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Abstract: In this study, a Uzawa-type iterative algorithm is introduced and analyzed for solving the
stationary natural convection model, where physical variables are discretized by utilizing a mixed
finite element method. Compared with the common Uzawa iterative algorithm, the main finding is
that the proposed algorithm produces weakly divergence-free velocity approximation. In addition,
the convergence results of the proposed algorithm are provided, and numerical tests supporting the
theory are presented.
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1. Introduction

Arising both in nature and in engineering applications, the natural convection model
is a coupled system of fluid flow governed by the incompressible Navier-Stokes equations
and heat transfer governed by the energy equation. The natural convection problem has
been a hot topic in heat transmission science for a long time, because it has been widely
used in many fields of production and life, such as room ventilation, general heating,
nuclear reaction systems, fire control, katabatic winds, atmospheric fronts, cooling of
electronic equipment, natural ventilation, solar collectors, and so on [1–3]. In particular
with nanofluids, the literature survey in [4] evidences the parameters governing the flow
and heat behavior of fluids under natural convection and reveals that there are very few
generalized correlations between heat transfer and wall heating conditions in enclosures.

Due to its practical significance, a considerable amount of researchers have put for-
ward many efficient numerical methods to obtain the solution to this problem in different
geometries [5–10]. For example, Boland and Layton [6,7] have proposed a Galerkin finite
element method for the natural convection problem. Several iterative schemes based on
the finite element method for the natural convection equations with different Rayleigh
numbers have been studied in [9]. The coupled Navier-Stokes/temperature (or Boussinesq)
equations [5] were solved by applying a divergence-free low order stabilized finite ele-
ment method. A unified analysis approach of a local projection stabilization finite element
method for solving natural convection problems was given by [8]. However, there still
remain some important but challenging problems, especially solving the model effectively
with the strong coupling between the velocity, pressure, and temperature fields and the
saddle-point problem arising from finite element discretization.

As is known, the Uzawa method [11] is an efficient iterative algorithm for the saddle-
point system. Since it is simple, efficient, and has minimal computer memory requirements,
it has been widely used in computational science and engineering [12–16]. In particular,
some Uzawa iterative methods were designed for the steady incompressible Navier-Stokes
equations [17]. Further, the steady magnetohydrodynamic equations [18] and the steady
natural convection equations [19] were solved by applying some Uzawa iterative algo-
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rithms. However, in these works, the weakly divergence-free constraint on the velocity was
not enforced.

Recently, a Uzawa-type iterative algorithm [20] was designed for the coupled Stokes
equations, where no saddle point system was required to be solved at each iteration step,
and the weakly divergence-free velocity approximation was shown. Inspired by [20],
in this article we propose and analyze a Uzawa-type iterative algorithm for the natural
convection problem and obtain a numerical velocity, which satisfies the weakly divergence-
free condition.

2. Preliminaries

Let Ω ⊂ R2 be a bounded domain, which has a Lipschitz continuous boundary ∂Ω
with a regular open subset Γ. Consider the following stationary natural convection problem.
Seek the velocity u = (u1(x), u2(x))>, the pressure p = p(x), and the temperature T(x),
such that

∇p + (u · ∇)u− Pr∆u = PrRajT, ∇ · u = 0 in Ω, (1)

u = 0, on ∂Ω, (2)

−κ∆T = γ− u · ∇T, in Ω, (3)

T = 0, on ∂Γ,
∂T
∂n

= 0, on ∂Ω \ Γ, (4)

where γ is the forcing function, n is the outward unit vector, and j = (0, 1)>. In addition,
the positive parameter κ presents the thermal conductivity, Pr is the Prandtl number, and
Ra is the Rayleigh number.

Next, in order to write the variational form of (1)–(4), we introduce the following
necessary function spaces:

M = H1
0(Ω)2 = {v ∈ H1(Ω)2 : v = 0 on ∂Ω},

W = L2
0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}, Z = {s ∈ H1(Ω) : s = 0 on Γ}.

Here, the space L2(Ω) is endowed with L2-scalar product (·, ·) and L2-norm ‖ · ‖. In
addition, the space H1(Ω) is used to represent the standard definitions for Sobolev spaces
Wm,p(Ω), m, p > 0.

Moreover, we recall the Poincaré inequality [21] as follows:

‖v‖ ≤ Cp‖∇v‖, ∀v ∈ M, (5)

where Cp is the Poincaré constant. Next, we denote two trilinear forms by

b1(u; v, w) = ((u · ∇)v, w) +
1
2
((∇ · u)v, w), b2(u; T, s) = (u · ∇T, s) +

1
2
((∇ · u)T, s),

which satisfy the following properties [7,22,23]

|b1(u; v, w)| ≤ N‖∇u‖‖∇v‖‖∇w‖, |b2(u; T, s)| ≤ N‖∇u‖‖∇T‖‖∇s‖, (6)

for all u, v, w,∈ M and T, s ∈ Z. Here, N and N are two fixed positive constants.
With the above notations, the weak form of (1)–(4) reads as: find (u, p, T) ∈ M×W×Z

such that

Pr(∇u,∇v) + b1(u; u, v)− (p,∇ · v) = PrRa(jT, v), ∀v ∈ M, (7)

(∇ · u, q) = 0, ∀q ∈W, (8)

κ(∇T,∇s) + b2(u; T, s) = (γ, s), ∀s ∈ Z. (9)

The following existence and uniqueness of the solution to (6) are classical results.
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Theorem 1 ([7,19]). There exists at least a solution (u, p, T) ∈ M ×W × Z, which satisfies
(7)–(9) and

‖∇T‖ ≤ κ−1‖γ‖−1, ‖∇u‖ ≤ C2
pRaκ−1‖γ‖−1,

where ‖γ‖−1 = sup
s∈Z

|(γ,s)|
‖∇s‖ . Further, if Pr, Ra, κ, and γ satisfy the uniqueness condition

0 < Pr−1Λ + Λ < 1,

where Λ = C2
pRaNκ−1‖γ‖−1 and Λ = C2

pRaNκ−2‖γ‖−1, then the solution (u, p, T) of (7)–(9)
is unique.

Next, we consider a family of quasi-uniform and regular triangulations Kh = {K :
∪K⊂ΩK = Ω} with mesh size h, which is a partition of the domain Ω. Then, we assume
that the finite element subspace Mh ×Wh × Zh ⊂ M×W × Z

Mh = {v ∈ M ∩ C0(Ω)2 : v |K∈ P2(K)2, ∀K ∈ Kh},

Wh = {q ∈W ∩ C0(Ω) : q |K∈ P1(K), ∀K ∈ Kh},

Zh = {s ∈ Z ∩ C0(Ω) : s |K∈ P2(K), ∀K ∈ Kh},

where Pi(K), i = 1, 2 is the set of all polynomials on K of a degree no more than i. As is
known, the finite element subspaces Mh ×Wh satisfy the following discrete inf-sup condi-
tion [21]; for each q ∈Wh, there exists v ∈ Mh, v 6= 0 such that infq∈Wh supv∈Mh

|(∇·v,q)|
‖∇v‖‖q‖ ≥

β, where the constant β ∈ (0, 1] is proven in [24].
Moreover, according to the above definition of the finite element subspaces, the finite

element approximation for (7)–(9) is to seek (uh, ph, Th) ∈ Mh ×Wh × Zh such that

Pr(∇uh,∇v) + b1(uh; uh, v)− (ph,∇ · v) = PrRa(jTh, v), ∀v ∈ Mh, (10)

(∇ · uh, q) = 0, ∀q ∈Wh, (11)

κ(∇Th,∇s) + b2(uh; Th, s) = (γ, s), ∀s ∈ Zh. (12)

The following theorem is established for the stability of the finite element discretization.

Theorem 2 ([6,9,25]). Under the assumptions of Theorem 1, the finite element discretization
(10)–(12) has at least a solution (uh, ph, Th) ∈ Mh ×Wh × Zh, such that

‖∇uh‖ ≤ C2
pRaκ−1‖γ‖−1, ‖∇Th‖ ≤ κ−1‖γ‖−1.

3. A Uzawa-Type Iterative Algorithm

In this section, we present a Uzawa-type iterative algorithm for solving the considered
problem. Before showing the algorithm, we recall the common Uzawa iterative algorithm
based on the mixed finite element method as follows Algorithm 1.

According to the above algorithm, we find that (∇ · un+1
h , q) 6= 0, which means that

the divergence-free constraint on the velocity is not weakly enforced. In fact, from the
finite element approximation (10)–(12), we have (∇ · uh, q) = 0. Although it will result in
a saddle problem, it produces weakly divergence-free velocity approximation. Hence, it
is interesting to design a Uzawa-type iterative algorithm, which does not only retain the
benefits of the common Uzawa iterative algorithm but also retains the velocity in a weakly
divergence-free condition.
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Algorithm 1: Uzawa iterative algorithm [19].

Step 1. Find initial guess (u0
h, p0

h, T0
h ) ∈ Mh ×Wh × Zh by

Pr(∇u0
h,∇v)− (p0

h,∇ · v) = PrRa(jT0
h , v), ∀v ∈ Mh,

(∇ · u0
h, q) = 0, ∀q ∈Wh,

κ(∇T0
h ,∇s) = (γ, s), ∀s ∈ Zh.

Step 2. Given a relaxation parameter ρ > 0, find
(un+1

h , pn+1
h , Tn+1

h ) ∈ Mh ×Wh × Zh as solution of
Pr(∇un+1

h ,∇v) + b1(un
h ; un+1

h , v)− (pn
h ,∇ · v) = PrRa(jTn+1

h , v), ∀v ∈ Mh,

(pn+1
h , q) = (pn

h , q)− ρ(∇ · un+1
h , q), ∀q ∈Wh,

κ(∇Tn+1
h ,∇s) + b2(un

h ; Tn+1
h , s) = (γ, s), ∀s ∈ Zh.

In order to make the velocity of Uzawa algorithm have a weakly divergence-free
property, let g be a gauge variable [26] and d be a variable, such that u = d +∇g. If g and
p satisfy an elliptic equation Pr∆g = p, then (1)–(4) can be rewritten as

−Pr∆d + ((d +∇g) · ∇)(d +∇g) = PrRajT,

∇ · d = −∆g,

−κ∆T + (d +∇g) · ∇T = γ.

Furthermore, begin with g0 = g−1 = 0 and d0 = u0
h. Repeat

−Pr∆dn+1 + ((dn +∇gn−1) · ∇)(dn+1 +∇gn) = PrRajTn+1, (13)

∇ · dn+1 = −∆gn+1, (14)

−κ∆Tn+1 + (dn +∇gn−1) · ∇Tn+1 = γ, (15)

for n = 0, 1, . . .
Moreover, setting ûn+1 = dn+1 +∇gn in (13)–(15), we have

−Pr∆ûn+1 + (ûn · ∇)ûn+1 +∇pn = PrRajTn+1, (16)

∇ · ûn+1 = −∆h̄n+1, (17)

−∇ · (κ∇Tn+1) + (ûn · ∇)Tn+1 = γ, (18)

where h̄n+1 := gn+1 − gn. So one obtains

pn+1 = Pr∆gn+1 = Pr∆h̄n+1 + Pr∆gn = Pr∆h̄n+1 + pn,

and
un+1 = dn+1 +∇gn+1 = ûn+1 −∇gn +∇gn+1 = ûn+1 +∇h̄n+1.

Now, we are ready to write the Uzawa-type finite element iterative algorithm as
follows Algorithm 2.
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Algorithm 2: Uzawa-type iterative algorithm.

Step 1. Obtain the initial guess (u0
h, p0

h, T0
h ) ∈ Mh ×Wh × Zh from step 1 of

Algorithm 1.
Step 2. Find (ûn+1

h , Tn+1
h ) ∈ Mh × Zh as the solution of

κ(∇Tn+1
h ,∇s) + b2(ûn

h ; Tn+1
h , s) = (γ, s), ∀s ∈ Zh, (19)

Pr(∇ûn+1
h ,∇v) + b1(ûn

h ; ûn+1
h , v)− (pn

h ,∇ · v) = PrRa(jTn+1
h , v), ∀v ∈ Mh.

(20)

Step 3. Find h̄n+1
h ∈Wh as the solution of

(∇h̄n+1
h ,∇q) = (∇ · ûn+1

h , q), q ∈Wh. (21)

Step 4. Compute un+1
h with un+1

h = ûn+1
h +∇h̄n+1

h .
Step 5. Given a relaxation parameter ρ > 0, find pn+1

h ∈Wh from the Richardson
update

(pn+1
h , q) = (pn

h , q)− Prρ(∇h̄n+1
h ,∇q), ∀q ∈Wh. (22)

From (21) and Step 4 of Algorithm 2, we obtain
(∇ · un+1

h , q) = (∇ · ûn+1
h , q)− (∇h̄n+1

h ,∇q) = 0. So the velocity obtained by
Algorithm 2 satisfies the weakly divergence-free condition. Moreover, we expect
to show the iterative errors between the finite element solutions to (10)–(12) and
the Uzawa-type iterative solutions to Algorithm 2. For convenience, assume that
En

h = uh − un
h , Ên

h = uh − ûn
h , ηn

h = ph − pn
h and θn

h = Th − Tn
h . Then, we have

Ên
h = En

h +∇h̄n
h .

Firstly, we recall the convergence results of the initial guess. Note that û0
h = d0 +

∇g−1 = u0
h, which implies E0

h = Ê0
h.

Lemma 1 ([19]). Let (u0
h, p0

h, T0
h ) ∈ Mh ×Wh × Zh be the solution of Step 1 of Algorithm 1.

Then, under the assumptions of Theorem 2, we have the following results

‖∇θ0
h‖ ≤ k−1Λ‖γ‖−1, ‖η0

h‖ ≤ 2β−1PrΛN−1(Pr−1Λ + Λ), ‖∇E0
h‖ ≤ ΛN−1(Pr−1Λ + Λ).

Secondly, we show that the solution sequence generated by Algorithm 2 is bounded.

Theorem 3. Let {un
h , pn

h , Tn
h } be the solution sequence of Algorithm 2. Then, under the assump-

tions of Theorem 2, if the relaxation parameter satisfies ρ ∈ (0, 2(1−Λ− Pr−1Λ)), the sequences
{‖∇un

h‖}, {‖∇ûn
h‖}, {‖pn

h‖} and {‖∇Tn
h ‖} are uniformly bounded with respect to h.

Proof. Subtracting (19) from (12), we have

b2(Ên
h ; Th, s)− b2(ûn

h ; θn+1
h , s) + κ(∇θn+1

h ,∇s) = 0.

Setting s = θn+1
h obtains

κ‖∇θn+1
h ‖2 = −b2(Ên

h ; Th, θn+1
h ).

According to (6) and Theorem 2, we arrive at

‖∇θn+1
h ‖ ≤ Nκ−2‖γ‖−1‖∇Ên

h‖. (23)
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Then, subtracting (20) from (10), we have

Pr(∇Ên+1
h ,∇v)− (ηn

h ,∇ · v) = −b1(Ên
h ; uh, v)− b1(ûn

h ; Ên+1
h , v) + PrRa(jθn+1

h , v). (24)

Choosing v = Ên+1
h in (24) and combining the ensuing equation with (21) lead to

Pr‖∇Ên+1
h ‖2 = −(∇ηn

h ,∇h̄n+1
h )− b1(Ên

h ; uh, Ên+1
h ) + PrRa(jθn+1

h , Ên+1
h ).

Next, according to (22), we have

Pr‖∇Ên+1
h ‖2 = (Prρ)−1(pn+1

h − pn
h , ηn

h )− b1(Ên
h ; uh, Ên+1

h ) + PrRa(jθn+1
h , Ên+1

h ),

which, by using (5), (6), (23), Theorem 2, and the Proposition identity (u, v) = 1
2 (‖u + v‖2−

‖u‖2 − ‖v‖2), we have

2Pr2ρ‖∇Ên+1
h ‖2 + ‖ηn+1

h ‖2 ≤‖ηn
h‖

2 + ‖ηn+1
h − ηn

h‖
2

+ 2Prρ(Λ + PrΛ)‖∇Ên
h‖‖∇Ên+1

h ‖.
(25)

Then, using (21) and (22), we obtain

‖ηn+1
h − ηn

h‖
2 = (pn+1

h − pn
h , pn+1

h − pn
h) = −Prρ(∇h̄n+1

h ,∇(ηn+1
h − ηn

h ))

= Prρ(∇ · Ên+1
h , ηn+1

h − ηn
h ),

which leads to

‖ηn+1
h − ηn

h‖
2 ≤ (Prρ)2‖∇ · Ên+1

h ‖2 ≤ (Prρ)2‖∇Ên+1
h ‖2, (26)

where we have applied the fact that ‖∇ · v‖ ≤ ‖∇v‖ in [24].
Moreover, substituting (26) into (25) and using the Young inequality, we obtain

‖∇Ên+1
h ‖2(2Pr2ρ− Pr2ρ2 − ς(PrρΛ + Pr2ρΛ)) + ‖ηn+1

h ‖2

≤ ‖ηn
h‖

2 + ς−1(PrρΛ + Pr2ρΛ)‖∇Ên
h‖

2,
(27)

where ς > 0 is a parameter to be determined later on.
Furthermore, we solve a quadratic algebraic equation

ς2(Λ + PrΛ)− ς(2Pr− Prρ) + (Λ + PrΛ) = 0,

to obtain a positive root ς = ς∗, which makes (2Pr− Prρ− ς(Λ + PrΛ)) = ς−1(Λ + PrΛ)
hold. In fact, we have

ς = ς∗ =
(2Pr− Prρ)−

√
∆

2(Λ + PrΛ)
,

where ∆ := (2Pr− Prρ + 2(Λ + PrΛ))(2Pr− Prρ− 2(Λ + PrΛ)).
Next, we set

D1 = Prρ(2Pr− Prρ− ς∗(Λ + PrΛ)) = Prρ(Λ + PrΛ)/ς∗ =
Pr2ρ(2− ρ) +

√
∆

2
.

Thus, the inequality (27) is rewritten as

D1‖∇Ên+1
h ‖2 + ‖ηn+1

h ‖2 ≤ ‖ηn
h‖

2 + D1‖∇Ên
h‖

2,
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which, along with (23), implies that

D1‖∇Ên+1
h ‖2 + ‖ηn+1

h ‖2 ≤ ‖η0
h‖

2 + D1‖∇Ê0
h‖

2,

‖∇θn+1
h ‖ ≤ N2

κ−4‖γ‖2
−1(‖η0

h‖
2 + D1‖∇Ê0

h‖
2).

(28)

Finally, applying (26) into (22), we obtain

‖∇h̄n+1
h ‖ ≤ C2

p(Prρ)−1‖pn
h − pn+1

h ‖ ≤ C2
p(Prρ)−1‖ηn+1

h − ηn
h‖ ≤ C2

p‖∇Ên+1
h ‖,

which combines with Ên+1
h = En+1

h +∇h̄n+1
h ; then, we have

‖En+1
h ‖2 ≤ 2(‖Ên+1

h ‖2 + ‖∇h̄n+1
h ‖2) ≤ 4C4

p‖∇Ên+1
h ‖2, (29)

Finally, combining (29) with (28), we obtain

D1‖En+1
h ‖2 ≤ 4C4

p(‖η0
h‖

2 + D1‖∇Ê0
h‖

2). (30)

Hence, using (28), (30), and Lemma 1, we finish the proof of the theorem.

Thirdly, we are going to develop the convergence analysis for Algorithm 2.

Theorem 4. Under the assumptions of Theorem 3, the following estimates hold

Pr2D‖En+1
h ‖2 ≤ 4C4

p Hn+1(Pr2D‖∇Ê0
h‖

2 + ‖η0
h‖

2), ‖ηn+1
h ‖2

0 ≤ Hn+1(Pr2D‖∇Ê0
h‖

2 + ‖η0
h‖

2),

Pr2D‖∇θn+1
h ‖2 ≤ N2

κ−4‖γ‖2
−1Hn(Pr2D‖∇Ê0

h‖
2 + ‖η0

h‖
2),

where D ∈ (0, 1
2 ) and H ∈ ( 3

4 , 1) are two constants independent of n and h.

Proof. By Theorem 3, there exists a positive constant D2, independent of n and h, such that

‖∇ûn
h‖ ≤ D2. (31)

Then, rewrite (24) to obtain

(ηn
h ,∇ · v) = Pr(∇Ên+1

h ,∇v) + b1(Ên
h ; uh, v) + b1(ûn

h ; Ên+1
h , v)− PrRa(jθn+1

h , v).

Applying the inf-sup condition, (5), (6), (23), and Theorem 2 to the above equation, we
obtain

β‖ηn
h‖ ≤Pr‖∇Ên+1

h ‖+ PrRaC2
pNκ−2‖γ‖−1‖∇Ên

h‖+ PrRaC2
pNκ−1‖γ‖−1‖∇Ên

h‖
+ N‖∇ûn

h‖‖∇Ên+
h ‖,

which combines with (31) to obtain

β‖ηn
h‖ ≤ (Pr + ND2)‖∇Ên+1

h ‖+ (Λ + PrΛ)‖∇Ên
h‖.

Next, using the inequality (a + b)2 ≤ 2a2 + 2b2, we have

β2‖ηn
h‖

2 ≤ 2(Pr + ND2)
2‖∇Ên+1

h ‖2 + 2(Λ + PrΛ)2‖∇Ên
h‖

2.

Hence, one obtains

‖∇Ên+1
h ‖2 ≥ D3‖ηn

h‖
2 − D4‖∇Ên

h‖
2, (32)

where D3 := β2

2(Pr+ND2)2 and D4 := (Λ+PrΛ)2

(Pr+ND2)2 . Obviously, if we let Cρ,ς := Prρ(2Pr− Prρ−
ς(Λ + PrΛ)), then (27) becomes
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δ‖∇Ên+1
h ‖2 + (Cρ,ς − δ)‖∇Ên+1

h ‖2 + ‖ηn+1
h ‖2 ≤ ‖ηn

h‖
2 + ς−1(PrρΛ + Pr2ρΛ)‖∇Ên

h‖
2. (33)

where δ ∈ (0, Cρ,ς) is a parameter to be determined. From (32) and (33), we obtain

(Cρ,ς − δ)‖∇Ên+1
h ‖2 + ‖ηn+1

h ‖2

≤ (1− D3δ)‖ηn
h‖

2 + (ς−1(PrρΛ + Pr2ρΛ) + D4δ)‖∇Ên
h‖

2.
(34)

Then, we will choose parameters ς and δ such that

Cρ,ς − δ

1
=

ς−1Prρ(Λ + PrΛ) + D4δ

1− δD3
, (35)

and 1− δD3 > 0, which leads to

D3δ2 − (1 + Cρ,ςD3 + D4)δ + Cρ,ς − ς−1Prρ(Λ + PrΛ) = 0. (36)

In fact, one finds that

Cρ,ς − ς−1Prρ(Λ + PrΛ) = (1 + Cρ,ςD3 + D4)δ− D3δ2 > Cρ,ςD3δ− D3δ2 > 0,

which, along with the definition of Cρ,ς, yields

(Λ + PrΛ)ς2 − (2Pr− Prρ)ς + (Λ + PrΛ) < 0,

and
(2Pr− Prρ)−

√
∆

2(Λ + PrΛ)
< ς <

(2Pr− Prρ) +
√

∆
2(Λ + PrΛ)

,

where the notation ∆ is defined in the proof of Theorem 3. Note that we have used condition
0 < ρ < 2(1−Λ− Pr−1Λ). Here, we select

ς = ς+ =
2Pr− Prρ

2(Λ + PrΛ)
.

Substituting this parameter into (36), we arrive at aδ2 − bδ + c = 0, where a = D3,

b = 1 + D4 + s1a, c = s1 − Pr2ρ2(Λ+PrΛ)2

s1
, and s1 = Pr2ρ(1− 1

2 ρ). Obviously, b > 1 + s1a,
c < s1; so, we deduce that

b2 − 4ac > (1 + s1a)2 − 4as1 ≥ 0.

Then, the Equation (36) has a real root δ∗ = b−
√

b2−4ac
2a .

With the parameter ε and δ given by ε+ and δ∗, it follows from (34) that

D‖∇Ên+1
h ‖2 + ‖ηn+1

h ‖2
0 ≤ H(D‖∇Ên

h‖
2 + ‖ηn

h‖
2), (37)

where D = s1 − δ∗ and H = 1− δ∗D3.
Note that D > 0 and H > 0. Now, we will prove them. Consider the quadratic

function f (δ) = aδ2 − bδ + c. Because a > 0, s1 > 0, b > 1 + s1a and c < s1, we obtain
limδ→−∞ f (δ) = ∞ and

f (s) = as2
1 − bs1 + c < as2

1 − (1 + as1)s1 + s1 = 0.

Thus, the smallest root δ∗ of f (δ) must belong to (−∞, s1). So, the inequality D > 0
holds. Noticing that Cρ,ς+ − δ∗ = s1 − δ∗ > 0, it follows readily from (35) that H > 0.
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Finally, note that 0 < D < s1 = Pr2ρ− 1
2 Pr2ρ2 ≤ Pr2

2 . If, we choose the D = Pr2D and
0 < D < 1

2 , the inequality (37) is rewritten as

Pr2D‖∇Ên+1
h ‖2 + ‖ηn+1

h ‖2
0 ≤ H1(Pr2D‖∇Ên

h‖
2 + ‖ηn

h‖
2). (38)

According to the definition of D3 and β ≤ 1, we arrive at D3 ≤ 1
2Pr2 . Noticing that

δ∗ < s1 < Pr2

2 , we easily find that 1 > H = 1− δ∗D3 > 3
4 .

Next, using (38) and (29), we obtain

Pr2D‖En+1
h ‖2 ≤ 4C4

p Hn+1(Pr2D‖∇Ê0
h‖

2 + ‖η0
h‖

2), ‖ηn+1
h ‖2

0 ≤ Hn+1(Pr2D‖∇Ê0
h‖

2 + ‖η0
h‖

2).

Finally, using the above estimates with (23), we finish the proof.

4. Numerical Study

We will represent some numerical tests to claim the accuracy and performance of the
proposed algorithm for the steady natural convection problem in this section. We used
the public finite element software FreeFem++ [27] and applied P2 − P1 − P2 element to
approximate the velocity, temperature, and pressure, respectively.

In the first numerical test, let the domain Ω = [0, 1]× [0, 1], and the right-hand side of
(1)–(4) is selected such that the exact solutions are given by

p(x, y) = cos(πx) cos(πy), T(x, y) = u1(x, y) + u2(x, y)

u1(x, y) = 2π sin2(πx) sin(πy) cos(πy), u2(x, y) = −2π sin(πx) sin2(πy) cos(πx).

Here, we set the parameters Ra = Pr = κ = 1 and use the stopping rule

max

{
‖un+1

h − un
h‖

‖un
h‖

,
‖pn+1

h − pn
h‖

‖pn
h‖

,
‖Tn+1

h − Tn
h ‖

‖Tn
h ‖

}
< 1.0× 10−6.

Figure 1 displays the iteration errors of the velocity, temperature in H1-seminorm, and
the pressure in L2-norm for different iterative steps n solved by Algorithm 2. Here, we set
the relaxation parameter ρ = 1.6 and choose five different mesh sizes h. From Figure 1, we
observe that the proposed algorithm worked well and kept the convergence when iteration
step n became large.
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Figure 1. The log errors for different iterative steps n and different mesh sizes h.

In the above test, we fixed the relaxation parameter and varied the mesh size. Now,
we consider different relaxation parameters with the mesh size h = 1

32 . Figure 2 expresses
different iterative steps of the log errors with different values ρ. From Figure 2, we observe
that un

h , pn
h , and Tn

h converged faster when ρ was larger. However, we have an interesting
observation that it became slow when ρ was too large (e.g., ρ = 1.7 or 1.9). It is not
surprising since from Theorem 3 and 4 the relaxation parameter ρ had a limited interval,
and the value ρ = 1.7 or 1.9 may have been out of its interval.
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Figure 2. The log errors for different iterative steps n for different relaxation parameters ρ.

Hence, we should reveal the convergence on the relaxation parameter ρ by showing
the values with respect to n and ρ under the mesh size h = 1

32 . From Table 1, we find that
Algorithms 1 and 2 converged faster when we chose larger ρ. However, if the ρ chosen was
very large, then these algorithms either need more iterative steps or diverge. In addition,
Algorithms 1 and 2 achieved the tolerance error when ρ = 1.6 with the least iterative steps
n = 44 and n = 42, respectively.

Table 1. The iterative step n with the relaxation parameter ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Algorithm 1 509 280 197 153 126 107 93 83 74 67 62 57 53 50 47 44 49 76 159 /
Algorithm 2 531 289 202 156 127 108 94 83 74 67 61 56 52 44 48 42 50 77 154 /

The mark “/” means that the iterative step was larger than 600.

Based on the previous section, Algorithm 2 produced the divergence-free velocity
approximation. Hence, in Table 2 we list the value of ‖∇ ·un

h‖. From this table, Algorithms 1
and 2 obtain good numerical results when Ra = 10. However, when the value of Ra
increased, then Algorithm 1 could not achieve the tolerance error and converge. Meanwhile,
Algorithm 2 still ran well.

Table 2. The value of ‖∇ · un
h‖ with different Rayleigh numbers Ra.

Ra 10 100 150 180

Algorithm 2 1.82 × 10−8 2.65 × 10−10 2.02 × 10−11 4.96 × 10−12

Algorithm 1 3.50 × 10−18 / / /

The mark “/” means that the iterative step was larger than 600.

In the second numerical test, we considered the hot cylinder problem solving the
proposed algorithm with different Rayleigh numbers. The boundary conditions are given
in [28,29], i.e., ∂T

∂n = 1 on inner wall, T = 0 on the other wall, and zero Dirichlet condition
on velocity were imposed. Set Pr = 0.7, κ = 1, γ = 0, and h = 1

80 . Figures 3 and 4 express
the numerical streamlines, isobars, and isotherms for different radii of inner circle rin based
on Ra = 100 and Ra = 250 with ρ = 1.6. We observe that it shapes two vortices when
rin = 0.2 and four vortices when rin = 0.8, which were found to be in good agreement with
those reported in [28,29]. Therefore, the given method captured this classical model well.

In Tables 3 and 4, we show the CPU time and the maximum value of velocity at x = 0.5
and y = 0.5 by Algorithms 1 and 2 with ρ = 1.6 and Wang’s algorithm [29] for rin = 0.2
and rin = 0.8, respectively. From Tables 3 and 4, we find that the proposed algorithm took
the least computational time among these algorithms to obtain almost the same maximum
value of velocity. In particular, Algorithm 1 did not work when Ra = 250. Therefore, the
proposed algorithm solved this model well.
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Figure 3. Numerical streamlines (the first column), isotherms (the second column), and isobars (the
third column) for Ra = 100 (the first line) and Ra = 250 (the second line) with rin = 0.2.
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Figure 4. Numerical streamlines (the first column), isotherms (the second column), and isobars (the
third column) for Ra = 100 (the first line) and Ra = 250 (the second line) with rin = 0.8.
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Table 3. Comparisons of numerical results from different algorithms with h = 1
80 , rin = 0.2.

Ra = 100 Ra = 250
x = 0.5 y = 0.5 CPU Time x = 0.5 y = 0.5 CPU Time

Algorithm 2 0.281 0.284 14.135 0.755 0.760 22.135
Algorithm 1 [19] 0.263 0.465 33.772 / / /

Wang’s algorithm [29] 0.274 0.279 51.890 0.714 0.722 56.571

The mark “/” means that the iterative step was larger than 600.

Table 4. Comparisons of numerical results from different algorithms with h = 1
80 , rin = 0.8.

Ra = 100 Ra = 250
x = 0.5 y = 0.5 CPU Time x = 0.5 y = 0.5 CPU Time

Algorithm 2 0.039 0.085 1.811 0.098 0.213 2.191
Algorithm 1 [19] 0.039 0.085 2.077 / / /

Wang’s algorithm [29] 0.039 0.086 8.851 0.098 0.214 9.169

The mark “/” means that the iterative step was larger than 600.

5. Conclusions

In conclusion, we designed a Uzawa-type iterative algorithm based on the mixed finite
element method to solve the stationary natural convection model. Compared with the
common Uzawa iterative algorithm, a central feature of the proposed algorithm is that it
produced weakly divergence-free velocity approximation. This algorithm can be extended
to the double-diffusive natural convection [30] and the magnetohydrodynamics flows [31].

Author Contributions: Investigation, A.K. and P.H.; Methodology, P.H.; Supervision, P.H.; Writing—
original draft, A.K.; Writing—review & editing, P.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (grant number
11861067), the Natural Science Foundation of Xinjiang Uygur Autonomous Region (grant number
2021D01E11) and Xinjiang Key Laboratory of Applied Mathematics (grant number XJDX1401).

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to thank the editor and anonymous referees for their
helpful comments and suggestions, which led to a considerably improved presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Estellé, P.; Mahian, O.; Mare, T.; Öztop, H.F. Natural convection of CNT water-based nanofluids in a differentially heated square

cavity. J. Therm. Anal. Calorim. 2017, 128, 1765–1770. [CrossRef]
2. Öztop, H.F.; Almeshaal, M.A.; Kolsi, L.; Rashidi, M.M.; Ali, M.E. Natural convection and irreversibility evaluation in a cubic

cavity with partial opening in both top and bottom sides. Entropy 2019, 21, 116. [CrossRef] [PubMed]
3. Selimefendigil, F.; Öztop, H.F.; Abu-Hamdeh, N. Natural convection and entropy generation in nanofluid filled entrapped

trapezoidal cavities under the influence of magnetic field. Entropy 2016, 18, 43. [CrossRef]
4. Öztop, H.F.; Estellé, P.; Yan, W.M.; Al-Salem, K.; Orfi, J.; Mahian, O. A brief review of natural convection in enclosures under

localized heating with and without nanofluids. Int. Commun. Heat Mass Transf. 2015, 60, 37–44. [CrossRef]
5. Allendes, A.; Barrenechea, G.R.; Naranjo, C. A divergence-free low-order stabilized finite element method for a generalized

steady state Boussinesq problem. Comput. Methods Appl. Mech. Eng. 2018, 340, 90–120. [CrossRef]
6. Boland, J.; Layton, W. An analysis of the finite element method for natural convection problems. Numer. Methods Partial. Differ.

Equ. 1990, 2, 115–126. [CrossRef]
7. Boland, J.; Layton, W. Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal.

Optim. 1990, 11, 449–483. [CrossRef]
8. Chacón-Rebollo, T.; Gxoxmez-Mármol, M.; Hecht, F.; Rubino, S.; Sxaxnchez-Mu noz, I. A high-order local projection stabilization

method for natural convection problems. J. Sci. Comput. 2018, 74, 667–692. [CrossRef]
9. Huang, P.Z.; Li, W.; Si, Z. Several iterative schemes for the stationary natural convection equations at different Rayleigh numbers.

Numer. Methods Partial. Differ. Equ. 2015, 31, 761–776. [CrossRef]
10. Huang, P.Z.; Zhang, T.; Si, Z.Y. A stabilized Oseen iterative finite element method for stationary conduction-convection equations.

Math. Methods Appl. Sci. 2012, 35, 103–118. [CrossRef]
11. Arrow, K.; Hurwicz, L.; Uzawa, H. Studies in Nonlinear Programming; Standford University Press: Standford, CA, USA, 1958.

http://doi.org/10.1007/s10973-017-6102-1
http://dx.doi.org/10.3390/e21020116
http://www.ncbi.nlm.nih.gov/pubmed/33266832
http://dx.doi.org/10.3390/e18020043
http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.11.001
http://dx.doi.org/10.1016/j.cma.2018.05.020
http://dx.doi.org/10.1002/num.1690060202
http://dx.doi.org/10.1080/01630569008816383
http://dx.doi.org/10.1007/s10915-017-0469-9
http://dx.doi.org/10.1002/num.21915
http://dx.doi.org/10.1002/mma.1541


Entropy 2022, 24, 543 13 of 13

12. Bänsch, E.; Morint, P.; Nochetto, R.H. An adaptive Uzawa FEM for the Stokes problem: Convergence without the Inf-Sup
condition. SIAM J. Numer. Anal. 2003, 40, 1207–1229. [CrossRef]

13. Huang, P.Z. Convergence of the Uzawa method for the Stokes equations with damping. Complex Var. Elliptic Equ. 2017, 62,
876–886. [CrossRef]

14. Huang, P.Z.; He, Y.N.; Li, T. A finite element algorithm for nematic liquid crystal flow based on the gauge-Uzawa method. J.
Comput. Math. 2022, 40, 26–43. [CrossRef]

15. Kim, S.D. Uzawa algorithms for coupled Stokes equations from the optimal control problem. Calcolo 2009, 46, 37–47. [CrossRef]
16. Li, X.Z.; Huang, P.Z. A sensitivity study of relaxation parameter in Uzawa algorithm for the steady natural convection model. Int.

J. Numer. Methods Heat Fluid Flow 2020, 30, 818–833. [CrossRef]
17. Chen, P.; Huang, J.; Sheng, H. Some Uzawa methods for steady incompressible Navier–Stokes equations discretized by mixed

element methods. J. Comput. Appl. Math. 2015, 273, 313–325. [CrossRef]
18. Zhu, T.L.; Su, H.Y.; Feng, X.L. Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrody-

namic equations. Appl. Math. Comput. 2017, 302, 34–47. [CrossRef]
19. Li, X.Z.; Huang, P.Z. An Uzawa iterative method for the natural convection problem based on mixed finite element method. Math.

Methods Appl. Sci. 2021, 44, 13326–13343. [CrossRef]
20. Huang, P.Z.; He, Y.N. An Uzawa-type algorithm for the coupled Stokes equations. Appl. Math. Mech. 2020, 41, 1095–1104.

[CrossRef]
21. Brenner, S.C.; Scott, L.R. The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2008; Volume 15.
22. Huang, P.Z.; Feng, X.L.; Su, H.Y. Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokes

equations. Nonlinear Anal. Real World Appl. 2013, 14, 1171–1181. [CrossRef]
23. Zhang, T.; Zhao, X.; Huang, P. Decoupled two level finite element methods for the steady natural convection problem. Numer.

Algorithms 2015, 68, 837–866. [CrossRef]
24. Nochetto, R.H.; Pyo, J.H. Optimal relaxation parameter for the Uzawa method. Numer. Math. 2004, 98, 695–702. [CrossRef]
25. Çıbık, A.; Kaya, S. A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal.

Appl. 2011, 381, 469–484. [CrossRef]
26. Nochetto, R.H.; Pyo, J.H. Error estimates for semi-discrete Gauge methods for the Navier-Stokes equations. Math. Comput. 2005,

74, 521–542. [CrossRef]
27. Dalal, D.; Hecht, F.; Pironneau, O. Implementation of a low order mimetic elements in freefem++. J. Numer. Math. 2012, 20,

183–194. [CrossRef]
28. Sheikholeslami, M.; Shehzad, S.A. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux

boundary condition. Int. J. Heat Mass Transf. 2017, 106, 1261–1269. [CrossRef]
29. Wang, L.; Li, J.; Huang, P.Z. An efficient algorithm for the natural convection equations based on finite element method. Int. J.

Numer. Methods Heat Fluid Flow 2018, 28, 584–605. [CrossRef]
30. Wei, Y.X.; Huang, P.Z. Finite element iterative methods for the stationary double-diffusive natural convection model. Entropy

2022, 24, 236. [CrossRef]
31. Su, H.Y.; Feng, X.L.; Huang, P.Z. Iterative methods in penalty finite element discretization for the steady MHD equations. Comput.

Methods Appl. Mech. Eng. 2016, 304, 521–545. [CrossRef]

http://dx.doi.org/10.1137/S0036142901392134
http://dx.doi.org/10.1080/17476933.2016.1252341
http://dx.doi.org/10.4208/jcm.2005-m2020-0010
http://dx.doi.org/10.1007/s10092-009-0158-7
http://dx.doi.org/10.1108/HFF-05-2019-0443
http://dx.doi.org/10.1016/j.cam.2014.06.019
http://dx.doi.org/10.1016/j.amc.2017.01.003
http://dx.doi.org/10.1002/mma.7627
http://dx.doi.org/10.1007/s10483-020-2623-7
http://dx.doi.org/10.1016/j.nonrwa.2012.09.008
http://dx.doi.org/10.1007/s11075-014-9874-4
http://dx.doi.org/10.1007/s00211-004-0522-0
http://dx.doi.org/10.1016/j.jmaa.2011.02.020
http://dx.doi.org/10.1090/S0025-5718-04-01687-4
http://dx.doi.org/10.1515/jnum-2012-0009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.10.107
http://dx.doi.org/10.1108/HFF-03-2017-0101
http://dx.doi.org/10.3390/e24020236
http://dx.doi.org/10.1016/j.cma.2016.02.039

	Introduction
	Preliminaries
	A Uzawa-Type Iterative Algorithm
	Numerical Study
	Conclusions
	References

