
����������
�������

Citation: Maharaj, S.; Polson, N.;

Turk, A. Chess AI: Competing

Paradigms for Machine Intelligence.

Entropy 2022, 24, 550. https://

doi.org/10.3390/e24040550

Academic Editors: Udo Von

Toussaint and Ali

Mohammad-Djafari

Received: 20 February 2022

Accepted: 5 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Chess AI: Competing Paradigms for Machine Intelligence

Shiva Maharaj 1, Nick Polson 2,* and Alex Turk 3

1 ChessEd, 729 Colby Ct, Gurnee, IL 60031, USA; problemsolver2020@gmail.com
2 Booth School of Business, University of Chicago, Chicago, IL 60637, USA
3 Phillips Academy, Andover, MA 01810, USA; alexwturk@gmail.com
* Correspondence: ngp@chicagobooth.edu

Abstract: Endgame studies have long served as a tool for testing human creativity and intelligence.
We find that they can serve as a tool for testing machine ability as well. Two of the leading chess
engines, Stockfish and Leela Chess Zero (LCZero), employ significantly different methods during
play. We use Plaskett’s Puzzle, a famous endgame study from the late 1970s, to compare the two
engines. Our experiments show that Stockfish outperforms LCZero on the puzzle. We examine
the algorithmic differences between the engines and use our observations as a basis for carefully
interpreting the test results. Drawing inspiration from how humans solve chess problems, we ask
whether machines can possess a form of imagination. On the theoretical side, we describe how
Bellman’s equation may be applied to optimize the probability of winning. To conclude, we discuss
the implications of our work on artificial intelligence (AI) and artificial general intelligence (AGI),
suggesting possible avenues for future research.

Keywords: AI; AGI; AlphaZero; LCZero; Bayesian; chess; chess studies; neural networks; Plaskett’s
study; reinforcement learning

1. Introduction

Chess is not a game. Chess is a well-defined form of computation. You may not be able to
work out the answers, but in theory, there must be a solution, a right procedure in any
position—John von Neumann

There are various schools of thought in chess composition, each of which placing
different emphasis on the complexity of problems. Chess studies originally became popular
in the 19th century. They are a notoriously difficult kind of puzzle, involving detailed
calculations and tactical motifs. As such, they provide a good benchmark for AI studies.

We choose to analyse how chess engines respond to Plaskett’s Puzzle, one of the
most well-known endgame studies in history. The endgame is the final phase of a chess
game. There are many features of Plaskett’s Puzzle that make it particularly hard—not
just the depth required (15 moves) but also the use of underpromotion (a particularly
counterintuitive kind of move in chess) and subtle tactical strategies. Though the puzzle
was initially created by a Dutch composer, it achieved notoriety in 1987 when English
grandmaster Jim Plaskett posed the problem at a chess tournament, stumping all players
except Mikhail Tal.

The advent of powerful computer chess engines enables us to revisit chess studies
where the highest level of tactics and accuracy are required. We evaluate the performance
of Stockfish 14 [1] and Leela Chess Zero (LCZero) [2] on Plaskett’s Puzzle. We discuss
the implications of their performance for both end users and the artificial intelligence
community as a whole. We find that Stockfish solves the puzzle with much greater efficiency
than LCZero. Our work suggests that building a chess engine with a broad and efficient
search may still be the most robust approach.

Chess engine research has implications for problems requiring large-scale tree search.
LCZero and its predecessor, AlphaZero [3], use neural networks to guide a Monte Carlo

Entropy 2022, 24, 550. https://doi.org/10.3390/e24040550 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040550
https://doi.org/10.3390/e24040550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24040550
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040550?type=check_update&version=1


Entropy 2022, 24, 550 2 of 13

tree search. Researchers have since used this idea to construct procedures for chemical
synthesis [4] and optimize the dynamics of quantum systems [5]. Stockfish heavily relies
on alpha-beta search [6], which has been used to verify neural networks’ robustness to
adversarial attacks [7].

Artificial general intelligence (AGI) is the ability of an algorithm to achieve human
intelligence in a multitude of tasks. Ref. [8] famously claimed that the rules of chess could
be determined from empirical observation, a central tenet of artificial general intelligence.
Historical records provide insight into human performance on Plaskett’s Puzzle. By com-
paring this with machine performance, we can better assess the state of current progress
on the long road to building AGI. We further discuss which algorithms possess greater
potential in the field of AGI by reviewing their ability to generalize to different domains.

On the theoretical side, we describe a central tool for solving dynamic stochastic
programming problems: the Bellman equation. This framework, together with the use
of deep neural networks to model the value and policy functions, provides a solution for
maximising the probability of winning the chess game. In doing so, the algorithm offers an
optimal path of play. Given the enormous number of possible paths of play (the Shannon
number), the use of search methods and the depth of the algorithm become important com-
putational aspects. It is here that high-level chess studies provide an important mechanism
for testing the ability of a given AI algorithm.

The rest of the paper is outlined as follows. The next subsection provides historical
perspective on Plaskett’s Puzzle. Section 2 provides background material on current
AI algorithms used in chess, namely, Stockfish 14 and LCZero. Section 3 describes our
software configuration and experimental approach. Section 4 provides our detailed analysis
of Plaskett’s Puzzle using these chess engines. Finally, Section 5 concludes with directions
for future research. In particular, we discuss the implications of our work for human–AI
interaction in chess [9] and AI development.

Plaskett’s Study

The story of Plaskett’s Puzzle dates to a Brussels tournament in 1987. The study
was originally composed by Gijs van Breukelen in 1970. In 1987, it famously stumped
multiple super grandmasters—players at the highest level in chess—when presented by
James Plaskett in a tournament press room. It was finally solved that day by legendary
attacking player Mikhail Tal, who figured it out during a break at the park [10].

The highly inventive puzzle involves multiple underpromotions and was originally
designed to be a checkmate in 14. There is a mistake in the original puzzle whereby Black
can escape checkmate, though White is still winning in the final position. This mistake can
be corrected by moving the Black knight on g5 to h8. Harold van der Heijden’s famous
Endgame Study Database (which contains over 58,000 studies) proposes another corrected
version where he moves the Black knight from g5 to e5. Figure 1a shows the original
Plaskett’s Puzzle, while Figure 1b shows the corrected Plaskett’s Puzzle.



Entropy 2022, 24, 550 3 of 13
Version March 26, 2022 submitted to Entropy 3 of 14

80Z0Z0Z0Z
7Z0ZPZ0Zk
6nZ0J0Z0o
5Z0o0Z0m0
40a0Z0ZNZ
3Z0o0o0O0
20Z0Z0Z0Z
1Z0ZBZ0Z0

a b c d e f g h

(a) The original Plaskett’s Puzzle

80Z0Z0Z0m
7Z0ZPZ0Zk
6nZ0J0Z0o
5Z0o0Z0Z0
40a0Z0ZNZ
3Z0o0o0O0
20Z0Z0Z0Z
1Z0ZBZ0Z0

a b c d e f g h

(b) The corrected Plaskett’s Puzzle
Figure 1. Versions of Plaskett’s Puzzle

2. Background: chess AI 79

Turing [11], von Neumann [12], and Shannon [13] pioneered the development of AI 80

algorithms for chess. The Shannon number, 10120, provides a lower bound on the total 81

number of possible games, making chess a daunting computational challenge. A major 82

advance over pure look-ahead search methods was the use of deep neural networks to 83

approximate the value and policy functions. Then, the self-play of the algorithms allows 84

for quick iterative solution paths. See work by Silver et al. [14] for further discussion. 85

The dynamic programming method breaks the decision problem into smaller sub- 86

problems. Bellman’s principle of optimality describes how to do this: 87

Bellman Principle of Optimality: An optimal policy has the property that whatever the initial 88

state and initial decision are, the remaining decisions must constitute an optimal policy with regard 89

to the state resulting from the first decision. [15] 90

Backwards Induction identifies what action would be most optimal at the last node in 91

the decision tree (a.k.a. checkmate). Using this information, one can then determine what 92

to do at the second-to-last time of decision. This process continues backwards until one has 93

determined the best action for every possible situation (i.e. solving the Bellman equation). 94

2.1. Q-values 95

The optimal sequential decision problem is solved by calculating the values of the 96

Q-matrix, denoted by Q(s, a) for state s and action a. One iterative process for finding these 97

values is known as Q-learning [16], which can be converted into a simulation algorithm as 98

shown by Polson and Sorensen [17]. The Q-value matrix describes the value of performing 99

action a (a chess move) in our current state s (the chess board position) and then acting 100

optimally henceforth. The current optimal value and policy function are as follows: 101

V(s) = max
a

Q(s, a) = Q(s, a⋆(s)) (1)

a⋆(s) = argmaxa Q(s, a). (2)

For example, chess engines such as LCZero simply take the probability of winning as 102

the objective function. Hence, at each stage V(s) measures the probability of winning. This 103

is typically reported as a pawn advantage, since the pawn is the most basic unit of material 104

in chess. Advantages based on the arrangement of the pieces are heuristically factored 105

into this metric as well. The greater a side’s pawn advantage, the greater their chance of 106

winning. Isenberg [18] provides an equation for converting between pawn advantage and 107

win probability. 108

Version March 26, 2022 submitted to Entropy 3 of 14

80Z0Z0Z0Z
7Z0ZPZ0Zk
6nZ0J0Z0o
5Z0o0Z0m0
40a0Z0ZNZ
3Z0o0o0O0
20Z0Z0Z0Z
1Z0ZBZ0Z0

a b c d e f g h

(a) The original Plaskett’s Puzzle

80Z0Z0Z0m
7Z0ZPZ0Zk
6nZ0J0Z0o
5Z0o0Z0Z0
40a0Z0ZNZ
3Z0o0o0O0
20Z0Z0Z0Z
1Z0ZBZ0Z0

a b c d e f g h

(b) The corrected Plaskett’s Puzzle
Figure 1. Versions of Plaskett’s Puzzle

2. Background: chess AI 79

Turing [11], von Neumann [12], and Shannon [13] pioneered the development of AI 80

algorithms for chess. The Shannon number, 10120, provides a lower bound on the total 81

number of possible games, making chess a daunting computational challenge. A major 82

advance over pure look-ahead search methods was the use of deep neural networks to 83

approximate the value and policy functions. Then, the self-play of the algorithms allows 84

for quick iterative solution paths. See work by Silver et al. [14] for further discussion. 85

The dynamic programming method breaks the decision problem into smaller sub- 86

problems. Bellman’s principle of optimality describes how to do this: 87

Bellman Principle of Optimality: An optimal policy has the property that whatever the initial 88

state and initial decision are, the remaining decisions must constitute an optimal policy with regard 89

to the state resulting from the first decision. [15] 90

Backwards Induction identifies what action would be most optimal at the last node in 91

the decision tree (a.k.a. checkmate). Using this information, one can then determine what 92

to do at the second-to-last time of decision. This process continues backwards until one has 93

determined the best action for every possible situation (i.e. solving the Bellman equation). 94

2.1. Q-values 95

The optimal sequential decision problem is solved by calculating the values of the 96

Q-matrix, denoted by Q(s, a) for state s and action a. One iterative process for finding these 97

values is known as Q-learning [16], which can be converted into a simulation algorithm as 98

shown by Polson and Sorensen [17]. The Q-value matrix describes the value of performing 99

action a (a chess move) in our current state s (the chess board position) and then acting 100

optimally henceforth. The current optimal value and policy function are as follows: 101

V(s) = max
a

Q(s, a) = Q(s, a⋆(s)) (1)

a⋆(s) = argmaxa Q(s, a). (2)

For example, chess engines such as LCZero simply take the probability of winning as 102

the objective function. Hence, at each stage V(s) measures the probability of winning. This 103

is typically reported as a pawn advantage, since the pawn is the most basic unit of material 104

in chess. Advantages based on the arrangement of the pieces are heuristically factored 105

into this metric as well. The greater a side’s pawn advantage, the greater their chance of 106

winning. Isenberg [18] provides an equation for converting between pawn advantage and 107

win probability. 108

(a) (b)

Figure 1. Versions of Plaskett’s Puzzle. (a) The original Plaskett’s Puzzle. (b) The corrected Plaskett’s
Puzzle.

2. Background: Chess AI

Refs. [11–13] pioneered the development of AI algorithms for chess. The Shannon
number, 10120, provides a lower bound on the total number of possible games, making
chess a daunting computational challenge. A major advance over pure look-ahead search
methods was the use of deep neural networks to approximate the value and policy functions.
Then, the self-play of the algorithms allowed for quick iterative solution paths. See work
by [14] for further discussion.

The dynamic programming method breaks the decision problem into smaller subprob-
lems. Bellman’s principle of optimality describes how to do this:

Bellman Principle of Optimality: An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision. [15]

Backwards induction identifies what action would be most optimal at the last node in
the decision tree (i.e., checkmate). Using this information, one can then determine what to
do at the second-to-last time of decision. This process continues backwards until one has
determined the best action for every possible situation (i.e., solving the Bellman equation).

2.1. Q-Values

The optimal sequential decision problem is solved by calculating the values of the
Q-matrix, denoted by Q(s, a) for state s and action a. One iterative process for finding these
values is known as Q-learning [16], which can be converted into a simulation algorithm
as shown by [17]. The Q-value matrix describes the value of performing action a (a chess
move) in our current state s (the chess board position) and then acting optimally henceforth.
The current optimal value and policy function are as follows:

V(s) = max
a

Q(s, a) = Q(s, a?(s)) (1)

a?(s) = argmaxa Q(s, a). (2)

For example, chess engines such as LCZero simply take the probability of winning
as the objective function. Hence, at each stage, V(s) measures the probability of winning.
This is typically reported as a pawn advantage, since the pawn is the most basic unit of
material in chess. Advantages based on the arrangement of the pieces are heuristically
factored into this metric as well. The greater a side’s pawn advantage, the greater their
chance of winning. Ref. [18] provides an equation for converting between pawn advantage
and win probability.



Entropy 2022, 24, 550 4 of 13

The Bellman equation for Q-values (assuming instantaneous utility u(s, a) and a
time-inhomogeneous Q matrix) is the constraint

Q(s, a) = u(s, a) + ∑
s?∈S

P(s?|s, a)max
a

Q(s?, a). (3)

Here, P(s?|s, a) denotes the transition matrix of states and describes the probability
of moving to a new state s? given the current state s and action a. The new state s? is the
board position after the current player has played action a and the opponent has responded.
Bellman’s optimality principle is therefore simply describing the constraint for optimal
play as one in which the current value is a sum over all future paths of the probabilistically
weighted optimal future values of the next state.

Taking the maximum value of Q(s, a) over the current action a yields

V(s) = max
a

{
u(s, a) + ∑

s?∈S
P(s?|s, a)V(s?)

}
where V(s?) = maxa Q(s?, a). (4)

Here, u(s, a) is an instantaneous utility obtained from action a in state s. For all
nonterminal board positions, u(s, a) is zero. At the end of the game, u(s, a) is −1 after a
loss, 0 after a draw, and 1 after a win.

2.2. Stockfish 14 Anatomy
2.2.1. Search

Stockfish uses the alpha-beta pruning search algorithm [6]. Alpha-beta pruning
improves minimax search [12,19] by avoiding variations that will never be reached in
optimal play because either player will redirect the game.

Since it is often computationally infeasible to search until the end of the game, the
search is terminated early when it reaches a certain depth. Search depth is measured by ply,
where a ply is a turn taken by a player. A search depth of D indicates that the distance be-
tween the root node and the leaf nodes of the search tree is D plies. Stockfish incrementally
increases the depth of its search tree in a process known as iterative deepening [20]. However,
when a nominal search depth of D is reported by chess engines, it does not mean that the
search has considered all possible variations of D moves. This is due to heuristics which
cause the engine to search promising variations to a greater depth than nominal and less
promising variations to a lesser depth than nominal.

The engine applies two main classes of heuristics to reduce the search space: forward
pruning and reduction [21]. Forward pruning techniques remove game tree subgraphs
that are unlikely to be contained in optimal play. For example, if the evaluation of a
position is significantly worse than the value guaranteed by a player’s best alternative,
the position’s children are pruned early. This is known as futility pruning [22,23]. It is
possible that the engine mistakenly prunes a line of play. This will be corrected once
the engine depth surpasses a technique-specific depth cap (see Stockfish source code at
https://github.com/official-stockfish/Stockfish, accessed on 13 April 2022); after which,
the technique is no longer applied.

Reduction techniques search certain game tree subgraphs to lower depths, rather than
omitting them from the search altogether. A canonical example is late move reductions [24],
which assume that the engine checks better moves earlier. Moves checked later are searched
to lower depths than nominal.

Given infinite time, the engine will converge to the optimal line of play. Depth caps
prevent lines from being overlooked via pruning, and reductions become inconsequential
at infinite depth.

2.2.2. Evaluation

Once the search algorithm reaches a leaf node, a heuristic evaluation function is
applied to determine whether the ending position favours White or Black. In Stockfish

https://github.com/official-stockfish/Stockfish


Entropy 2022, 24, 550 5 of 13

versions 11 and under, this function is hard-coded based on chess concepts such as piece
position, piece activity, and the game phase (opening/middle game or endgame) (see
https://hxim.github.io/Stockfish-Evaluation-Guide/, accessed on 13 April 2022).

The efficiently updatable neural network (NNUE) evaluation function was originally
invented by [25] for Shogi, a Japanese chess variant. Stockfish implemented it for their
chess engine in version 12 [26]. The neural network is trained to predict the output of the
classic Stockfish evaluation function at “moderate” search depths. Thus, it can be thought
of as a search depth multiplier. Though NNUE is about twice as slow as Stockfish’s classic
evaluation function, the engine makes up for this in terms of evaluation quality [27].

Its architecture comprises a shallow, four-layer neural network specifically optimized
for speed on CPU machines. The input layer of binary features describes the position of the
White and Black king relative to the White and Black pieces, respectively. For example, one
feature might be described as

θ0 =

{
1 if Black Kg8 and Qd8
0 otherwise.

(5)

The dimensionality of the board feature vector is reduced as it passes through two hid-
den layers and one output layer, resulting in a final scalar value for the position’s evaluation.

2.3. AlphaZero Anatomy
2.3.1. Search

AlphaZero uses the Monte Carlo tree search (MCTS) algorithm to identify the best
lines via repeated sampling [3]. In MCTS, node evaluations at the end of prior simulations
are used to direct future simulations toward the most promising variations. The search
tree starts with one node (the current position). Each simulation traces a path through the
tree according to node values, expanding the tree by a sampling an additional node with
high prior probability once it reaches the end. After evaluating this new node with the
evaluation function, a backward pass through the tree is performed to update the Q-values
of nodes visited during the current simulation. After some number of simulations, the
child node with the most samples is deemed the algorithm’s choice. During simulation,
nodes are optimistically selected according to the polynomial upper confidence tree (PUCT)
algorithm [14,28]:

at = argmax
a

(Q(st, a) + U(st, a))

U(s, a) = C(s)P(s, a)
√

∑b N(s, b)
1 + N(s, a)

C(s) = log
1 + N(s) + cbase

cbase
+ cinit.

(6)

Both the action value Q(s, a) and policy P(s, a) are determined by applying the evalu-
ation function to states in the game tree. The Q(s, a) is the mean action-value of the node
across all simulations, while P(s, a) is the prior probability of the node according to the
policy network. N(s, a) is the number of times the action a has been taken from state s.
The search algorithm initially focuses on nodes with high prior probability P. As N(s, a)
increases, the algorithm increasingly relies on the sampled Q-value. C(s) controls the
amount of exploration, which increases as the search progresses. Constants cbase and cinit
thus alter the rate of exploration during the search.

2.3.2. Evaluation

AlphaZero’s evaluation uses deep convolutional neural networks (CNNs) to estimate
the policy vector pt = P(a | st) and value vt of nodes in the search tree [3]. Data are
generated through millions of games of self-play, where AlphaZero plays both sides. Self-

https://hxim.github.io/Stockfish-Evaluation-Guide/


Entropy 2022, 24, 550 6 of 13

play removes reliance on human experts, and through many games, AlphaZero is able to
correct its mistakes and discover novel game-playing strategies. Given the final outcome of
a game z (−1 for loss, 0 for draw, or +1 for win) and the search probabilities πt (obtained
from the final node visit counts), the networks are trained to minimize the loss of

(z− vt)
2 − πT

t log pt + c‖θ‖2 (7)

where θ represents the parameters and c controls the amount of regularization. While v
aims to directly predict the game result, p is trained to “look ahead” in the search, causing
it to learn helpful prior probabilities for the PUCT algorithm.

Early neural chess engines often required hand-crafted feature representations that
went beyond the board position and basic board statistics. For example, the NeuroChess [29]
input features included the number of weak pawns on the board and the relative position of
the knight and queen. With the advent of deep learning, the process of performing feature
selection by hand can be eliminated, as additional layers perform a sophisticated—and
perhaps even more effective—form of feature selection [30]. The learner relies on the
“unreasonable effectiveness of data” to learn useful features from unstructured input [31].

In particular, AlphaZero’s CNN inputs are binary 8× 8 feature planes that encode
the piece locations of both players for the eight past half-moves. In addition, the input
includes constant feature planes which encode important counts in the game, such as the
repetition and move count. Like the input, the output policy pt = P(a | st) is represented
in the network by a stack of planes. Each of the planes in the 8× 8× 73 stack represents a
movement-related modality, and each square represents the location from which to pick a
piece up. For example, the first 8× 8 plane might represent the probabilities assigned for
moving one square north from each of the squares on the board. Illegal moves are filtered
out before the probability distribution over all 4672 possible moves is computed.

The body of the network consists of 19 residual blocks [32] made up of rectified
convolutional layers and skip connections. The network body leads into two “heads”: a
value head, which produces the scalar evaluation, and a policy head, which produces a
stack of planes as detailed above. Ref. [3] provides further details.

2.4. AlphaZero’s Successor: LCZero

DeepMind did not open-source AlphaZero. The LCZero project was thus born as an
attempt to reproduce the work via crowd computing. Though LCZero predominantly uses
the same search and evaluation techniques as AlphaZero, the team has made a few im-
provements. For example, the network architecture adds squeeze-and-excitation layers [33]
to the residual blocks, and the engine supports endgame tablebases. The developers also
added a moves-left network, which predicts the remaining game length in plies and helps
LCZero navigate endgame positions more effectively. LCZero has far surpassed the original
strength of AlphaZero due to its additional training and improvements.

3. Materials and Methods

Both Stockfish and LCZero are freely available online. Stockfish is available at https://
stockfishchess.org, accessed on 13 April 2022, and LCZero is available at https://lczero.org,
accessed on 13 April 2022. In our tests, we used Stockfish version 14 and LCZero network
number 609950. We used the default settings for both engines. For a given position, we
report the engine’s top 5 moves along with their corresponding pawn advantages and win
probabilities. Though neither Stockfish nor LCZero are stochastic during evaluation by
design, multithreading introduces randomness into the evaluations of both engines. Thus,
we average our results over five trials and report standard deviations. In addition, we
empirically analyse variations generated by the Stockfish and LCZero search procedures.

https://stockfishchess.org
https://stockfishchess.org
https://lczero.org


Entropy 2022, 24, 550 7 of 13

4. Results
4.1. Stockfish 14 Performance

We gain insight into how Stockfish 14 understands Plaskett’s Puzzle by inspecting the
action-value function Q for the top moves.

Table 1 shows that given the original puzzle (see Figure 1a), Stockfish prefers Black,
reporting a pawn advantage of −3.62. It does not identify the winning move in its top five
choices. However, the engine’s evaluation of the position reverses once it analyses at a
greater depth, as illustrated in Table 2.

Table 1. Original puzzle: Stockfish 14 evaluations at depth 30 for the top 5 moves (MultiPV = 5) and
corresponding approximate win probabilities (calculated according to [18]). Evaluations are averaged
over five samples, and the sample standard deviations are reported in parentheses.

Nxe3 d8R d8Q Bc2+ Kd5

Q-value −3.62 (0.06) −4.26 (0.69) −4.28 (0.60) −4.76 (0.21) -5.12 (0.08)
Win Prob. 11.1% (0.4%) 8.3% (2.8%) 8.1% (2.2%) 6.1% (0.7%) 5.0% (0.2%)

Table 2. Original puzzle: Stockfish 14 evaluations at depth 39 for the top 5 moves (MultiPV = 5) and
corresponding approximate win probabilities (calculated according to [18]). Evaluations are averaged
over five samples, and the sample standard deviations are reported in parentheses.

Nf6+ Nxe3 d8Q d8R Bc2+

Q-value +5.44 (1.86) −3.98 (0.06) −4.49 (0.51) −4.50 (0.53) −5.27 (0.05)
Win Prob. 93.8% (6.4%) 9.2% (0.3%) 7.2% (1.8%) 7.2% (2.0%) 4.6% (0.1%)

Van Breukelen originally designed the solution of the puzzle to begin with 1 Nf6+

Kg7 2 Nh5+ Kg6 3 Bc2+! KXh5 4 d8Q. The resulting position is depicted in Figure 2.

Version March 26, 2022 submitted to Entropy 7 of 14

report standard deviations. In addition, we empirically analyze variations generated by 228

the Stockfish and LCZero search procedures. 229

4. Results 230

4.1. Stockfish 14 performance 231

We gain insight into how Stockfish 14 understands Plaskett’s Puzzle by inspecting the 232

action-value function Q for the top moves. 233

Table 1. Original puzzle: Stockfish 14 evaluations at depth 30 for the top 5 moves (MultiPV=5) and
corresponding approximate win probabilities (calculated according to Isenberg [18]). Evaluations are
averaged over five samples, and the sample standard deviations are reported in parentheses.

Nxe3 d8R d8Q Bc2+ Kd5

Q-value -3.62 (0.06) -4.26 (0.69) -4.28 (0.60) -4.76 (0.21) -5.12 (0.08)
Win Prob. 11.1% (0.4%) 8.3% (2.8%) 8.1% (2.2%) 6.1% (0.7%) 5.0% (0.2%)

Table 2. Original puzzle: Stockfish 14 evaluations at depth 39 for the top 5 moves (MultiPV=5) and
corresponding approximate win probabilities (calculated according to Isenberg [18]). Evaluations are
averaged over five samples, and the sample standard deviations are reported in parentheses.

Nf6+ Nxe3 d8Q d8R Bc2+

Q-value +5.44 (1.86) -3.98 (0.06) -4.49 (0.51) -4.50 (0.53) -5.27 (0.05)
Win Prob. 93.8% (6.4%) 9.2% (0.3%) 7.2% (1.8%) 7.2% (2.0%) 4.6% (0.1%)

Table 1 shows that given the original puzzle (see Figure 1a), Stockfish prefers Black, 234

reporting a pawn advantage of -3.62. It does not identify the winning move in its top five 235

choices. However, the engine’s evaluation of the position reverses once it analyzes to a 236

greater depth, as illustrated in Table 2. 237

Van Breukelen originally designed the solution of the puzzle to begin with 1 Nf6+ 238

Kg7 2 Nh5+ Kg6 3 Bc2+! KXh5 4 d8Q. The resulting position is depicted in Figure 2. 239

80Z0L0Z0Z
7Z0Z0Z0Z0
6nZ0J0Z0o
5Z0o0Z0mk
40a0Z0Z0Z
3Z0o0o0O0
20ZBZ0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

Figure 2. The position after the first four moves of Van Breukelen’s intended continuation

The principal variation identified by Stockfish exploits a flaw in the original study. 240

The engine correctly calculates that Black can avoid walking into Van Breuklen’s forced 241

checkmate with 4. . . Kg4! 5 Qf6 KXg3 6 Qf1 c4+ 7 Kd5. If Nf7+ is played instead, it leads 242

to a forced checkmate via 4. . . Nf7+ 5 Ke6 NXd8+ 6 Kf5 e2 7 Be4 e1N! 8 Bd5! c2 9 Bc4 243

c1N! 10 Bb5 Nc7 11 Ba4! Ne2 12 Bd1 Nf3 13 BXe2 Nce6 14 BXf3m. 244

Figure 2. The position after the first four moves of Van Breukelen’s intended continuation.

The principal variation identified by Stockfish exploits a flaw in the original study.
The engine correctly calculates that Black can avoid walking into Van Breuklen’s forced
checkmate with 4. . . Kg4! 5 Qf6 KXg3 6 Qf1 c4+ 7 Kd5. If Nf7+ is played instead, it leads
to a forced checkmate via 4. . . Nf7+ 5 Ke6 NXd8+ 6 Kf5 e2 7 Be4 e1N! 8 Bd5! c2 9 Bc4
c1N! 10 Bb5 Nc7 11 Ba4! Ne2 12 Bd1 Nf3 13 BXe2 Nce6 14 BXf3m.

Testing Stockfish against the corrected puzzle (depicted in Figure 1b), we obtain similar
results, which are reported in Table 3. Though the forced checkmate is 29 half-moves deep,
the chess engine reaches around a nominal depth of 40 before it detects the move.



Entropy 2022, 24, 550 8 of 13

Table 3. Corrected puzzle: Stockfish 14 evaluations at depth 40 for the top 5 moves (MultiPV = 5) and
corresponding approximate win probabilities (calculated according to [18]). Evaluations are averaged
over five samples, and the sample standard deviations are reported in parentheses.

Nf6+ Nxe3 d8R d8Q Ke6

Q-value ∞ (0) −3.31 (0.07) −4.28 (0.30) −4.31 (0.27) −4.92 (0.09)
Win Prob. 100% (0%) 13.0% (0.4%) 7.9% (1.3%) 7.8% (1.1%) 5.6% (0.3%)

For both the original and corrected puzzles, Stockfish’s delay in finding the move
is due to the heuristics that the engine uses for focusing on more promising branches.
For example, it is likely that the knight sacrifice with 3 Bc2+ is sorted near the end of
the move list, since alternative moves leave White with more material. Therefore, late
move reductions will cause the engine to search variations following 3 Bc2+ to less depth
than nominal.

4.2. LCZero Performance

We test LCZero on the corrected puzzle and find that, even with an extensive amount
of computational resources, it does not find the forced checkmate. The engine’s evaluations
are provided in Table 4.

Table 4. Corrected puzzle: LCZero evaluations for the top 5 moves, along with Nxe3, after analysing
60 million nodes. Q-value, win probability, policy network output, fraction of visits, and estimated
moves remaining are reported for each move. Evaluations are averaged over five samples, and
sample standard deviations are reported in parentheses when necessary (policy network output is
always constant).

d8R Kc6 d8Q Nf6+ Bc2+ Nxe3

Q-value −4.67 (0.01) −5.02 (0.01) −5.44 (0.09) −5.61 (0.00) −6.46 (0.10) −8.88 (0.00)
Win Prob. 5.86% (0.01%) 5.44% (0.01%) 5.02% (0.08%) 4.86% (0.00%) 4.2% (0.07%) 3.01% (0.00%)
Policy 3.11% 7.23% 13.33% 7.40% 9.22% 15.75%
Visits 0.53% (0.00%) 2.39% (0.04%) 1.27% (0.01%) 0.36% (0.00%) 1.07% (0.03%) 92.35% (0.05%)
Moves left 73.6 (0.1) 79.3 (0.1) 73.8 (0.1) 63.7 (0.0) 80.5 (0.6) 95.9 (0.0)

The engine reports that the best move for Black is 1 d8R with a pawn advantage
of −4.67. It further assigns the winning move, 1 Nf6+, a pawn advantage of −5.61 and
calculates the full continuation as 1 Nf6+ Kg7 2 Nh5+ Kg6 3 d8N Kf5 4 Nf4 Ke4 5 Nc6
Nf7+ 6 Ke6 Ng5+ 7 Kf6 Nc7 8 Ne7 Nge6 9 Bc2+ Kf3 10 Bd1+ KXg3 11 Nd3 Nd4 12
Ke5 Ba3 13 Nf4 c2. The resulting position for this continuation is shown in Figure 3.

Version March 26, 2022 submitted to Entropy 9 of 14

80Z0Z0Z0Z
7Z0m0M0Z0
60Z0Z0Z0o
5Z0o0J0Z0
40Z0m0M0Z
3a0Z0o0j0
20ZpZ0Z0Z
1Z0ZBZ0Z0

a b c d e f g h

Figure 3. The final position after LCZero’s continuation following 1 Nf6+

The ending position is clearly winning for Black. 262

It is possible to understand Leela’s selective search strategy by examining the distribu- 263

tion of positions searched. A surprising 92.4% of the 60 million searched positions follow 264

from 1 NXe3, even though its win probability of 3.01% is lower than the top 5 moves. On 265

average, the engine spends 0.36% of the time, or about 216,000 nodes (SD = 450), searching 266

positions following 1 Nf6+, seeing it as less promising. This is partially due to the prior 267

probabilities determined by the policy head. The policy indicates that there is a 15.75% 268

probability 1 NXe3 is the optimal move, compared to a 7.40% probability for 1 Nf6+. This 269

intuition seems reasonable, since Stockfish evaluates 1 NXe3 as the second best move in 270

the position, as shown in Table 3. Furthermore, once LCZero determines that all moves 271

seem losing, it tries to focus on the one with the most promise to extend the game, which 272

the moves left head identifies as 1 NXe3. It stands to reason that a node with significantly 273

more moves remaining would also require a deeper search (there is greater potential the 274

engine will stumble upon a line that will reverse its evaluation deep in the tree). However, 275

the skewed search is also due to subleties in the puzzle. The engine must see the entire 276

checkmate before it is able to realize the benefits, especially regarding the 3 Bc2+ sacrifice 277

made in a materially losing position. The engine thus chooses to prioritize searching other 278

lines instead. 279

LCZero finds the forced checkmate after it is given the first move. This happens after 280

searching about 5.5M nodes. In the same position, Stockfish searches around 500M nodes 281

before finding the checkmate. This demonstrates LCZero’s strength: even if Stockfish 282

searches significantly faster than LCZero, LCZero can find the optimal line of play after 283

searching orders of magnitude less nodes. 284

4.3. Fairness of engine comparison 285

Historically, engines have been compared by running them on the same hardware. 286

However, the advent of GPU engines has meant that this is not always possible anymore. 287

CPU engines run sub-optimally on GPUs, and GPU engines run sub-optimally on CPUs. 288

The closest we can do is establish rough equivalencies between GPU and CPU hardware. 289

The "Leela Ratio" factor is based on the ratio of the GPU and CPU evaluation speeds 290

reported in the AlphaZero paper [3].3 Its use assumes that the Stockfish vs AlphaZero 291

games ran on "equivalent" hardware. By comparing the GPU and CPU evaluation speeds 292

on our hardware to the Leela Ratio, it is possible to determine whether we give an edge to 293

either engine. 294

We report and recompute an updated Leela Ratio based on the average engine speeds 295

(in nodes per second) from the Top Chess Engine Championship (TCEC) Cup 8 Final held 296

3 https://github.com/dkappe/leela-ratio

Figure 3. The final position after LCZero’s continuation following 1 Nf6+.



Entropy 2022, 24, 550 9 of 13

The ending position is clearly winning for Black.
It is possible to understand Leela’s selective search strategy by examining the distribu-

tion of positions searched. A surprising 92.4% of the 60 million searched positions follow
from 1 NXe3, even though its win probability of 3.01% is lower than the top 5 moves. On
average, the engine spends 0.36% of the time, or about 216,000 nodes (SD = 450), searching
positions following 1 Nf6+, seeing it as less promising. This is partially due to the prior
probabilities determined by the policy head. The policy indicates that there is a 15.75%
probability 1 NXe3 is the optimal move, compared to a 7.40% probability for 1 Nf6+. This
intuition seems reasonable, since Stockfish evaluates 1 NXe3 as the second-best move in
the position, as shown in Table 3. Furthermore, once LCZero determines that all moves
seem losing, it tries to focus on the one with the most promise to extend the game, which
the moves-left head identifies as 1 NXe3. It stands to reason that a node with significantly
more moves remaining would also require a deeper search (there is greater potential the
engine will stumble upon a line that will reverse its evaluation deep in the tree). However,
the skewed search is also due to subtleties in the puzzle. The engine must see the entire
checkmate before it is able to realize the benefits, especially regarding the 3 Bc2+ sacrifice
made in a materially losing position. The engine thus chooses to prioritize searching other
lines instead.

LCZero finds the forced checkmate after it is given the first move. This happens after
searching about 5.5M nodes. In the same position, Stockfish searches around 500 M nodes
before finding the checkmate. This demonstrates LCZero’s strength: even if Stockfish
searches significantly faster than LCZero, LCZero can find the optimal line of play after
searching orders of magnitude less nodes.

4.3. Fairness of Engine Comparison

Historically, engines have been compared by running them on the same hardware.
However, the advent of GPU engines has meant that this is not always possible anymore.
CPU engines run suboptimally on GPUs, and GPU engines run suboptimally on CPUs.
The closest we can do is establish rough equivalences between GPU and CPU hardware.

The “Leela ratio” factor is based on the ratio of the GPU and CPU evaluation speeds
reported in the AlphaZero paper [3] (see https://github.com/dkappe/leela-ratio, accessed
on 13 April 2022). Its use assumes that the Stockfish vs. AlphaZero games ran on “equiva-
lent” hardware. By comparing the GPU and CPU evaluation speeds on our hardware to
the Leela Ratio, it is possible to determine whether we give an edge to either engine.

We report and recompute an updated Leela Ratio based on the average engine speeds
(in nodes per second) from the Top Chess Engine Championship (TCEC) Cup 8 Final held
in March 2021. Our comparison thus assumes that the TCEC chess engine tournament picks
“fair” hardware when it pits CPU and GPU engines against one another. We recompute the
Leela ratio factor F as

F =
Stockfish nps
LCZero nps

=
1.5× 108

1.4× 105 ≈ 1084. (8)

This means that during TCEC, Stockfish is allowed to search, on average, three orders
of magnitude more nodes than LCZero in “fair play”. Based on this ratio, we calculate the
Leela ratio for our experiments as

R = F× LCZero nodes
Stockfish nodes

= F× 6.0× 107

1.897× 109 ≈ 34. (9)

This indicates that we gave LCZero 34 times more computational power than we
gave Stockfish (compared to TCEC). Our experiments show that even with this advantage,
LCZero does not find the solution to the corrected Plaskett’s Puzzle, while Stockfish does.

https://github.com/dkappe/leela-ratio


Entropy 2022, 24, 550 10 of 13

5. Discussion

Stockfish and LCZero represent two competing paradigms in the race to build the
best chess engine. The magic of the Stockfish engine is programmed into its search,
the magic of LCZero into its evaluation. When tasked with solving Plaskett’s Puzzle,
Stockfish’s approach proved superior. The engine searched through nearly 1.9 billion
different positions to identify the minimax solution. The algorithm’s sheer efficiency—due
in part to domain-specific search optimizations—enabled it to find the surprising, unlikely
solution. On the other hand, LCZero’s selective search was less efficient, primarily because
it chose the wrong lines to search deeply. Even its more powerful, deep-learning-based
evaluation function failed to recognize the positional potential of the knight sacrifice. This
is particularly notable because LCZero’s evaluation function is often unafraid of giving
away material for a positional advantage.

Since engines often cannot compute to the end of the game, there is uncertainty in
the values they assign to moves. The goal of a forward search from some position s is to
reduce the uncertainty in Q(s, a) for each action a. This uncertainty can be represented
as a distribution over all possible Q-values an action could take. More uncertainty leads
to a greater continuous entropy for the distribution over possible Q-values [34]. During
search, the PUCT algorithm implicitly models and reduces the amount of uncertainty in
the engine’s reported Q-values. Comparing search algorithms may thus be viewed as
comparing different ways that engines resolve uncertainty in their evaluations.

After annotating 40 games between Stockfish and LCZero, FIDE Chess Master Bill Jor-
dan concluded that “Stockfish represents calculation” and “Leela represents intuition” [35].
For experienced human players, decisions that might have priorly required “logical appa-
ratus” become ingrained to the point of “automation” through repetition [36]. Like human
players, LCZero’s intuition allows it to hone in on the most compelling lines. In the majority
of positions, this intuition is strong enough to make up for fewer calculations. However,
LCZero’s human-like approach can fail in edge cases; it is difficult to build a universally
accurate pattern matcher. The safest approach to engine-building may still involve cold,
hard calculation, even in seemingly unpromising variations.

That said, there is another aspect of LCZero’s algorithm that ought to be considered.
The engine was built from “zero” knowledge of the game, other than the rules. AlphaZero’s
successor, MuZero [37], removed the dependence on rules altogether [8]. It stands to reason
that with work, LCZero could be trained with this method as well. Such an approach
stands in sharp contrast to the large quantity of chess-specific search heuristics required
by Stockfish. AlphaZero additionally achieves high levels of performance in Shogi and
Go, which demonstrates that the LCZero algorithm is significantly more generalizable
than Stockfish. In games where humans do not have the knowledge or time to provide
domain-specific information, a strong engine can still be trained.

Stockfish and LCZero are examples of what philosopher John Searle calls weak AI [38].
Weak AI is a tool that performs a task that the mind can perform. This is in contrast
to strong AI, which singularly possesses the capabilities of the human mind. Strong AI
understands the world in the same way that humans do and is often known as artificial
general intelligence, or AGI.

Since LCZero learns to play chess without additional human knowledge, its approach
demonstrates more potential in the field of AGI. However, the engine’s inability to solve
Plaskett’s Puzzle (given a reasonable amount of resources) means that even the strongest
versions of weak AI have not been able to replicate expert human performance. Therefore,
we propose two main courses of action for improving LCZero’s efficiency on the problem.

One potential solution is additional training. With more self-play, it is likely that
LCZero’s performance on the puzzle would improve. It may further be possible to train
the engine on forced checkmates, which would develop its pattern recognition abilities in
mating positions. Such an approach seeks to refine the output of LCZero’s policy head
through data augmentation [39], improving the engine’s intuition. Unlike training on



Entropy 2022, 24, 550 11 of 13

expert games, this form of training is impervious to human bias, since the optimal line of
play is already known.

Our second proposal involves algorithmic and architectural improvement. Improve-
ments to the search, for example, have already begun with Ceres, which selects lines more
intelligently [40]. Neural architecture improvements can be explored by experimenting
with ideas that have seen widespread success in natural language processing, such as
attention [41] and transformers [42,43]. Speed-ups might also be gained by simplifying the
neural network architecture through different forms of model compression. Common meth-
ods include knowledge distillation [44,45], neuron pruning [46,47], and quantization [48].
With a faster evaluation function, LCZero can search through more nodes, increasing the
likelihood that it will find the optimal line of play.

For chess-problem-specific algorithmic improvement, we draw inspiration from how
humans solve chess problems. The human approach may not always be the most effective
one [49], but it provides us with a starting point. We notice that humans solve chess
problems not only with calculation but also with imagination. In the case of Plaskett’s Puzzle,
it is possible that Tal saw the checkmate in his mind first and then found the variation that
led him there. We ask whether machines can possess a similar imagination [50].

Since all puzzles have a guaranteed solution, it may be possible for a learner to
explicitly predict likely checkmate positions and use these positions to condition the
search. Such a process would augment the sequential search process with a deeper, more
speculative lookahead. In statistical terms, this may be thought of as “extending the
conversation”, since we are extending our assessment of win probability by conditioning
on the event of reaching a certain checkmate position [51]. It is important to note that
in order to verify a checkmate as a forced win, all relevant lines must still be examined.
The opponent must truly have no alternative. Humans often optimistically bias their
calculations based on their memory of similar positions. They may fall into the trap of
“magical thinking”, which “involves our inclination to seek and interpret connections
between the events around us together with our disinclination to revise belief after further
observation” [52]. When implementing a computational form of imagination, it is important
to ensure machines do not make the same mistake.

To make progress in AGI, however, systems must do more than improve on a particular
task; they must begin to generalize better to new tasks. Ref. [3] took an important step in
this direction by building a singular architecture that achieves state-of-the-art results in
three different games. Such work begs the question of what a singular model can achieve.
Thus, a compelling avenue of research resides in testing changes in performance when
AlphaZero or LCZero learns to play multiple games at once. This can be achieved via
multitask learning [53], which has seen success in both NLP [54] and computer vision [55].

For end users, our work implies that Stockfish may currently be the better tool for
studying deep puzzles. To confirm this hypothesis, a chess studies dataset ought to be
created and used as a benchmark for modern chess engines. Furthermore, different param-
eter combinations for chess engines ought to be tested to determine whether performance
improvements can be gained. For the AI community, our work suggests that even extremely
advanced incarnations of weak AI do not outperform humans in all cases. More research
will be critical to improving these systems, particularly as we begin to approach the larger
goal of building strong AI.

Author Contributions: Conceptualization, S.M., N.P. and A.T.; Methodology, S.M., N.P. and A.T.;
Software, N.P. and A.T.; Validation, S.M., N.P. and A.T.; Formal analysis, N.P. and A.T.; Investigation,
S.M., N.P. and A.T.; Resources, S.M.; Data curation, S.M. and N.P.; Writing—original draft preparation,
S.M., N.P. and A.T.; Writing—review and editing, S.M., N.P. and A.T.; Visualization, N.P. and A.T.;
Supervision, S.M. and N.P.; Project administration, S.M. and N.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Entropy 2022, 24, 550 12 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are available in Figure 1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Romstad, T.; Costalba, M.; Kiiski, J.; Linscott, G.; Nicolet, S.; Geschwentner, S.; VandeVondele, J. Stockfish. Version 14. Available

online: https://stockfishchess.org (accessed on 13 April 2022).
2. Pascutto, G.C.; Linscott, G.; Lyashuk, A.; Huizinga, F. Leela Chess Zero. Available online: https://lczero.org (accessed on

13 April 2022).
3. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

A General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go through Self-Play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

4. Segler, M.H.S.; Preuss, M.; Waller, M.P. Towards "AlphaChem": Chemical Synthesis Planning with Tree Search and Deep
Neural Network Policies. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France,
24–26 April 2017.

5. Dalgaard, M.; Motzoi, F.; Sørensen, J.J.; Sherson, J. Global Optimization of Quantum Dynamics with AlphaZero Deep Exploration.
NPJ Quantum Inf. 2020, 6, 1–9. [CrossRef]

6. Edwards, D.J.; Hart, T.P. The Alpha-Beta Heuristic; Technical Report 30; Massachusetts Institute of Technology: Cambridge, MA,
USA, 1963.

7. Wu, M.; Wicker, M.; Ruan, W.; Huang, X.; Kwiatkowska, M. A Game-Based Approximate Verification of Deep Neural Networks
with Provable Guarantees. Theor. Comput. Sci. 2020, 807, 298–329. [CrossRef]

8. Feynman, R. The Pleasure of Finding Things Out; BBC Horizon. Available online: https://www.bbc.co.uk/programmes/p018dvyg
(accessed on 13 April 2022).

9. Polson, N.; Scott, J. AIQ: How People and Machines Are Smarter Together; St. Martin’s Press, Inc.: New York, NY, USA, 2018.
10. Friedel, F. Solution to a Truly Remarkable Study. ChessBase. Available online: https://en.chessbase.com/post/solution-to-a-

truly-remarkable-study (accessed on 13 April 2022).
11. Turing, A. Chess. In Faster than Thought; Bowden, B., Ed.; Pitman: London, UK, 1953.
12. von Neumann, J. Zur Theorie Der Gesellschaftsspiele. Math. Ann. 1928, 100, 295–320. [CrossRef]
13. Shannon, C.E. Programming a Computer for Playing Chess. Philos. Mag. 2009, 41, 256–275. [CrossRef]
14. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the Game of Go without Human Knowledge. Nature 2017, 550, 354–359. [CrossRef] [PubMed]
15. Bellman, R. Dynamic Programming, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1957.
16. Watkins, C.J.C.H.; Dayan, P. Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
17. Polson, N.; Sorensen, M. A Simulation-Based Approach to Stochastic Dynamic Programming. Appl. Stoch. Model. Bus. Ind. 2011,

27, 151–163. [CrossRef]
18. Isenberg, G. Pawn Advantage, Win Percentage, and Elo. In Chess Programming Wiki. Available online: https://www.

chessprogramming.org/index.php?title=Pawn_Advantage,_Win_Percentage,_and_Elo&oldid=24254 (accessed on 13 April 2022).
19. Wiener, N. Information, Language, and Society. In Cybernetics: Or Control and Communication in the Animal and the Machine; MIT

Press: Cambridge, MA, USA, 1948; pp. 155–165.
20. de Groot, A. Thought and Choice in Chess, 2nd ed.; Number 4 in Psychological Studies; Mouton De Gruyter: Berlin, Germany, 1978.
21. Isenberg, G. Stockfish. In Chess Programming Wiki. Available online: https://www.chessprogramming.org/index.php?title=

Stockfish&oldid=25665 (accessed on 13 April 2022).
22. Schaeffer, J. Experiments in Search and Knowledge. Ph.D. Thesis, University of Waterloo, Waterloo, UK, 1986.
23. Heinz, E.A. Extended Futility Pruning. ICGA J. 1998, 21, 75–83. [CrossRef]
24. Levy, D.; Broughton, D.; Taylor, M. The Sex Algorithm in Computer Chess. ICGA J. 1989, 12, 10–21. [CrossRef]
25. Nasu, Y. Efficiently Updatable Neural-Network-Based Evaluation Functions for Computer Shogi. The 28th World Computer

Shogi Championship Appeal Document. 2018. Available online: https://dev.exherbo.org/~alip/doc/nnue_en.pdf (accessed on
13 April 2022).

26. Stockfish Team. Introducing NNUE Evaluation; Stockfish Blog. Available online: https://stockfishchess.org/blog/2020
/introducing-nnue-evaluation/ (accessed on 13 April 2022).

27. Isenberg, G.; Pham, N.H. NNUE. In Chess Programming Wiki. Available online: https://www.chessprogramming.org/index.php?
title=NNUE&oldid=25719 (accessed on 13 April 2022).

28. Rosin, C.D. Multi-Armed Bandits with Episode Context. Ann. Math. Artif. Intell. 2011, 61, 203–230. [CrossRef]
29. Thrun, S. Learning to Play the Game of Chess. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA,

USA, 1995; Volume 7.
30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Halevy, A.; Norvig, P.; Pereira, F. The Unreasonable Effectiveness of Data. IEEE Intell. Syst. 2009, 24, 8–12. [CrossRef]

https://stockfishchess.org
https://lczero.org
http://doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://dx.doi.org/10.1038/s41534-019-0241-0
http://dx.doi.org/10.1016/j.tcs.2019.05.046
https://www.bbc.co.uk/programmes/p018dvyg
https://en.chessbase.com/post/solution-to-a-truly-remarkable-study
https://en.chessbase.com/post/solution-to-a-truly-remarkable-study
http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1080/14786445008521796
http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1002/asmb.896
https://www.chessprogramming.org/index.php?title=Pawn_Advantage,_Win_Percentage,_and_Elo&oldid=24254
https://www.chessprogramming.org/index.php?title=Pawn_Advantage,_Win_Percentage,_and_Elo&oldid=24254
https://www.chessprogramming.org/index.php?title=Stockfish&oldid=25665
https://www.chessprogramming.org/index.php?title=Stockfish&oldid=25665
http://dx.doi.org/10.3233/ICG-1998-21202
http://dx.doi.org/10.3233/ICG-1989-12103
https://dev.exherbo.org/~alip/doc/nnue_en.pdf
https://stockfishchess.org/blog/2020/introducing-nnue-evaluation/
https://stockfishchess.org/blog/2020/introducing-nnue-evaluation/
https://www.chessprogramming.org/index.php?title=NNUE&oldid=25719
https://www.chessprogramming.org/index.php?title=NNUE&oldid=25719
http://dx.doi.org/10.1007/s10472-011-9258-6
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1109/MIS.2009.36


Entropy 2022, 24, 550 13 of 13

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

33. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

34. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 1991.
35. Jordan, B. Calculation versus Intuition: Stockfish versus Leela, 1st ed.; Self-published, 2020.
36. Botvinnik, M. Computers, Chess and Long-Range Planning; Springer: Berlin, Germany, 1970.
37. Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.;

et al. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. Nature 2020, 588, 604–609. [CrossRef] [PubMed]
38. Searle, J.R. Minds, Brains, and Programs. Behav. Brain Sci. 1980, 3, 417–424. [CrossRef]
39. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
40. LCZero Team. Announcing Ceres. LCZero Blog. Available online: https://lczero.org/blog/2021/01/announcing-ceres/ (accessed

on 13 April 2022).
41. Bahdanau, D.; Cho, K.H.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the

3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015.
42. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, A.; Polosukhin, I. Attention Is All You Need. In

Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30.

43. Toshniwal, S.; Wiseman, S.; Livescu, K.; Gimpel, K. Learning Chess Blindfolded: Evaluating Language Models on State Tracking.
arXiv 2021, arXiv:2102.13249.

44. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model Compression. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 20–23 August 2006; p. 535. [CrossRef]

45. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
46. LeCun, Y.; Denker, J.; Solla, S. Optimal Brain Damage. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.;

Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2.
47. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning Both Weights and Connections for Efficient Neural Networks. In Proceedings

of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015;
pp. 1135–1143.

48. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural
Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 18–20 June 2018; pp. 2704–2713.

49. Campbell, J. Richard Feynman Computer Heuristics Lecture. YouTube. Available online: https://www.youtube.com/watch?v=
EKWGGDXe5MA (accessed on 13 April 2022).

50. Mahadevan, S. Imagination Machines: A New Challenge for Artificial Intelligence. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2018.

51. Lindley, D.V. Understanding Uncertainty; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ,
USA, 2013. [CrossRef]

52. Diaconis, P. Theories of Data Analysis: From Magical Thinking through Classical Statistics. In Exploring Data Tables, Trends, and
Shapes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–36. [CrossRef]

53. Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
54. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer

Learning with a Unified Text-to-Text Transformer. arXiv 2020, arXiv:1910.10683.
55. Zhang, Z.; Luo, P.; Loy, C.C.; Tang, X. Facial Landmark Detection by Deep Multi-task Learning. In Computer Vision—ECCV

2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Berlin, Germany, 2014; pp. 94–108.
[CrossRef]

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1038/s41586-020-03051-4
http://www.ncbi.nlm.nih.gov/pubmed/33361790
http://dx.doi.org/10.1017/S0140525X00005756
http://dx.doi.org/10.1186/s40537-019-0197-0
https://lczero.org/blog/2021/01/announcing-ceres/
http://dx.doi.org/10.1145/1150402.1150464
https://www.youtube.com/watch?v=EKWGGDXe5MA
https://www.youtube.com/watch?v=EKWGGDXe5MA
http://dx.doi.org/10.1002/9781118650158
http://dx.doi.org/10.1002/9781118150702.ch1
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1007/978-3-319-10599-4_7

	Introduction
	Background: Chess AI
	Q-Values
	Stockfish 14 Anatomy
	Search
	Evaluation

	AlphaZero Anatomy
	Search
	Evaluation

	AlphaZero's Successor: LCZero

	Materials and Methods
	Results
	Stockfish 14 Performance
	LCZero Performance
	Fairness of Engine Comparison

	Discussion
	References

