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Abstract: This work considers a two-user multiple access channel in which both users have Age of
Information (AoI)-oriented traffic with different characteristics. More specifically, the first user has
external traffic and cannot control the generation of status updates, and the second user monitors
a sensor and transmits status updates to the receiver according to a generate-at-will policy. The
receiver is equipped with multiple antennas and the transmitters have single antennas; the channels
are subject to Rayleigh fading and path loss. We analyze the average AoI of the first user for a
discrete-time first-come-first-served (FCFS) queue, last-come-first-served (LCFS) queue, and queue
with packet replacement. We derive the AoI distribution and the average AoI of the second user for a
threshold policy. Then, we formulate an optimization problem to minimize the average AoI of the
first user for the FCFS and LCFS with preemption queue discipline to maintain the average AoI of the
second user below a given level. The constraints of the optimization problem are shown to be convex.
It is also shown that the objective function of the problem for the first-come-first-served queue policy
is non-convex, and a suboptimal technique is introduced to effectively solve the problem using the
algorithms developed for solving a convex optimization problem. Numerical results illustrate the
performance of the considered optimization algorithm versus the different parameters of the system.
Finally, we discuss how the analytical results of this work can be extended to capture larger setups
with more than two users.

Keywords: age of information; multiple access channels; multiple-input multiple-output Rayleigh
fading channel; discrete-time Markov chain; convex optimization

1. Introduction

Age of Information (AoI) is considered to be a metric for characterizing the timeliness
and freshness of data [1–4]. AoI was first introduced in [4], and it is defined as the time dif-
ference between the current time and the time that the latest status update was successfully
received by a destination. In [4–9], the authors derived the average AoI for systems with
different availability of resources using different queuing models. The M/M/1, M/D/1,
and D/M/1 queues were studied under the first-come-first served (FCFS) queue manage-
ment protocols in [4]. In [5–9], the authors considered the last-come-first-served (LCFS)
queue protocols with or without the ability to preempt the packet in service. Recently,
different types of traffic associated with different source nodes have been considered in
which some nodes generate time-sensitive status updates and other nodes strive to achieve
high throughput. The performance of a multiple access channel with heterogeneous traffic
has been investigated in [10] where one user has bursty arrivals of regular data packets
while another AoI-oriented sensor has energy-harvesting capabilities.

The interplay between delay guarantees and information freshness in a two-user
multiple access channel with multi-packet reception (MPR) capability at the receiver and
heterogeneous traffic is studied in [11]. Motivated by [11], in [12] the interplay of deadline-
constrained traffic and the average AoI in a two-user random-access channel with MPR
reception capabilities was investigated. The authors obtained analytical expressions for
the throughput and drop rate of a user with external bursty traffic, which is the deadline-
constrained and analytical expression for the average AoI of a user monitoring the sensor.
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In [13], the authors presented the analysis of the average AoI with and without packet
management at the transmission queue of the source nodes. In the proposed system, each
source node has a buffer of infinite capacity to store incoming bursty traffic in the form
of packets.

A small average AoI corresponds to having fresh information, which is a key re-
quirement in various applications, including Internet of Things (IoT) scenarios, wireless
sensor networks, industrial control, and vehicular networks. The problem of optimizing
the process, i.e., of sending status updates from a user to minimize the average AoI, was
studied in [14–24]. The works [14,25] consider real-time IoT monitoring systems, where
IoT devices sample a physical process and transmit status updates to a remote monitor to
minimize the average AoI. In [15], the worst-case average AoI and average peak AoI from
a sensor in a system where all other sensors have a saturated queue are analyzed. In [16], a
randomized policy, a MaxWeight policy, and a Whittle’s Index policy have been proposed
to minimize the AoI subject to minimum throughput requirements. In [17], the problem of
minimizing AoI in various continuous-time and discrete-time queuing systems, such as the
FCFS G/G/1, the LCFS G/G/1, and the G/G/∞, has been studied. In [18], the age-optimal
scheduling policies in a network with general interference constraints have been studied.
In [19], the authors considered an energy-harvesting sensor and determined the optimal
status update policy to minimize the average AoI. In [20], several methods have been
proposed for solving an AoI minimizing problem with throughput constraints. In [20–24],
the authors developed the Drift-Plus-Penalty (DPP) policy from the Lyapunov optimization
theory which is often used for solving stochastic network optimization problems with
stability constraints. In [23], the authors applied the Lyapunov DPP method to minimize
the average AoI total transmit power of sensors under constraints on the maximum av-
erage AoI and the maximum power of each sensor. In [24], the authors proposed the
probabilistic random-access (PRA) and DPP methods for solving an optimization problem
that aims to minimize the average AoI of the energy-harvesting node subject to the queue
stability constraint of the grid-connected node. Recently, the performance of AoI has been
investigated in Multiple-Input Multiple-Output (MIMO) systems [26–30]. In [26,27], the
user scheduling problem has been investigated to minimize AoI in a multiuser MIMO
status update system where multiple single-antenna devices send their information over a
common wireless uplink channel to a multiple-antenna access point. In [28], a novel MIMO
broadcast setting is studied to minimize the sum average AoI through precoding and
transmission scheduling. The age-limited capacity through MIMO setup was investigated
in [29], where a random subset of users are active in any transmission period. In [30], the
authors analyzed and optimized the performance of AoI in a grant-free random-access
system with massive MIMO.

Contributions

Motivated by [12,24,29] in this paper we consider a multiple access channel (MAC)
with two users that have AoI-oriented traffic with different characteristics. The receiver
has multiple antennas, and the communication channels are subject to Rayleigh fading and
path loss, as depicted in Figure 1. The key contributions of this paper are:

1. We consider a MIMO Rayleigh fading channel in which the receiver has multiple
antennas. Most of the literature assumes single-antenna setups.

2. In a two-user multiple access setup, we study the performance of the average AoI of
the first user for the cases of FCFS, LCFS with preemption, and queue with packet
replacement when external status update packets are arriving according to a Bernoulli
process. The case of FCFS can be useful when we do not allow out-of-order transmis-
sions, since we intend to also monitor the evolution of a process in addition to the
freshness. The policies of LCFS with preemption and the queue with replacement
are more relevant when we do not care for the evolution of the process; thus, we can
allow packet dropping.
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3. Furthermore, we consider a threshold for the AoI of the second user which affects the
sampling and transmission frequency, and we conduct a detailed analysis for the AoI
of the second user. In particular, we derive exact analytical expressions for

• The distribution of the AoI of the second user;
• The probability that the AoI of the second user is greater than a threshold;
• The average AoI of the second user;
• The average AoI of the first user for the LCFS with preemption policy by assum-

ing the threshold for the AoI of the second user.

4. We formulate and analyze a constrained optimization problem where the objective
function is the average AoI of the first user for the FCFS queue discipline, with
a constraint on the average AoI for the second user, which should be less than a
threshold. We show that the problem is not convex in general. Then, we propose a
suboptimal approach to solve the problem. Furthermore, we solve the optimization
problem where the objective function is the average AoI of the first user for the LCFS
scheme with preemption.

The considered setup is expected to occur in several scenarios in wireless industrial
automation (Industry 4.0, Industrial IoT), in which several processes are coexisting by
sharing the same network resources, and sensing the states of a set of systems is essential.

The remainder of this paper is organized as follows. In Section 2, the system model
is introduced. In Section 3, we analyze the average AoI of the first and second users;
we formulate an optimization problem and propose a convex optimization algorithm to
minimize the average AoI of the first user under the constraint on the average AoI for the
second user. In Section 4, we present the numerical and simulation results to evaluate the
performance of the proposed optimization method. Conclusions are drawn in Section 6.
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Figure 1. User 1 has AoI-oriented external bursty traffic with probability λ, user 2 has also AoI-
oriented traffic but it can control the generation of status updates.
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where Pt,i is the transmitted power by user i and σ2 is the variance of the complex additive
white Gaussian noise (AWGN) at the receiver. Note that ‖gi‖2 follows a gamma distribution
with shape parameter M, and scale parameter 1 (i.e. ‖gi‖2 ∼ Γ(M, 1)). Also, It is shown in
[31] that g̃i

Hgj ∼ CN (0, 1)∀i, j, where g̃i
H = gi

H/‖gi‖ and they are mutually independent
and also independent of ‖gi‖2. In this paper, we assume MPR capability at the receiver
which means that the receiver can correctly decode packets from multiple simultaneous
transmissions that are interfering with each other. It is assumed that a packet is successfully
transmitted from the user i if the received SNR or SINR at the receiver exceeds a certain
threshold. The success transmission probability for user i when only user i transmits pi/i
and when both users transmit pi/i,j can be obtained as [31]

pi/i = Pr{SNRi > γ} =
∫ ∞

γσ2
Pt,i βi
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The results presented in this work are general and can also be applied to other types of
wireless channels as long as we can calculate the aforementioned success probabilities.

Figure 1. User 1 has AoI-oriented external bursty traffic with probability λ, user 2 has also AoI-
oriented traffic but it can control the generation of status updates.

2. System Model

We consider a time-slotted MAC with two users equipped with a single antenna
transmitting their information in the form of packets over a MIMO Rayleigh fading channel
to a common receiver with M antenna, as shown in Figure 1. We assume that both users
have AoI-oriented traffic, but with different characteristics. One of the main differences
between the users is that the first one does not have control over the generation of the
status update packets, but they are externally generated according to a Bernoulli process
with a probability λ, while the second user can control the generation of status update
packets. Let Q(t) denote the status update queue of the first user in time slot t, which has
infinite capacity. When the queue of the first user is not empty, it attempts to transmit its
status update packets with a probability q1. Additionally, it is assumed that the second user
samples and transmits its status updates with probability q2 based on a generate-at-will
policy. Note that in Section 3.5, we will consider the case where the second user can adjust
its sampling and transmission probability based on an AoI threshold.
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2.1. Physical Layer Model

We assume a quasi-static Rayleigh fading model for the duration of the timeslot in
which hi ∈ CM denotes the M × 1 channel vector between the user i (i = 1, 2) and the
receiver and reads

hi =
√

βigi, (1)

where gi ∈ CM denotes the fast-fading coefficients between user i and receiver antenna, and
βi models path loss where βi = r−α

i . Please note that ri is the distance between user i and
the receiver and α is the path-loss exponent that 2 < α < 7. At each time slot, the received
signal-to-noise ratio (SNR) at the receiver when only user i transmits and the received
signal to interference and noise ratio (SINR) at the receiver when both users transmit are
given by

SNRi =
Pt,iβi‖gi‖2

σ2 ,

SINRi =
Pt,iβi‖gi‖2

σ2 + Pt,jβ j|g̃i
Hgj|2

,
(2)

where Pt,i is the transmitted power by user i and σ2 is the variance of the complex additive
white Gaussian noise (AWGN) at the receiver. Please note that ‖gi‖2 follows a gamma
distribution with shape parameter M, and scale parameter 1 (i.e., ‖gi‖2 ∼ Γ(M, 1)). Addi-
tionally, it is shown in [31] that g̃i

Hgj ∼ CN (0, 1)∀i, j, where g̃i
H = gi

H/‖gi‖ and they are
mutually independent and independent of ‖gi‖2. In this paper, we assume MPR capability
at the receiver, which means that the receiver can correctly decode packets from multiple
simultaneous transmissions that are interfering with each other. It is assumed that a packet
is successfully transmitted from the user i if the received SNR or SINR at the receiver
exceeds a certain threshold. The success transmission probability for user i when only user
i transmits pi/i and when both users transmit pi/i,j can be obtained as [31]

pi/i = Pr{SNRi > γ} =
∫ ∞

γσ2
Pt,i βi

zM−1e−z

(M− 1)!
dz =

Γ
[

M, γσ2

Pt,i βi

]

(M− 1)!
, i = {1, 2} (3a)

pi/i,j = Pr{SINRi > γ} =
∫ ∞

0

∫ ∞
(

γσ2
Pt,i βi

+
Pt,j βj
Pt,i βi

γt
) zM−1e−(z+t)

(M− 1)!
dzdt, i = {1, 2}, j 6= i. (3b)

Note that for the special case of M = 1, (3a) and (3b) can be written as

pi/i = Pr{SNRi > γ} = exp
(
− γσ2

Pt,iβi

)
(4a)

pi/i,j = Pr{SINRi > γ} = exp
(
− γσ2

Pt,iβi

)(
1 + γ

Pt,jβ j

Pt,iβi

)−1

, i = {1, 2}, j 6= i. (4b)

The results presented in this work are general and can also be applied to other types of
wireless channels as long as we can calculate the aforementioned success probabilities.

2.2. The Service Probability

The service probability of a user is defined as the probability of successful transmission
in a timeslot. The service probability for the first user is given by

µ1 = q1(1− q2)p1/1 + q1q2 p1/1,2. (5)

To obtain the service probability of the second user, three cases are considered as follows.

1. When the queue of the first user is empty.
2. When the queue of the first user is not empty, and it does not transmit a status update

to the receiver.
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3. When the queue of the first user is not empty, and it transmits a status update to the
receiver with probability q1.

The service probability of the second user can be written as

µ2 = Pr{Q = 0}q2 p2/2 + Pr{Q 6= 0}
(
1− q1

)
q2 p2/2 + Pr{Q 6= 0}q1q2 p2/1,2

= q2

(
1− q1Pr{Q 6= 0}

)
p2/2 + q2q1Pr{Q 6= 0}p2/1,2. (6)

The status updates at the first user are arriving according to a Bernoulli process with a
probability λ. When the status update queue of the first user is stable λ < µ1, the probability
that the queue of user 1 is not empty can be written as

Pr{Q 6= 0} = λ

µ1
. (7)

Now, using (7), the expression (6) can be written as

µ2 = q2

(
p2/2 −

λ(p2/2 − p2/1,2)

p1/1 − q2(p1/1 − p1/1,2)

)
. (8)

3. Analysis of the Age of Information and Problem Formulation

In this section, we analyze the average AoI of the first and second users, and formulate
an optimization problem to minimize the average AoI of the first user. In the following
subsections, we first derive the average AoI of the first user for a discrete-time FCFS queue,
LCFS queue with preemption, and queue with packet replacement policies. Then, we
obtain the AoI and average AoI of the second user for a case threshold policy.

3.1. Average Age of Information of the First User

The AoI of the first user at the receiver is defined as a random process ∆t = t− G(t),
where G(t) is the time slot when the latest successfully received a status update from the
first user. The evolution of AoI of the first user is illustrated in Figure 2. In this figure, we
assume that all packets need to be delivered to the destination regardless of the freshness
of the status update information. Therefore, we consider that jth status update is generated
at time slot tj, and received by the receiver at time slot t

′
j. Then, we denote Tj = t

′
j − tj

and Yj = tj − tj−1 as the system time of update j and the interarrival time of update j,
respectively. Without loss of generality, the average AoI of the first user for an interval of
observation (0, τ) is defined as

∆τ =
1
τ

N(τ)

∑
t=0

∆t, (9)

where N(τ) is the number of samples during the observation interval. Using Figure 2,
Equation (9) can be calculated as the area under ∆t. Starting from t = 0, the area is
decomposed into the areas J1, J2, . . . , JN(τ), and the area of width Tn over the time interval
(tn, t′n) that is denoted by J̄. Therefore, one can write the average AoI of the first user as a
sum of disjoint geometric parts as

∆τ =
1
τ

(
J1 + J̄ +

N(τ)

∑
j=2

Jj

)
=

J1 + J̄
τ

+
N(τ)− 1

τ

1
N(τ)− 1

N(τ)

∑
j=2

Jj. (10)

Now, the average AoI of the first user is given by

Ā1 = lim
τ→∞

∆τ , (11)

we can write the expression given in (11) as [5]

Ā1 =
1

E[Y]

(
E[YT] +

E[Y2]

2
+

E[Y]
2

)
. (12)
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∆t

∆0

t0 t1
t′1

t2 t3 t4 tn−1 tn t
t′2 t′3

J1 J2 J3 J4 Jn

J̄

t′n

Y2 T2

Z2 Z3

Yn Tn

W3 S3

Figure 2. An example of the age evolution of user 1 at the receiver.

3.2. The FCFS Geo/Geo/1 Queue

In this section, we obtain the average AoI of the first user for a discrete-time Geo/Geo/1
queue discipline of FCFS. When status update packets are arriving according to the
Bernoulli process with a probability λ, the interarrival times Yj are i.i.d. sequences that
follow a geometric distribution with probability mass function (PMF) as

Pr{Yj = y} = λ(1− λ)y−1, y = 1, 2, . . . . (13)

Thus, we can obtain E[Y] and E[Y2] in Equation (12) as

E[Y] = 1
λ

, E[Y2] =
2− λ

λ2 . (14)

Also, the expression E[YT] can be obtained as [13]

E[YT] =
λ(1− µ1)

(µ1 − λ)µ2
1
+

1
λµ1

. (15)

Now, using Equations (14) and (15), the expression given in (12) can be written as

Ā1 =
1
λ
+

1− λ

µ1 − λ
− λ

µ2
1
+

λ

µ1
. (16)

3.3. The Preemptive LCFS Geo/Geo/1 Queue

In this section, we consider a discrete-time LCFS Geo/Geo/1 queue with preemptive
service, where a newly generated packet is given priority for service immediately. It is
assumed that status update packets are arriving according to the Bernoulli process with
probability λ. The probability distribution of interarrival time between the jth and (j + 1)th
status update packet is assumed to be geometric with mean E[Y] = 1/λ, and the probability
distribution time until successful delivery is assumed to be geometric distribution with
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mean E[S] = 1/µ1, in which µ1 denotes the service probability of the first user. In [32], it is
shown that the PMF of AoI for a discrete-time LCFS Geo/Geo/1 queue is given by

Pr{A1 = x} = λµ1
[
(1− λ)x−1 − (1− µ1)

x−1]

µ1 − λ
. (17)

Now, we can write the average AoI of the first user as

Ā1 =
∞

∑
x=1

xPr{A1 = x} = 1
λ
+

1
µ1

. (18)

3.4. Queue with Replacement

In this section, we derive the average AoI of the first user for a queue with replacement.
In this case, it is assumed that a newly generated packet discards the packet waiting in the
queue. As shown in Figure 2, we express the areas Jj with respect to the random variables
Zj as follows

Jj =

Tj−1+Zj

∑
m=1

m−
Tj

∑
m=1

m

=
(Tj−1 + Zj)(Tj−1 + Zj + 1)

2
− Tj(Tj + 1)

2
. (19)

We use the fact that in the steady state Tj−1 and Tj are identically distributed. Therefore,
the average AoI of the first user for a queue with packet replacement is given by [13]

Ā1 = λe

(
E[ZT] +

E[Z2]

2
+

E[Z]
2

)
, (20)

where one can obtain λe, E[Z], E[Z2] and E[ZT] as [13]

λe = λ− λ3(1− µ1)

λ2(1− µ1) + λ(1− µ1)µ1 + µ2
1

E[Z] =
λ2(1− µ1) + λ(1− µ1)µ1 + µ2

1
λµ1(λ + µ1 − λµ1)

E[Z2] =
(2λ2 + 2λµ1 − λ2µ1 + 2µ2

1 − λµ2
1)(µ1 − λµ1)

λ2µ2
1(λ + µ1 − λµ1)

+
λ(2− µ1)

µ2
1(λ + µ1 − λµ1)

E[ZT] =
1

µ2
1
+

1− λ

λµ1
− 1 + λ

(λ + µ1 − λµ1)2 +
1 + 2λ

λ + µ1 − λµ1
+

λ(1− 2µ1 + λ(3µ1 − 2))
λ2(1− µ1)2 + λµ1(1− 2µ1) + µ2

1
. (21)

3.5. Age of Information and the Average Age of Information of the Second User

We assume A2(t) be a positive integer that represents the AoI associated with the
second user at the receiver. The AoI evolution between two consecutive time slots at the
receiver can be written as

A2(t + 1) =

{
1, successful packet reception at time slot t
A2(t) + 1, otherwise.

(22)

According to (22), the AoI drops to one when there is a successful reception of a status
update at the receiver. Otherwise, it increases by one. We can model the evolution of the
AoI of the second user as a Discrete-Time Markov Chain (DTMC). The DTMC is shown
in Figure 3, in which when A2(t) < κ (κ is the threshold of the AoI of the second user),
a packet is transmitted with the probability q2. Also, a packet is transmitted with the
probability q′2 when A2(t) > κ. The service probability of the first user can be written as
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µ′1 = q1(1− q′2)p1/1 + q1q′2 p1/1,2. (23)

According to the DTMC described in Figure 3, we can obtain the steady-state probabilities
of the AoI of the second user as follows

πi =

{
(1− µ2)

i−1π1 , i < κ( 1−µ2
1−µ′2

)κ−1
(1− µ′2)

i−1π1 , i > κ
(24)

where for λ < µ′1, µ′2 is given by

µ′2 = q′2

(
p2/2 −

λ(p2/2 − p2/1,2)

p1/1 − q′2(p1/1 − p1/1,2)

)
. (25)

Additionally, we can obtain π1 as

π1 =

{
µ′2 , κ = 1

µ2µ′2
µ′2+(µ2−µ′2)(1−µ2)κ−1 , κ > 2.

(26)

· · ·κ· · ·321

µ2
1− µ2

µ2

1− µ2

µ2

1− µ2

µ2

1− µ2

µ′2

1− µ′2

µ′2

Figure 3. The DTMC, which models the evolution of AoI of the second user.

Using Equations (24) and (26), we can write the probability that the AoI of the second
user is smaller than a threshold κ, as follows

Pr{A2 < κ} =
κ−1

∑
i=1

(1− µ2)
i−1π1 =

(1− (1− µ2)
κ−1)π1

µ2
. (27)

Furthermore, one can write the probability that the AoI of the second user is greater than a
threshold, κ, as follows

Pr{A2 > κ} =
∞

∑
i=κ

(
1− µ2

1− µ′2

)κ−1

(1− µ′2)
i−1π1

=
(1− µ2)

κ−1π1

µ′2
. (28)

Now, using Equations (27) and (28), the average AoI of the second user is described as

Ā2 =
∞

∑
i=1

iπi =
κ−1

∑
i=1

i(1− µ2)
i−1π1 +

∞

∑
i=κ

i
(

1− µ2

1− µ′2

)κ−1

(1− µ′2)
i−1π1

=
1− µ2 − (1− µ2)

κ
[
1− µ2 + κµ2

]

(1− µ2)µ
2
2

π1 +
(1− µ2)

κ
[
1− µ′2 + yµ′2

]

(1− µ2)µ
′2
2

π1, (29)
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where µ2, µ′2, and π1 are given by (8), (25) and (26), respectively. Additionally, when κ → ∞
and λ < µ1, Equation (29) can be written as

Ā2 =
1

µ2
. (30)

3.6. The Average AoI of S1 for the Preemptive LCFS Geo/Geo/1 Queue for the Threshold-Based
Policy of S2

By considering the threshold-based policy explained in Section 3.5, the average AoI of
S1 for the preemptive LCFS queue discipline given in (17) can be written as

Pr{A1 = x} = Pr{A1 = x|A2 < κ}Pr{A2 < κ}+ Pr{A1 = x|A2 > κ}Pr{A2 > κ}, (31)

where Pr{A2 < κ}, Pr{A2 > κ} are given by (27) and (28). Using Equation (17), the first
and second conditional probabilities given in (31) can be written as

Pr{A1 = x|A2 < κ} = λµ1
[
(1− λ)x−1 − (1− µ1)

x−1]

µ1 − λ
(32a)

Pr{A1 = x|A2 > κ} = λµ′1
[
(1− λ)x−1 − (1− µ′1)

x−1]

µ′1 − λ
, (32b)

where µ′1 is given by (23). Now, we can write the average AoI of S1 for threshold-based
policy of the AoI of S2 as

Ā1 =
∞

∑
x=1

xPr{A1 = x}

=

(
1
λ
+

1
µ1

)(
[1− (1− µ2)

κ−1]π1

µ2

)
+

(
1
λ
+

1
µ′1

)(
(1− µ2)

κ−1π1

µ′2

)
, (33)

where π1 is given by (26).

3.7. Optimizing the Average AoI of S1 subject to AoI constraints on S2

3.7.1. Using the Average AoI of the FCFS as the objective function

In this section, our objective is to minimize the average AoI of user 1 for a discrete-time
Geo/Geo/1 queue discipline of FCFS with a constraint on the average AoI for user 2, which
should be less than a threshold. Let Amax be a strictly positive real value that represents the
maximum average AoI of user 2. Thus, the optimization problem is formulated as follows

minimize Ā1 (34a)

subject to Ā2 < Amax. (34b)

Using the expressions given in Equations (16) and (30), one can write Equation (34)
as follows

minimize
q1,q2,λ

1
λ
+

1− λ

µ1 − λ
− λ

µ2
1
+

λ

µ1
(35a)

subject to
1

µ2
< Amax, (35b)

0 6 λ < µ1, (35c)

q1, q2 ∈ [0, 1]. (35d)

where the constraint in (35c) ensures that the queue of the first user is stable. To solve this
optimization problem, we first note that for λ < µ1 when the service probability of the
first user increases, the objective function given in (35a) decreases. Hence, to minimize the
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objective function, we must obtain the maximum value of µ1. The service probability of the
first user given in (5) can be simplified as

µ1 = q1(1− q2)p1/1 + q1q2 p1/1,2

= q1
[
p1/1 − q2(p1/1 − p1/1,2)

]
. (36)

According to Equation (36), µ1 has its maximum value when q1 is maximum. Therefore, by
selecting q1 = 1, we can maximize the service probability of the first user and minimize the
average AoI of the first user as an objective function. Therefore, the optimal value of q1 is
given by

q∗1 = 1. (37)

Now, using Equations (8), (36) and (37), we can write the optimization problem given in
(35) as

minimize
q2,λ

1
λ
+

1− λ

p1/1 − q2(p1/1 − p1/1,2)− λ
− λ

(
1− p1/1 + q2(p1/1 − p1/1,2)

)
(

p1/1 − q2(p1/1 − p1/1,2)
)2 (38a)

subject to
p1/1 − q2(p1/1 − p1/1,2)

q2
(

p1/1 p2/2 − q2 p2/2(p1/1 − p1/1,2)− λ(p2/2 − p2/1,2)
) − Amax < 0, (38b)

λ− p1/1 + q2(p1/1 − p1/1,2) < 0, (38c)

λ, q2 ∈ [0, 1]. (38d)

By definition, an optimization problem is convex when its objective function and the
inequality constraints are convex, and its equality constraints are affine, see Chapter 4.2
in [33]. We can show that the Hessian matrix of the objective function given in (38a) is
positive semi-definite for some parameters of λ and q2 and for some others is not positive
semi-definite and therefore it is not a convex function. Additionally, it can be verified that
the Hessian matrices of the inequality constraints (38b) and (38c) are positive semi-definite
for different values of λ and q2. Therefore, this optimization problem is not a convex
optimization problem, a trivial solution does not exist for this problem, and finding the
optimal solution is computationally involved. Hence, to find the optimal values of λ and
q2, a suboptimal technique is proposed to effectively solve the problem using an algorithm
developed for solving convex optimization problems. This approach is known as the bilevel
optimization algorithm and is used when optimization parameters are interdependent, and
the optimization problem is convex with respect to each of the optimization parameters
when other parameters are fixed [34].

3.7.2. Bilevel Convex Optimization

Using the procedure explained in Appendix A, it can be verified that the objective
function given in (38a) is a convex function of λ when q2 is fixed and λ < µ1. Therefore, the
optimization problem can be solved for λ by assuming that q2 is fixed. Then, substituting
for λ in (38a) from the previous stage and assuming that this parameter is fixed, we can
solve the optimization problem for q2. This procedure continues until the convergence
condition is satisfied (for example, the change in the objective function in two successive
iterations is lower than a small threshold).

In this paper, an interior-point method is used to solve the optimization problem in
each iteration of the bilevel optimization algorithm. The iteration complexity of this method
is shown in Chapter 3.4.3 in the work of den Hertog [35] to be O(ν(c√n)), where ν denotes
the number of iterations, n is the number of constraints and c is a constant, which depends
on system parameters such as tolerance.
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3.7.3. Using the Average AoI of the LCFS with Preemption as an Objective Function

In this section, our objective is to minimize the average AoI of user 1 for a discrete-time
preemptive LCFS Geo/Geo/1 queue discipline with a constraint on the average AoI for
user 2, which should be less than a threshold. Using the expressions given in Equations (18)
and (30), the optimization problem is formulated as follows

minimize
q1,q2,λ

1
λ
+

1
µ1

(39a)

subject to
1

µ2
< Amax, (39b)

0 6 λ < µ1, (39c)

q1, q2 ∈ [0, 1]. (39d)

Using the procedure explained in Section 3.7.1, the q∗1 = 1 and the optimization problem
given in (39) is simplified as

minimize
q2,λ

1
λ
+

1
p1/1 − q2(p1/1 − p1/1,2)

(40a)

subject to
p1/1 − q2(p1/1 − p1/1,2)

q2
(

p1/1 p2/2 − q2 p2/2(p1/1 − p1/1,2)− λ(p2/2 − p2/1,2)
) − Amax < 0, (40b)

λ− p1/1 + q2(p1/1 − p1/1,2) < 0, (40c)

λ, q2 ∈ [0, 1]. (40d)

We can prove that the Hessian matrix of the objective function given in (40a) is positive
semi-definite and the optimization problem is convex (see Appendix B). Therefore, this
optimization problem can be solved using an algorithm developed for solving convex
optimization problems such as the interior-point method.

4. Numerical Results and Discussion

In this section, we illustrate our analytical results presented in Section 3 and we
verify them by means of computer simulation. Simulation results are obtained using 106

independent realizations of the system. Additionally, we evaluate the performance of the
proposed interior-point algorithm presented in Section 3. It is assumed that the users are
located at a distance ri = 30 m (i = 1, 2) from the receiver. The receiver noise power is
assumed to be σ2 = −100 dBm, and the path-loss exponent is α = 4. Additionally, the
assumed transmit powers are Pt,1 = Pt,2 = 5 mW, and the transmission channels between
the users and receiver are subject to Rayleigh fading model and we use the expressions for
the success probabilities that were presented in Section 2. Furthermore, the initial point for

the interior-point algorithm is zero, i.e.,
(

λ(0), q(0)2

)
= 0.

Figure 4 shows the average AoI of the first user for the FCFS Geo/Geo/1 queue,
preemptive LCFS Geo/Geo/1 queue, and queue with replacement as a function of λ,
γ = −5 dB, M = 1, q1 = 0.8, and q2 = 0.2. As seen in this figure, the preemptive LCFS
Geo/Geo/1 queue outperforms the FCFS Geo/Geo/1 queue, and queue with replacement.
Additionally, note that the average AoI of the first user for the FCFS Geo/Geo/1 queue we
plot for λ < 0.7 to satisfy the stability requirements. Figure 4 also shows that the simulation
results match the analytical results.

The average AoI of S1 and S2 are shown in Figure 5 as a function of κ, for λ = 0.5,
q1 = 1, q2 = 0.2, q′2 = 0.5, γ = 3 dB, and various values of M. As seen in this figure, as
κ increases, the slope of the average AoI of S2 and S1 decreases because when κ becomes
larger, the average AoI of S2 and S1 tends to 1/µ2 and 1/λ + 1/µ1, respectively, and
becomes independent of q′2. Therefore, by changing q′2 the average AoI of S2 and S1 will not
change. Furthermore, when κ increases, the average AoI of S2 increases and the average
AoI of S1 decreases. This is because for smaller values of κ, a packet is transmitted with
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probability q′2 that q′2 > q2 sooner than larger values of κ. Therefore, the average AoI of the
first and second users has larger and smaller values, respectively, for smaller values of κ.
Additionally, note that when M increases, the average AoI of the first and second users
decreases because for a larger value of M the service probabilities of the first and second
users have larger values such that they decrease the average AoI of S1 and S2.
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Figure 4. The average AoI of the first user for the FCFS Geo/Geo/1 queue, preemptive LCFS
Geo/Geo/1 queue, and queue with replacement for γ = −5 dB, M = 1, q1 = 0.8, and q2 = 0.2, and
various values of λ.
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Figure 5. The average AoI of the S1 and S2 for γ = 3 dB, λ = 0.5, q1 = 1, q2 = 0.2, q′2 = 0.5,
κ = 1, 5, 10, . . . , 30, and various values of M.
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Figure 6 shows the probability that the AoI of the second user to be greater than a
threshold as a function of λ for q1 = 1, q2 = 0.2, q′2 = 0.5, γ = 3 dB, x = 5, and selected
values of M. As seen in this figure, when λ increases the probability Pr{A2 > x} increases.
This is because when λ increases the service probability of the second user decreases and
therefore it increases the AoI of the second user. Furthermore, by increasing M, the success
transmission probabilities increase, and the service probability of the second user increases.
As a result, the AoI of the second user decreases and the probability Pr{A2 > x} has lower
values. Note, importantly, that when M = 1, the probability Pr{A2 > x} does not have a
value for λ > 0.6. This is because for λ > 0.6, λ becomes larger than µ1 and thus the AoI of
the second user does not have a value.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Simulation, M = 1

Simulation, M = 2

Simulation, M = 4

Simulation, M = 6

Analytical

Figure 6. The probability the AoI of the S2 at the receiver greater than a threshold, x = 5, for γ = 3 dB,
q1 = 1, q2 = 0.2, q′2 = 0.5, λ = 0.1, 0.2, . . . , 1, and various values of M.

Figure 7 shows the average service time of the first user, 1/µ1, as a function of
Pt,1 (Pt,1 = Pt,2) for σ2 = −50 dBm, α = 4, ri = 30 m (i = 1, 2), γ = 0 dB, q1 = 0.8,
q2 = 0.4, and selected values of M. As seen in this figure, when transmitted power in-
creases, the average service time decreases. This is because by increasing the transmitted
power, the success transmission probabilities increases and thus the average service time
decreases. Furthermore, when M increases, the average service time decreases. This is
because when M increases, the service probability increases such that it decreases the
average service time.

The average service time is illustrated in Figure 8 as a function of r1 (r1 = r2) for
σ2 = −50 dBm, α = 4, Pt,1 = Pt,2 = 5 mW, γ = 0 dB, q1 = 0.8, q2 = 0.4, and various
values of M. As seen in this figure, the average service time increases by increasing r1.
This is because when r1 increases, the service probability of the first user decreases, which
results in decreasing in the average service time. Moreover, by increasing M, the average
service time decreases. This is because when M increases, the success probabilities increase
and therefore the average service time decreases.



Entropy 2022, 24, 542 14 of 22

5 10 15 20
1

2

3

4

5

6

7

8

T
h
e 

A
v
er

ag
e 

S
er

v
ic

e 
T

im
e

Simulation, M = 1

Simulation, M = 2

Simulation, M = 4

Simulation, M = 6

Analytical

Figure 7. The average service time of the first user as a function of Pt,1 for σ2 = −50 dBm, α = 4,
r1 = 30 m (i = 1, 2), γ = 0 dB, q1 = 0.8, q2 = 0.4, and various values of M.
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Figure 8. The average service time of the first user as a function of r1 for σ2 = −50 dBm, α = 4,
Pt,1 = Pt,2 = 5 mW, γ = 0 dB, q1 = 0.8, q2 = 0.4, and various values of M.

The minimum average AoI of the first user for the case where M = 1 as a function of γ
and selected values of Amax is illustrated in Figure 9. As seen in this figure and Tables 1–4,
the minimum average AoI of the first user has a larger value when the SNR threshold γ is
larger. This is because a higher γ gives lower success probabilities and therefore increases
the minimum average AoI. An important observation is that as Amax increases, the average
AoI of the first user does not depend on Amax. This is because when Amax increases, the
constraint on the average AoI of the second user becomes independent of Amax. Hence,
when Amax increases, the optimal value of transmit probability q2, λ and therefore the
minimum average AoI of the first user will not change.
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Table 1. The minimum average AoI of the first user and the optimal values of λ∗, q∗1 , and q∗2 for
Amax = 2.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.6159 1 0.6047 3.10

−3 dB 0.5264 1 0.6443 3.54

−1 dB 0.4263 1 0.6859 4.20

1 dB 0.3264 1 0.7175 5.16

3 dB 0.2425 1 0.7289 6.46

5 dB 0.1832 1 0.7239 8.02

Table 2. The minimum average AoI of the first user and the optimal values of λ∗, q∗1 , and q∗2 for
Amax = 5.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.7539 1 0.2477 2.59

−3 dB 0.6947 1 0.2684 2.78

−1 dB 0.6260 1 0.2935 3.02

1 dB 0.5519 1 0.3196 3.32

3 dB 0.4806 1 0.3416 3.67

5 dB 0.4208 1 0.3560 4.04

Table 3. The minimum average AoI of the first user and the optimal values of λ∗, q∗1 , and q∗2 for
Amax = 10.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.8246 1 0.1257 2.39

−3 dB 0.7815 1 0.1376 2.50

−1 dB 0.7303 1 0.1531 2.64

1 dB 0.6730 1 0.1708 2.81

3 dB 0.6147 1 0.1880 3.01

5 dB 0.5622 1 0.2019 3.19

Table 4. The minimum average AoI of the first user and the optimal values of λ∗, q∗1 , and q∗2 for
Amax = 15.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.8563 1 0.0844 2.31

−3 dB 0.8206 1 0.0929 2.40

−1 dB 0.7777 1 0.1043 2.51

1 dB 0.7288 1 0.1179 2.63

3 dB 0.6775 1 0.1320 2.78

5 dB 0.6297 1 0.1441 2.92
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Figure 9. The minimum average AoI of user 1, for M = 1, Amax = 2, 5, 10, 15, and various values
of γ.

Figure 10 shows the interplay between the average AoI of the first user for a discrete-
time Geo/Geo/1 queue discipline of FCFS and the average AoI of the second user when
y → ∞ as a function of q2 and selected values of γ. In this figure, we consider the
weak/strong MPR capabilities. We denote that the strong and weak MPR capability of a
receiver corresponds to K =

p1/1,2
p1/1

+
p2/1,2
p2/2

> 1 and K =
p1/1,2
p1/1

+
p2/1,2
p2/2

< 1, respectively [24].
When M = 1 for γ = −5 dB and γ = −3 dB, K = 1.51 and K = 1.33, respectively. There-
fore, the receiver has strong MPR capabilities. Furthermore, for γ = 1 dB and γ = 3 dB,
K = 0.88 and K = 0.66, respectively; thus, the receiver has weak MPR capabilities. Addi-
tionally, when M = 2 for γ ∈ {−5,−3, 1, 5} dB, K ∈ {1.88, 1.77, 1.37, 1.11}, respectively.
Moreover, when M = 4 for γ ∈ {−5,−3, 1, 5} dB, K ∈ {1.99, 1.97, 1.80, 1.60}, respectively.
Therefore, when M > 1 the receiver has strong MPR capabilities for selected values of γ.
In Figure 10, we consider a different scenario from the optimization problem scenario in
(34). Here we intend to find transmission probabilities q1 and q2 that both users transmit
at the same time to keep the average AoI of the first and second users below a threshold
A1max1 and A2max respectively. Observe that when the receiver has strong MPR capabil-
ities, we have Ā1 < A1max and Ā2 < A2max with a high value of transmit probability q2.
Therefore, in this case, both users can transmit at the same time with a high probability.
For example, we assume the thresholds for the average AoI of the first and second users
are equal to A1max = 6 and A2max = 6, respectively. As seen in this figure when M equals
1, and γ = −5 dB (strong MPR capability), we can achieve our purpose with q1 = 0.6
and q2 = 0.5 while for γ = 1 dB (weak MPR capability), we cannot find a value of q2 to
achieve our goal. In this case, both users cannot transmit at the same time. Additionally,
observe that in Figure 10b, when γ = −5 dB the first and second users can transmit at the
same time with the probabilities of q1 = 0.6 and q2 = 1. Furthermore, when γ = 1 dB, the
transmit probability of q1 and q2 are equal to q1 = 0.6 and q2 = 0.4. In addition, as shown
in Figure 10c, when γ = −5 dB and γ = 1 dB, both users can transmit at the same time
with the probabilities of q1 = 0.6 and q2 = 1. This reflects the fact that when the number of
receiver antenna increases, the receiver has a strong MPR capability for higher values of γ
and thus both users can transmit at the same time with a high probability.
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Figure 10. The interplay between the average AoI of the first and second users for q1 = 0.6, λ = 0.3,
q2 = 0.1, 0.2, . . . , 1, (a) M = 1, (b) M = 2, and (c) M = 4.
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5. Discussion on Larger Topology

In this section, we discuss how this work can be extended to capture more than two
users. However, detailed analysis and optimization for more than two users is left for a
future publication. Below, we provide some details for a setup with two users with external
traffic and two users with control over the generation of the status updates as depicted
in Figure 11. More specifically, it is assumed that the users S1 and S2 do not have control
over the generation of status update packets, and they are externally generated according
to Bernoulli processes with probabilities λ1 and λ2, respectively. When the queue of Si,
i = 1, 2 is not empty, Si attempts to transmit with probability qi. We also consider that
users S3 and S4 can control the generation of status update packets; thus, they sample and
transmit with probabilities q3 and q4, respectively, based on a generate-at-will policy. Using
the same approach presented in Section 2.2, we derive the service probabilities of S1, and
S3 as

µ1 = q1Pr{Q2 = 0}(1− q3)(1− q4)p1/1 + q1Pr{Q2 = 0}q3(1− q4)p1/1,3

+ q1Pr{Q2 = 0}(1− q3)q4 p1/1,4 + q1Pr{Q2 = 0}q3q4 p1/1,3,4

+ q1Pr{Q2 6= 0}(1− q2)(1− q3)(1− q4)p1/1 + q1Pr{Q2 6= 0}(1− q2)q3(1− q4)p1/1,3

+ q1Pr{Q2 6= 0}(1− q2)(1− q3)q4 p1/1,4 + q1Pr{Q2 6= 0}(1− q2)q3q4 p1/1,3,4

+ q1Pr{Q2 6= 0}q2(1− q3)(1− q4)p1/1,2 + q1Pr{Q2 6= 0}q2q3(1− q4)p1/1,2,3

+ q1Pr{Q2 6= 0}q2(1− q3)q4 p1/1,2,4 + q1Pr{Q2 6= 0}q2q3q4 p1/1,2,3,4

= q1(1− q3)(1− q4)
[
p1/1 − q2Pr{Q2 6= 0}(p1/1 − p1/1,2)

]

+ q1q3(1− q4)
[
p1/1,3 − q2Pr{Q2 6= 0}(p1/1,3 − p1/1,2,3)

]

+ q1q4(1− q3)
[
p1/1,4 − q2Pr{Q2 6= 0}(p1/1,4 − p1/1,2,4)

]

+ q1q3q4
[
p1/1,3,4 − q2Pr{Q2 6= 0}(p1/13,4 − p1/1,2,3,4)

]
(41)

µ3 = Pr{Q1 = 0, Q2 = 0}q3(1− q4)p3/3 + Pr{Q1 = 0, Q2 = 0}q3q4 p3/3,4

+ Pr{Q1 6= 0, Q2 = 0}q3(1− q1)(1− q4)p3/3 + Pr{Q1 6= 0, Q2 = 0}q3q4(1− q1)p3/3,4

+ Pr{Q1 6= 0, Q2 = 0}q1q3(1− q4)p3/1,3 + Pr{Q1 6= 0, Q2 = 0}q1q3q4 p3/1,3,4

+ Pr{Q1 = 0, Q2 6= 0}q3(1− q2)(1− q4)p3/3 + Pr{Q1 = 0, Q2 6= 0}q3(1− q2)q4 p3/3,4

+ Pr{Q1 = 0, Q2 6= 0}q2q3(1− q4)p3/2,3 + Pr{Q1 = 0, Q2 6= 0}q2q3q4 p3/2,3,4

+ Pr{Q1 6= 0, Q2 6= 0}q3(1− q1)(1− q2)(1− q4)p3/3

+ Pr{Q1 6= 0, Q2 6= 0}q2q3(1− q1)(1− q4)p3/2,3

+ Pr{Q1 6= 0, Q2 6= 0}q3q4(1− q1)(1− q2)p3/3,4

+ Pr{Q1 6= 0, Q2 6= 0}q1q3(1− q2)(1− q4)p3/1,3

+ Pr{Q1 6= 0, Q2 6= 0}q2q3q4(1− q1)p3/2,3,4+Pr{Q1 6= 0, Q2 6= 0}q1q2q3(1− q4)p3/1,2,3

+ Pr{Q1 6= 0, Q2 6= 0}q1q3q4(1− q2)p3/1,3,4 + Pr{Q1 6= 0, Q2 6= 0}q1q2q3q4 p3/1,2,3,4 (42)

Similarly, we can write the service probabilities for S2 and S4. As we can observe, we see
that the service probability of S1 depends on the state of the queue of S2 and vice versa.
Thus, the queues are coupled, which is a known problem and closed form solutions cannot
be obtained for more than three users. Furthermore, the service probabilities of S3 and S4
depend on the joint PDF of the queues of S1 and S2.

A way to bypass the difficulty due to coupling among the queues is to assume inde-
pendence as in [13], or if we further assume that the queues have finite capacity then we
can use semi-analytical methods from queuing theory. In the first case, we can approximate
the performance and that approximation is tight for higher values of the arrival probabili-
ties. After characterizing the service probabilities for each node, we can use the provided
analysis in the earlier sections. In a scenario where we have only one user with a queue
and N users with the generate-at-will policy, the extension becomes a trivial exercise of our
analytical results since one can use the expressions directly.
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Figure 11. S1 and S2 have AoI-oriented external bursty traffic, S3 and S4 have also AoI-oriented
traffic but they can control the generation of status updates.

6. Conclusions

In this work, we considered a two-user multiple access channel in which both users
have AoI-oriented traffic, but with different characteristics. All transmission channels were
assumed to be subject to path loss and fading. We have investigated the performance of
the average AoI of the first user for the FCFS, LCFS Geo/Geo/1 with preemption, and
queue with replacement. Additionally, we have derived the AoI and the average AoI of
the second user by considering a threshold for the AoI of the second user. Then, we have
formulated an optimization problem to minimize the average AoI of the first user with
a constraint on the average AoI of the second user. To solve the proposed optimization
problem, we used the interior-point method. Numerical results showed the performance
of the proposed algorithm for the different parameters of the system and the impact of
multiple antennas.

Future extensions of this work include larger topologies, as discussed in Section 5.
Furthermore, an interesting extension is to consider more elaborate schemes at the physical
layer such as the MMSE receiver or zero-forcing. Another interesting direction is to con-
sider power control schemes with dynamic programming methodologies such as Markov
Decision Processes or stochastic optimization.

Author Contributions: Conceptualization, N.P.; Formal analysis, M.S.; Supervision, N.P.; Writing—
original draft, M.S.; Writing—review & editing, M.S. and N.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Swedish Research Council (VR), ELLIIT, and CENIIT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2022, 24, 542 20 of 22

Appendix A

To prove the convexity of the objective function, we first define the expression given
in (38a) as

A =
1
λ
+

1− λ

p1/1 − q2(p1/1 − p1/1,2)− λ
− λ

(
1− p1/1 + q2(p1/1 − p1/1,2)

)
(

p1/1 − q2(p1/1 − p1/1,2)
)2 . (A1)

Now, by taking the second derivative d2A
dλ2 we have

d2A
dλ2 =

2
λ3 +

2(1− X)

(X− λ)3 (A2)

where X = p1/1 − q2(p1/1 − p1/1,2), and using the expression given in (38c), we have

λ < X 6 1. Therefore, for all values of X and λ, the second derivative d2A
dλ2 is positive, and

thus the objective function is a convex function of λ when q2 is fixed. Similarly, by taking
the second derivative d2A

dq2
2

when λ is fixed we have

d2A
dq2

2
= (p1/1 − p1/1,2)

2

[
−2λ(3− X)

X4 +
2(1− λ)

(X− λ)3

]
(A3)

where X = p1/1 − q2(p1/1 − p1/1,2) and λ < X 6 1. It can be readily shown that for

all values of X and λ, d2A
dq2

2
is positive and therefore the objective function A is a convex

function of q2 when λ is fixed.

Appendix B

In order to prove the convexity of the objective function given in (40a), we must verify
that the Hessian matrix of the objective function is positive semi-definite. We first consider
the objective function as

B =
1
λ
+

1
p1/1 − q2(p1/1 − p1/1,2)

. (A4)

To obtain the Hessian matrix, we need to derive d2B
dλ2 , d2B

dλdq2
, and d2B

dq2
2

.

d2B
dλ2 =

2
λ3 > 0

d2B
dλdq2

= 0

d2B
dq2

2
=

2(p1/1 − p1/1,2)

(p1/1 − q2(p1/1 − p1/1,2))3 > 0. (A5)

According to the stability constraint in (40c), λ < p1/1− q2(p1/1− p1/1,2) 6 1 and therefore
d2B
dq2

2
> 0. Since d2B

dλ2 × d2B
dq2

2
−
(

d2B
dλdq2

)2
> 0, the Hessian matrix is positive semi-definite and

the objective function is convex.

References
1. Kosta, A.; Pappas, N.; Angelakis, V. Age of information: A new concept, metric, and tool. Found. Trends Netw. 2017, 12, 162–259.

[CrossRef]
2. Sun, Y.; Kadota, I.; Talak, R.; Modiano, E. Age of information: A new metric for information freshness. Synth. Lect. Commun.

Netw. 2019, 12, 1–224. [CrossRef]

http://doi.org/10.1561/1300000060
http://dx.doi.org/10.2200/S00954ED2V01Y201909CNT023


Entropy 2022, 24, 542 21 of 22

3. Kaul, S.; Gruteser, M.; Rai, V.; Kenney, J. Minimizing age of information in vehicular networks. In Proceedings of the 2011 8th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Salt Lake City,
UT, USA, 27–30 June 2011; pp. 350–358.

4. Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? In Proceedings of the 2012 IEEE INFOCOM,
Orlando, FL, USA, 25–30 March 2012; pp. 2731–2735.

5. Kaul, S.K.; Yates, R.D.; Gruteser, M. Status updates through queues. In Proceedings of the 2012 46th Annual Conference on
Information Sciences and Systems (CISS), Princeton, NJ, USA, 21–23 March 2012; pp. 1–6.

6. Najm, E.; Nasser, R. Age of information: The gamma awakening. In Proceedings of the 2016 IEEE International Symposium on
Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2574–2578.

7. Bedewy, A.M.; Sun, Y.; Shroff, N.B. Optimizing data freshness, throughput, and delay in multi-server information-update
systems. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July
2016; pp. 2569–2573.

8. Yates, R.D. Age of information in a network of preemptive servers. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 118–123.

9. Najm, E.; Telatar, E. Status updates in a multi-stream M/G/1/1 preemptive queue. In Proceedings of the IEEE Infocom
2018—IEEE Conference On Computer Communications Workshops (Infocom Wkshps), Honolulu, HI, USA, 15–19 April 2018;
pp. 124–129.

10. Chen, Z.; Pappas, N.; Björnson, E.; Larsson, E.G. Age of information in a multiple access channel with heterogeneous traffic
and an energy harvesting node. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 662–667.

11. Pappas, N.; Kountouris, M. Delay violation probability and age of information interplay in the two-user multiple access channel.
In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5.

12. Fountoulakis, E.; Charalambous, T.; Nomikos, N.; Ephremides, A.; Pappas, N. Information Freshness and Packet Drop Rate
Interplay in a Two-User Multi-Access Channel. arXiv 2020, arXiv:2006.01515.

13. Kosta, A.; Pappas, N.; Ephremides, A.; Angelakis, V. Age of information performance of multiaccess strategies with packet
management. J. Commun. Netw. 2019, 21, 244–255. [CrossRef]

14. Zhou, B.; Saad, W. Joint status sampling and updating for minimizing age of information in the Internet of Things. IEEE Trans.
Commun. 2019, 67, 7468–7482. [CrossRef]

15. Moltafet, M.; Leinonen, M.; Codreanu, M. Worst case age of information in wireless sensor networks: A multi-access channel.
IEEE Wirel. Commun. Lett. 2019, 9, 321–325. [CrossRef]

16. Kadota, I.; Sinha, A.; Modiano, E. Optimizing age of information in wireless networks with throughput constraints. In
Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April
2018; pp. 1844–1852.

17. Talak, R.; Karaman, S.; Modiano, E. Can determinacy minimize age of information? arXiv 2018, arXiv:1810.04371.
18. Talak, R.; Karaman, S.; Modiano, E. Optimizing information freshness in wireless networks under general interference constraints.

IEEE/ACM Trans. Netw. 2019, 28, 15–28. [CrossRef]
19. Wu, X.; Yang, J.; Wu, J. Optimal status update for age of information minimization with an energy harvesting source. IEEE Trans.

Green Commun. Netw. 2017, 2, 193–204. [CrossRef]
20. Kadota, I.; Sinha, A.; Modiano, E. Scheduling algorithms for optimizing age of information in wireless networks with throughput

constraints. IEEE/ACM Trans. Netw. 2019, 27, 1359–1372. [CrossRef]
21. Fountoulakis, E.; Pappas, N.; Codreanu, M.; Ephremides, A. Optimal sampling cost in wireless networks with age of informa-

tion constraints. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 918–923.

22. Neely, M.J. Stochastic network optimization with application to communication and queueing systems. Synth. Lect. Commun.
Netw. 2010, 3, 1–211. [CrossRef]

23. Moltafet, M.; Leinonen, M.; Codreanu, M.; Pappas, N. Power minimization in wireless sensor networks with constrained AoI
using stochastic optimization. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, 3–6 November 2019; pp. 406–410.

24. Chen, Z.; Pappas, N.; Björnson, E.; Larsson, E.G. Optimizing information freshness in a multiple access channel with heteroge-
neous devices. IEEE Open J. Commun. Soc. 2021, 2, 456–470. [CrossRef]

25. Stamatakis, G.; Pappas, N.; Traganitis, A. Optimal Policies for Status Update Generation in an IoT Device with Heterogeneous
Traffic. IEEE Internet Things J. 2020, 7, 5315–5328. [CrossRef]

26. Chen, H.; Wang, Q.; Dong, Z.; Zhang, N. Multiuser scheduling for minimizing age of information in uplink MIMO systems.
In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11
August 2020; pp. 1162–1167.

27. Zhu, Z.; Yu, B.; Cai, Y. Status Update Performance in Uplink Massive MU-MIMO Short-packet Communication Systems. In
Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China,
21–23 October 2020; pp. 115–119.

http://dx.doi.org/10.1109/JCN.2019.000039
http://dx.doi.org/10.1109/TCOMM.2019.2931538
http://dx.doi.org/10.1109/LWC.2019.2953628
http://dx.doi.org/10.1109/TNET.2019.2946481
http://dx.doi.org/10.1109/TGCN.2017.2778501
http://dx.doi.org/10.1109/TNET.2019.2918736
http://dx.doi.org/10.2200/S00271ED1V01Y201006CNT007
http://dx.doi.org/10.1109/OJCOMS.2021.3062678
http://dx.doi.org/10.1109/JIOT.2020.2976690


Entropy 2022, 24, 542 22 of 22

28. Feng, S.; Yang, J. Precoding and Scheduling for AoI Minimization in MIMO Broadcast Channels. arXiv 2020, arXiv:2009.00171.
29. Tadele, B.; Shyianov, V.; Bellili, F.; Mezghani, A.; Hossain, E. Age-limited capacity of Massive MIMO. arXiv 2020, arXiv:2007.05071.
30. Yu, B.; Cai, Y. Age of Information in Grant-Free Random Access with Massive MIMO. IEEE Wirel. Commun. Lett. 2021, 10,

1429–1433. [CrossRef]
31. Shah, A.; Haimovich, A.M. Performance analysis of maximal ratio combining and comparison with optimum combining for

mobile radio communications with cochannel interference. IEEE Trans. Veh. Technol. 2000, 49, 1454–1463. [CrossRef]
32. Kosta, A.; Pappas, N.; Ephremides, A.; Angelakis, V. The Age of Information in a Discrete Time Queue: Stationary Distribution

and Non-Linear Age Mean Analysis. IEEE J. Sel. Areas Commun. 2021, 39, 1352–1364. [CrossRef]
33. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
34. Colson, B.; Marcotte, P.; Savard, G. An overview of bilevel optimization. Ann. Oper. Res. 2007, 153, 235–256. [CrossRef]
35. Den Hertog, D. Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity; Springer Science &

Business Media: New York, NY, USA, 2012; Volume 277.

http://dx.doi.org/10.1109/LWC.2021.3069257
http://dx.doi.org/10.1109/25.875282
http://dx.doi.org/10.1109/JSAC.2021.3065045
http://dx.doi.org/10.1007/s10479-007-0176-2

	Introduction
	System Model
	Physical Layer Model
	The Service Probability

	Analysis of the Age of Information and Problem Formulation
	Average Age of Information of the First User
	The FCFS Geo/Geo/1 Queue
	The Preemptive LCFS Geo/Geo/1 Queue
	Queue with Replacement
	Age of Information and the Average Age of Information of the Second User
	The Average AoI of S1 for the Preemptive LCFS Geo/Geo/1 Queue for the Threshold-Based Policy of S2
	Optimizing the Average AoI of S1 subject to AoI constraints on S2
	Using the Average AoI of the FCFS as the objective function
	Bilevel Convex Optimization
	Using the Average AoI of the LCFS with Preemption as an Objective Function


	Numerical Results and Discussion
	Discussion on Larger Topology
	Conclusions
	Appendix A
	Appendix B
	References

