instance, if the system is
a one-dimensional harmonic oscillator, the thermal equivalence class Πc includes the state

ρ(E, T) =
(

βe−βE
)

︸ ︷︷ ︸
ηπ0 (E)

(
ω

eδ cos(ωT)

2π I0(δ)

)
︸ ︷︷ ︸

ζ(T)

(52)

where E and T are the canonical energy and tempus (angle-like) coordinates [51] defined by
x =
√

2E/mω2 cos(ωT) and p =
√

2mE sin(ωT), with ωT ∈ (−π,+π]; δ is a non-negative
parameter; and I0 is the modified Bessel function of order zero. For this example, it is
convenient to use (E, T) rather than (x, p) to identify a point in classical phase space. ζ(T)
is the von Mises distribution [52], an analogue of a Gaussian distribution for an angular
coordinate. In Equation (52), the mean of ζ(T) is zero and its variance is controlled by δ.
For δ = 0, ρ(E, T) reduces to the canonical distribution, which is homogeneous over every
energy shell. With increasing δ, the distribution becomes more and more concentrated on
the positive x-axis of phase space (where T = 0) and as a result its Shannon entropy S c[ρ]
decreases, with no lower bound. Specifically, for large δ, we have

S c[ρ(E, T)] ≈ − ln

(
hβω

√
δ

2π

)
+

1
2

, δ� 1. (53)

Every classical state ρ(Γ) belongs to a unique energy equivalence class Σc, defined
by its energy distribution η(E) (Equation (37)). Within this class, the Shannon entropy is
maximized by the diagonal state σ(Γ) = diag ρ(Γ) = η(H0)/Ω(H0), but there is no lower
bound on the minimum entropy, as the phase space distribution can be concentrated to an
arbitrary degree without affecting the energy distribution:

max
ρ∈Σc
S c[ρ(Γ)] = S c[σ(Γ)] = −

∫
dE η(E) ln

[
hN η(E)

Ω(E)

]
(54)

min
ρ∈Σc
S c[ρ(Γ)] = −∞. (55)

These extrema are illustrated by the values δ = 0 and δ → ∞ in the example in the
previous paragraph.

To take another illustrative example—which will prove useful in the next section—
consider an ideal gas of n particles inside a three-dimensional cubic box of volume V = L3,
oriented parallel to the x-, y-, and z-axes, with one corner at the origin—see Figure 3. A
point in phase space is given by Γ = (r1 · · · rn; p1 · · · pn). For 0 < α ≤ 1, let ρα(Γ) denote



Entropy 2022, 24, 474 12 of 22

the distribution for which the momenta pk are sampled from the Maxwellian distribution at
temperature β−1, and the positions rk are sampled uniformly within the region defined by
0 < x, y < L and 0 < z < αL. This distribution belongs to the thermal energy equivalence
class Πc, and ρα=1(Γ) is exactly the (homogeneous) thermal distribution, whereas ρα<1(Γ)
is an inhomogeneous, non-equilibrium distribution, in which the gas is entirely located
within a fraction α of the volume of the box. For arbitrary α ∈ (0, 1], we have

S c[ρα(Γ)] = n ln

(
αV
λ3

th

)
+

3n
2

(56)

where λth =
√

βh2/2πm is the thermal de Broglie wavelength. The value S c[ρα] is maxi-
mized at α = 1, that is, for the homogeneous state, and it has no lower bound as α→ 0.

Figure 3. An ideal gas inside a box of volume L3. The value of α ∈ (0, 1] parametrizes a family of
energy equivalence classes, with α = 1 corresponding to thermal class Πc. See text for details.

In both of the above examples, by “squeezing” ρ(Γ) into an arbitrarily small re-
gion of phase space (δ → ∞, α → 0) we obtain a distribution with arbitrarily large,
negative entropy.

4.2. An Unfair Comparison

We now determine the maximum amount of work that can be extracted in a cyclic
isoenergetic process where all states in the quantum equivalence class Σq are considered.
Using Equations (21) and (50b), we have

max
ρ̂i∈Σq

W q?(ρ̂i) = β−1 max
ρ̂i∈Σq

[Sq(diag ρ̂i)− Sq(ρ̂i)]

= β−1
[
Sq(σ̂)− min

ρ̂i∈Σq
Sq(ρ̂i)

]
= β−1Sq(σ̂) (57)

where σ̂ = diag ρ̂i is the unique diagonal state belonging to Σq. The minimal value of Sq(ρ̂i)
on the second line is achieved for any pure state |ψ〉〈ψ| ∈ Σq, an example of which can
always be constructed using the same argument as in Equation (50b). Hence, the maximum
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work is obtained by starting in a pure state, then quasistatically removing the coherences
(e.g., following the protocol given by Equation (19)) so as to end in the diagonal state σ̂.
This result has a simple interpretation in terms of the bound W q ≤ β−1

(
Sq

f − S
q
i

)
(see

Equation (16)): we maximize the extracted work by starting in a state with the lowest
entropy and ending in the state of highest entropy, within Σq. By Equation (50) these
are, respectively, any pure state and the unique diagonal state in Σq. Equivalently (since
U q

f = U q
i by Equation (13)), the maximum extracted work is obtained when starting in the

state of highest free energy and ending in the state of lowest free energy. We emphasize
that, here, free energy and entropy are defined by Equations (7) and (9), which apply to
generic (not necessarily equilibrium) quantum states ρ̂.

The analogous classical calculation, using Equations (47) and (55), gives

max
ρi∈Σc

W c?[ρi(Γ)] = β−1 max
ρi∈Σc

(S c[diag ρi(Γ)]− S c[ρi(Γ)])

= β−1
(
S c[σ(Γ)]− min

ρi∈Σc
S c[ρi(Γ)]

)
= +∞ (58)

where σ(Γ) = diag ρi(Γ). In other words, for a given classical energy distribution, there is
no upper bound on the amount of work that can be extracted, as there is no lower bound
on the entropy of the initial state. By “squeezing” a given phase space distribution within
each energy shell, without altering the distribution of probability among energy shells, we
can construct a distribution ρi(Γ) that is compressed within an arbitrarily small volume
of phase space, hence we can make the value of S c[ρi(Γ)] arbitrarily small. This idea is
illustrated by Equation (52) for the harmonic oscillator example of the previous section: as
δ → ∞, the von Mises distribution ζ(T) becomes ever more concentrated around T = 0,
and the entropy of the distribution becomes arbitrarily large and negative.

The example of the ideal gas discussed at the end of Section 4.1 provides further
intuition for Equation (58). For that example, consider the thermal equivalence class Πc,
and imagine an initial inhomogeneous distribution ρi(Γ) = ρα(Γ) at t = 0, with α < 1, that
is, with all gas particles initially located in the region 0 < z < αL. To maximize the extracted
work, we first suddenly insert a partition at the location z = αL, and then quasistatically
move this partition to the location z = L, while the system remains in contact with a
thermal bath at temperature β−1. The process ends with the system in the homogeneous,
thermal state ρ f (Γ) = ρα=1(Γ). The total work extracted during this process of removing
inhomogeneities is

W c = nβ−1 ln
1
α
> 0 (59)

which follows from a well-known expression for the reversible isothermal expansion of
an ideal gas: W = nβ−1 ln(Vf /Vi). It is easy to see why there is no upper bound on the
extractable work: at t = 0+, just after the insertion of the partition, the gas is an equilibrium
state, confined within a volume αV, with free energy F c(t = 0+) = −nβ−1 ln(αV/λ3

th).
The smaller the value of α, the larger the initial free energy and therefore the greater the
amount of work that can be extracted through reversible, isothermal expansion. In this
idealized example, we can begin with an arbitrarily dense initial state, i.e., arbitrarily small
α > 0.

In both the quantum and classical cases, the extracted work is maximized by evolving
quasistatically from the state of lowest entropy to the state of highest entropy, within the
equivalence class Σq or Σc. Thus, there appears to be an inherent quantum thermodynamic
disadvantage, since Sq is bounded from below by 0, while S c is unbounded from below.

The comparison, however, is unfair. Quantum mechanics obeys the Heisenberg uncer-
tainty principle, a loose semiclassical interpretation of which states that every quantum
state occupies a cell of volume hN in phase space. If we view classical mechanics as
an approximate model of an underlying quantum reality, then when considering initial
distributions ρi(Γ) we should allow only such distributions as are consistent with the
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uncertainty principle. To impose this constraint, let us imagine dividing phase space into
cells of volume hN . A distribution ρ(Γ) that is consistent with the uncertainty principle
is one that is uniform within any such cell, but whose value differs from cell to cell: any
finer-grained structure is offensive to the uncertainty principle. For such a distribution, we
have pk = hNρ(Γk), where Γk is a representative point in cell k and pk =

∫
Γ∈cell k dΓ ρ(Γ) is

the probability to find the system in that cell. The Shannon entropy of this distribution is
given by

S c[ρ] = −
∫

ρ(Γ)ln[hNρ(Γ)]dΓ = −∑
k

pk ln pk ≥ 0 (60)

where S c = 0 if and only if pk = δkl for some cell l.
If we thus reject distributions with negative entropy as being incompatible with

the uncertainty principle, then Equation (55) is replaced by minρ∈Σc S c[ρ(Γ)] = 0, and
Equation (58) becomes

max
ρi∈Σc

W c?[ρi(Γ)] = β−1S c[σ(Γ)] . (61)

Thus, after imposing consistency with the uncertainty principle (in an admittedly
heuristic fashion), we conclude that for both the quantum equivalence class Σq and the
classical equivalence class Σc, the maximum extractable work is given by the entropy of the
diagonal or homogeneous state, multiplied by β−1 (Equations (57) and (61)).

Throughout the following section, and in Section 5, we impose the constraint S c[ρ] ≥ 0
on the initial classical phase space distribution, to exclude states that are incompatible with
the uncertainty principle.

4.3. A Fair Comparison

The final step in making a fair comparison between quantum and classical work
extraction is to establish a correspondence between equivalence classes Σq and Σc. That is,
we want to establish a correspondence between quantum and classical energy distributions.
There is no unique way to do this, as energy takes on discrete values in one case and
continuous values in the other. As a reasonable way to proceed, let us choose a real function
κ(·) ≥ 0 with the property that both Kq = Tr κ(Ĥ0) and Kc =

∫
dΓ κ(H0(Γ)) are finite. We

then define the diagonal quantum and homogeneous classical states

σ̂κ =
κ(Ĥ0)

Kq = ∑
n

κ(εn)

Kq |n〉〈n| , σκ(Γ) =
κ(H0(Γ))
Kc (62)

along with the associated energy equivalence classes

Σq[κ] = {ρ̂ |diag ρ̂ = σ̂κ} (63a)

Σc[κ] = {ρ(Γ) |diag ρ = σκ , S c[ρ] ≥ 0}. (63b)

The equivalence class Σq[κ] contains all quantum states with diagonal density ma-
trix elements ρnn = κ(εn)/Kq, whereas Σc[κ] contains every classical state with energy
distribution

η(E) =
κ(E)Ω(E)
Kc . (64)

Thus, a given choice of κ(·) specifies both a quantum and a classical energy distribution. As
an example, for the choice κ(x) = e−βx, the reference states are σ̂κ = π̂0 and σκ(Γ) = π0(Γ),
and the energy equivalence classes are the thermal sets defined earlier: Σq[κ] = Πq and
Σc[κ] = Πc.

In the semiclassical limit h→ 0, as the level spacing between adjacent energy eigen-
values approaches zero, the normalized energy distribution associated with Σq[κ] is con-
veniently written as ξ(E) = κ(E)g(E)/Kq, where g(E) = ∑n δ(E − εn) is the quantum
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density of states. In turn, g(E) dE is approximated by the number of cells of volume hN that
fit into the classical phase space volume between E and E + dE, for small dE. Equivalently,

lim
h→0

hN g(E) = Ω(E) (65)

where Ω(E) is the classical density of states, Equation (39). Hence, the quantum energy
distribution is, semiclassically,

ξ(E) =
κ(E)Ω(E)

hNKq . (66)

Since both the classical and quantum energy distributions η(E) and ξ(E)
(Equations (64) and (66)) are normalized to unity, we have

lim
h→0

hNKq = Kc. (67)

From Equations (64), (66) and (67), we conclude that in the semiclassical limit h→ 0,
the discrete energy distribution associated with the equivalence class Σq[κ] approaches the
continuous distribution associated with Σc[κ]. In this sense, we view Σq[κ] and Σc[κ] as
having equivalent energy distributions.

Now, finally, for a given quantum reference Hamiltonian Ĥ0 and its classical counter-
part H0(Γ), and for a given choice of the function κ(·), let

W q?
max[κ] = max

ρ̂i∈Σq [κ]
W q?(ρ̂i) and W c?

max[κ] = max
ρi∈Σc [κ]

W c?[ρi(Γ)] (68)

denote the maximum quantum and classical work that can be extracted during a cyclic,
isoenergetic (in the sense of Equations (13) and (42)) process, for initial energy distributions
determined by κ(·). We assert that by comparing the values ofW q?

max[κ] andW c?
max[κ], in the

semiclassical limit h→ 0, we make a fair comparison between quantum work that can be
extracted from coherences, and classical work that can be extracted from inhomogeneities.

From Equations (57), (61) and (63), we have

W q?
max[κ] = β−1Sq(σ̂κ) , W c?

max[κ] = β−1S c[σκ(Γ)], (69)

therefore, let us inspect the difference between these two values,

∆W? =W q?
max[κ]−W c?

max[κ], (70)

in the limit h→ 0. Following the semiclassical approach used above, we obtain

lim
h→0

∆W? = β−1 lim
h→0

{
−∑

n

κ(εn)
Kq ln

[
κ(εn)
Kq

]
+
∫ κ(H0)
Kc ln

[
hN κ(H0)

Kc

]
dΓ
}

= β−1 lim
h→0

{
−
∫

g(E) κ(E)
Kq ln

[
κ(E)
Kq

]
dE +

∫
Ω(E) κ(E)

Kc ln
[

hN κ(E)
Kc

]
dE
}

= β−1 lim
h→0

{
−
∫

Ω(E) κ(E)
Kc ln

[
hN κ(E)

Kc

]
dE +

∫
Ω(E) κ(E)

Kc ln
[

hN κ(E)
Kc

]
dE
}

= 0.

(71)

Here, Equation (62) has been combined with the expressions for von Neumann and
Shannon entropy (Equations (9) and (31)) on the first line; the sum over energy eigenstates
and the integral over phase space have been replaced by energy integrals on the second
line; and Equations (65) and (67) have been used to get to the third line.
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For κ(x) = e−βx, Equation (71) can alternatively be established from the result (see
Equations (4) and (26))

∆W? = β−1
{
Sq(π̂0)−S c[π0(Γ)]

}
= β

∂

∂β
(F q,eq −F c,eq) =

(
− 1

β
+

∂

∂β

)
log

Zc

hN Zq (72)

where Zq and Zc are equilibrium partition functions. Taking the limit h → 0 and using
the known result [47,53–55] that (for kinetic-plus-potential Hamiltonians) hN Zq can be
expanded in a power series of h whose first term is exactly the classical partition function
Zc, the right side of Equation (72) vanishes.

From Equation (71), we conclude that in the semiclassical limit, the maximal work that
can be extracted from the energy coherences of a quantum state ρ̂i ∈ Σq[κ] is the same as
the maximal work that can be extracted from the energy-shell inhomogeneities of a classical
state ρi(Γ) ∈ Σc[κ]. In both situations, the work is maximized by starting in the state of least
entropy within Σq or Σc, then quasistatically removing the coherences or inhomogeneities.
This result leads us to conclude that, within our framework for comparing quantum and
classical systems, quantum coherences offer no particular thermodynamic advantage over
classical inhomogeneities.

5. Dropping the Isoenergetic Constraint

In the previous sections, we have imposed the isoenergetic constraint, namely that
the initial and final energy distributions are identical (Equations (13) and (42)). Let us now
drop this constraint and pose the following question. For a quantum or classical system
described by an initial Hamiltonian Ĥ0 or H0(Γ), in the presence of a thermal bath at
temperature β−1, what is the maximum work that can be extracted during a cyclic process
if the energy distribution of the initial state is determined by a given function κ(·)?

In the quantum case, we first letW q†(ρ̂i) denote the maximum work extracted for
a given initial state ρ̂i—this quantity is analogous toW?(ρ̂i) (Section 2) but without the
constraint diag ρ̂ f = diag ρ̂i. From Equations (5) and (10) and the non-negativity of the
Kullback–Leibler divergence, we have

W q†(ρ̂i) ≤ F q(ρ̂i, Ĥ0)−F q(ρ̂ f , Ĥ0)

≤ F q(ρ̂i, Ĥ0)−F q(π̂0, Ĥ0)

= U q
i − β−1Sq

i −F
q,eq
0 (73)

where the inequality on the first line is valid for any final state ρ̂ f , and F q,eq
0 ≡ F q,eq(Ĥ0).

As shown in Appendix A, the bound obtained in Equation (73) is saturated by the protocol

Ĥ(t) =


Ĥ0 t ≤ 0

−β−1 ln
[
(1− λ)ρ̂i + λ e−βĤ0

]
0 < t ≤ τ

Ĥ0 τ ≤ t

(74)

where λ ≡ t/τ and the process is quasistatic: τ → ∞. (Note that there is no quench at
t = τ.) Since the bound can be saturated, andW q†(ρ̂i) was defined as the maximum work
that can be extracted, we simply write

W q†(ρ̂i) = U
q
i − β−1Sq

i −F
q,eq
0 . (75)
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Now, maximizing this quantity over all ρ̂i ∈ Σq[κ], we have

W q†
max[κ] = max

ρ̂i∈Σq [κ]

(
U q

i − β−1Sq
i −F

q,eq
0

)
= max

ρ̂i∈Σq [κ]

(
U q[κ]− β−1Sq

i −F
q,eq
0

)
= U q[κ]−F q,eq

0 (76)

where U q[κ] ≡ (1/Kq)∑n κ(εn)εn is the average energy for every state ρ̂i ∈ Σq[κ], and we
have used Equation (50b) to arrive at the third line.

As a consistency check, we combine Equations (69) and (76) with Equations (7) and (10)
to obtain

W q†
max[κ]−W

q?
max[κ] = U q[κ]−F q,eq

0 − β−1Sq(σ̂κ)

= F q(σ̂κ , Ĥ0)−F
q,eq
0 = D(σ̂κ |π̂0) ≥ 0 (77)

where σ̂κ is the unique diagonal state belonging to Σq[κ]. Thus, W q†
max[κ] ≥ W

q?
max[κ],

which makes sense: the maximum work that we can extract without imposing the con-
straint diag ρ̂ f = diag ρ̂i must be no less than the maximum work we can extract with
the constraint.

In the classical case, essentially identical calculations—which we do not reproduce
here—lead to the result

W c†
max[κ] = U c[κ]−F c,eq

0 (78)

whereW c†
max[κ] is the maximum work that can be extracted over all initial states ρi(Γ) ∈

Σc[κ], without imposing Equation (42), and U c[κ] = (1/Kc)
∫

dΓ κ(H0)H0 is the average
energy for every state in Σc[κ]. Following steps similar to those of Section 4.3, we obtain

lim
h→0
U q[κ] = lim

h→0

1
Kq ∑

n
κ(εn)εn

= lim
h→0

∫
dE g(E)

κ(E)
Kq E

=
∫

dE Ω(E)
κ(E)
Kc E =

1
Kc

∫
dΓ κ(H0) H0 = U c[κ] (79)

and

lim
h→0

(
F c,eq

0 −F q,eq
0

)
= −β−1 lim

h→0
ln

Zc[H0]

hN Zq(Ĥ0)
= 0 (80)

using Equation (67), with κ(x) = e−βx.
Defining ∆W† ≡ W q†

max[κ]−W c†
max[κ], Equations (76) and (78)–(80) give us

lim
h→0

∆W† = 0 (81)

which is the counterpart of Equation (71), after abandoning the constraint of equal initial
and final energy distributions. We again conclude that quantum coherences provide no in-
herent thermodynamic advantage over classical inhomogeneities, in the semiclassical limit.

6. Conclusions

In Sections 2 and 3 of this paper, we argued that quantum energy coherences (as
shown earlier [9]) and classical energy shell inhomogeneities represent thermodynamic
resources, which can be leveraged to deliver work. In Sections 4 and 5, we argued that a
fair comparison shows these resources to be equivalent: in the semiclassical limit, and for a
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given initial energy distribution, the amount of work that can be extracted from quantum
coherences is the same as the amount that can be extracted from classical inhomogeneities.

Our study has focused on processes during which the system of interest is in contact
with a thermal reservoir, and here (as we have seen) the free energy F plays an important
role. Sone and Deffner [18] have recently carried out a similar investigation for isolated
quantum and classical systems, in which case ergotropy (defined in Ref. [1] for quantum
systems and in Ref. [18] for classical systems) plays a role analogous to free energy in our
paper. In Ref. [18], as in our paper, energy-shell inhomogeneities are classical counterparts
of quantum energy coherences.

In making our comparison in Sections 4 and 5, we invoked a quantum–classical corre-
spondence based on canonical quantization, in which the system of interest is described
by coordinates x1, x2, · · · and conjugate momenta p1, p2, · · · , which are either quantum
operators or classical observables. For such systems, the classical phase space is unbounded
and the quantum Hilbert space is infinite-dimensional.

However, in the quantum thermodynamics literature one often encounters systems
with finite-dimensional Hilbert spaces, such as the illustrative qubit example analyzed in
Ref. [9]. It then seems natural to take, as the quantum system’s counterpart, a discrete-state
classical system of equal dimensionality. Thus, a qubit’s counterpart may be taken to be a
classical bit. For such discrete-state systems there is no opportunity to introduce a classical
analogue of quantum coherences, as the statistical state of a classical D-state system is
specified entirely by the probabilities P1, · · · PD, and these are in one-to-one correspondence
with the diagonal elements of the corresponding quantum system’s density matrix ρ̂. In
this situation, it seems that quantum coherences really do provide a unique thermodynamic
resource that is unavailable to classical counterparts.

This conclusion, however, is misleading, as an apparently discrete-state classical
system is in reality a coarse-grained version of a more microscopically detailed system. For
example, an effective classical bit can be obtained by coarse-graining a classical particle
in a double-well potential, such that the location x of the particle in the left (right) well
indicates a bit value of 0 (1). The apparent quantum thermodynamic advantage—due to
coherences—arises in this case because potentially useful classical information (e.g., how
the particle’s potential energy depends on its location x) has been thrown out in the process
of coarse-graining from the double well to the bit. Comparing a qubit—an intrinsically two-
state quantum system—with an effective classical two-state system obtained by discarding
microscopic information, is an apples-to-oranges comparison.

There is no generally applicable procedure for identifying a proper classical counter-
part of a quantum system with a finite-dimensional Hilbert space. It is instructive, however,
to consider the simplest case of a spin-1/2 particle (qubit) in a magnetic field, governed
by a Hamiltonian Ĥ = g B · ŝ, where ŝ = (h̄/2)(σ̂x, σ̂y, σ̂z). In the absence of a thermal
bath, the unitary dynamics in the Heisenberg representation are given by the equations
of motion

ih̄
d
dt

ŝH = [ŝH, Ĥ] (82)

where the right side is evaluated using the commutation relations

[ŝj, ŝk] = ih̄ ε jkl ŝl (83)

and ε jkl is the Levi-Civita symbol. Kammerlander and Anders [9] showed how work can
be extracted from energy coherences in such a system, using a protocol involving quenches
and the quasistatic variation of B, along with coupling to a thermal bath.

As a possible classical counterpart, instead of a two-state bit let us consider a system
whose microscopic state is described by a vector S = (Sx, Sy, Sz) of fixed magnitude,
governed by a Hamiltonian H = g B · S, evolving under the Poisson bracket formulation
of Hamiltonian dynamics,

d
dt

S = {S, H} (84)
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with
{Sj, Sk} = ε jkl Sl . (85)

The phase space for this classical system is bounded: it is the two-dimensional surface
of a sphere of radius |S|. An energy shell is represented by a circle on that sphere, oriented
along the B-direction. The dynamics given by Equation (84) describe an isolated system,
and would have to be supplemented by appropriate terms in order to include the effects of
contact with a thermal bath. It would then be interesting to investigate classical protocols
designed to extract work from an initial distribution that is inhomogeneous on the energy
shells, and to compare this classical situation with the quantum case of Ref. [9].

We note that the approach described in the previous paragraphs is readily extended
to a system composed of N > 1 spins, interacting both with external fields and among
themselves, e.g., through Hamiltonian terms of the form cmn ŝm · ŝn or cmnSm · Sn. Thus,
comparisons between quantum and classical work extraction can be extended to multi-spin
systems, within this framework. For example, it has been demonstrated that quantum corre-
lations within a many-body system can be utilized for extracting work [56–59], and it would
be pertinent to study whether one can leverage classical correlations and inhomogeneities
in a similar way. Such comparisons may further elucidate whether thermodynamic advan-
tages can be identified that are unique to quantum systems.
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Appendix A

Here, we show that the work bounds appearing in Equations (18), (45) and (73) are
saturated by the protocols given by Equations (19), (46) and (74), when these protocols are
performed quasistatically (τ → ∞). In both the quantum and classical cases, our key as-
sumption is that in the absence of driving the system relaxes to the thermal equilibrium state.
Hence, under quasistatic driving, the system tracks the instantaneous equilibrium state.

In the quantum case, we first note that for a time-dependent Hamiltonian Ĥ(t) and
the corresponding equilibrium state π̂(t) and free energy F q,eq(t) = −β−1 ln Zq(t), the
following relation holds:

d
dt
F q,eq(t) = Tr

[
dĤ
dt

π̂

]
(A1)

as can be verified directly from Equations (3) and (4). This identity is the quantum counter-
part of the classical thermodynamic integration identity, Equation (A8), which underlies
the thermodynamic integration technique for free energy estimation [60,61]. Equation (A1)
states that the rate of change in the equilibrium free energy, with respect to time, is the
equilibrium average of the rate of change in the Hamiltonian.

Now, consider a quantum system whose initial state is ρ̂i, which is driven according
to the protocol given by Equation (19). The initial step of this protocol is an instantaneous
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change in the Hamiltonian from Ĥ(0) = Ĥ0 to Ĥ(0+) = −β−1 ln ρ̂i. The state of the system
does not change during this step. The resulting work performed is

W q
0→0+ = −

∫ 0+

0
Tr
[

dĤ
dt

ρ̂

]
dt

= Tr
[
(Ĥ(0)− Ĥ(0+))ρ̂i

]
= Tr

[
(Ĥ0 + β−1 ln ρ̂i)ρ̂i

]
= U q

i − β−1Sq
i = F q

i . (A2)

During the quasistatic stage of the protocol, the system evolves through a sequence of
equilibrium states, ρ̂(t) = π̂(t)—see Equation (20). Applying Equation (A1), the resulting
work is

W q
0+→τ− = −

∫ τ−

0+
Tr
[

dĤ
dt

π̂

]
dt (A3)

= −
∫ τ−

0+

d
dt
F q,eq(t) dt

= F q,eq(τ−)−F q,eq(0+)

= −β−1 ln Tr e−βĤ(τ−) + β−1 ln Tr e−βĤ(0+)

= −β−1 ln
Tr diag ρ̂i

Tr ρ̂i
= 0.

Proceeding as in Equation (A2), we obtain

W q
τ−→τ

= −F q
f (A4)

for the Hamiltonian quench at t = τ. Thus, the total work over the entire process is

W q = F q
i −F

q
f = β−1[Sq(diag ρ̂i)− Sq(ρ̂i)] (A5)

(using U q
i = U q

f ), as claimed at the end of Section 2.
Similar calculations for the protocol appearing in Equation (74) give

W q
0→0+ = U q

i − β−1Sq
i (A6a)

W q
0+→τ− = −F q,eq

0 (A6b)

W q
τ−→τ

= 0, (A6c)

hence,
W q = U q

i − β−1Sq
i −F

q,eq
0 (A7)

as claimed in Section 5, just after Equation (74).
In the classical case, for a Hamiltonian H(Γ, t) we have the identity

d
dt
F c,eq(t) =

∫
dΓ

∂H
∂t

(Γ, t)π(Γ, t). (A8)

For the protocol given by Equation (46), calculations essentially identical to those
appearing above in Equations (A2)–(A4), but with quantum traces replaced by integrals
over classical phase space, give

W c
0→0+ = F c

i (A9a)

W c
0+→τ− = 0 (A9b)

W c
τ−→τ+ = −F c

f , (A9c)
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hence,
W c = F c

i −F c
f = β−1(S c[diag ρi]− S c[ρi]) (A10)

as claimed at the end of Section 3.2.
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