
����������
�������

Citation: Ivanis, P.; Brkić, S.; Vasić, B.

Suspicion Distillation Gradient

Descent Bit-Flipping Algorithm.

Entropy 2022, 24, 558. https://

doi.org/10.3390/e24040558

Academic Editor: Syed A. Jafar

Received: 9 March 2022

Accepted: 14 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Suspicion Distillation Gradient Descent Bit-Flipping Algorithm
Predrag Ivaniš 1,* , Srdjan Brkić 1 and Bane Vasić 2

1 School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia; srdjan.brkic@etf.rs
2 Department of ECE, University of Arizona, Tucson, AZ 85721, USA; vasic@ece.arizona.edu
* Correspondence: predrag.ivanis@etf.bg.ac.rs

Abstract: We propose a novel variant of the gradient descent bit-flipping (GDBF) algorithm for decod-
ing low-density parity-check (LDPC) codes over the binary symmetric channel. The new bit-flipping
rule is based on the reliability information passed from neighboring nodes in the corresponding
Tanner graph. The name SuspicionDistillation reflects the main feature of the algorithm—that in every
iteration, we assign a level of suspicion to each variable node about its current bit value. The level
of suspicion of a variable node is used to decide whether the corresponding bit will be flipped. In
addition, in each iteration, we determine the number of satisfied and unsatisfied checks that connect
a suspicious node with other suspicious variable nodes. In this way, in the course of iteration, we
“distill” such suspicious bits and flip them. The deterministic nature of the proposed algorithm
results in a low-complexity implementation, as the bit-flipping rule can be obtained by modifying the
original GDBF rule by using basic logic gates, and the modification is not applied in all decoding
iterations. Furthermore, we present a more general framework based on deterministic re-initialization
of the decoder input. The performance of the resulting algorithm is analyzed for the codes with
various code lengths, and significant performance improvements are observed compared to the
state-of-the-art hard-decision-decoding algorithms.

Keywords: bit-flipping algorithm; decoder re-initializations; gradient descent; iterative decoding;
low-density parity-check codes

1. Introduction

Low-density parity-check (LDPC) codes [1] are powerful error correction codes that
achieve performance near the Shannon limit with low decoding complexity [2]. These
codes have been adopted in the fifth-generation standard for broadband cellular networks
(5G NR) [3], digital video broadcasting standards for satellite communications (DVB-S2
and DVB-S2X, [4]), communication standards for Wi-Fi and WiMax networks [5,6], and
passive optical networks [7].

The decoding algorithms of practical interest are typically based on a message-passing
approach. The decoding procedures of LDPC codes are described by a bipartite graph—
known as a Tanner graph—comprising two sets of nodes—variable nodes (VN) and check
nodes (CN), and a set of edges between them. During decoding, messages are iteratively
exchanged between VNs and CNs connected by an edge, i.e., the messages are sent to the
neighbors. A prime example of a message-passing decoder is the belief propagation (BP)
algorithm [1]. While the BP decoder exhibits excellent performance, this state-of-the-art
algorithm requires complex computations in variable and check nodes. Consequently,
its approximate variants, such as min-sum [8] and offset min-sum [9], are typically used
in contemporary communication systems. All of these variants use “soft” (real-valued)
messages and higher numerical precision of these messages to improve error correction
capability at the cost of increasing hardware complexity and reducing throughput.

The BP-based decoding can be considered an iterative process of Bayesian inference
and the messages are the representations of the corresponding probabilities. Although
optimal for extremely long codewords, the performance of short and medium-length LDPC

Entropy 2022, 24, 558. https://doi.org/10.3390/e24040558 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040558
https://doi.org/10.3390/e24040558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4565-1141
https://doi.org/10.3390/e24040558
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040558?type=check_update&version=2

Entropy 2022, 24, 558 2 of 22

codes is far from optimal, due to increased error floors and the large number of decoding
iterations needed to reach the desired decoding reliability. Given the fact that decoding
latency is proportional to the codeword length, the aforementioned drawbacks limit the
usefulness of LDPC codes in delay-sensitive applications, such as the URLLC (Ultra-
Reliable and Low-Latency Communications) 5G radio service category [10]. Furthermore,
the decoding complexity of message-passing algorithms increases significantly with the the
number of edges that connects VNs and CNs. To mitigate the drawbacks of the BP decoder,
finite alphabet iterative decoders (FAIDs) have been proposed in [11], and it is based on
the idea to convey the local structure of the Tanner graph by employing a small number of
additional bits in the messages.

On the other hand, bit flipping (BF) is the simplest iterative decoding algorithm that
operates with one-bit messages and can provide very high throughputs when only hard
decisions are available at the channel output. The BF algorithm has lower complexity
when compared with the simplest hard-decision message-passing algorithm (Gallager-
B), as there is no passing of the messages between the nodes in the bipartite graph (a
comprehensive complexity analysis of the hard-decision decoders can be found in [12]).
Although the implementation complexity of the BF algorithm is low, its performance is
inferior when compared to the algorithms passing soft messages. The guaranteed error
correction capability of the BF decoder is dominantly determined by two parameters of the
bipartite graph: the girth and variable node degree (number of parity checks connected
to the VN). As the girth grows logarithmically with the codeword length [13], the error
correction capability of the BF-based decoders is poor for the short codes with small
VN degrees.

Recent research attempts are aimed at providing decoding algorithms with a com-
plexity comparable to the simple bit-flipping type of decoders but with a performance
close to soft message-passing decoders. It has been shown that the gradient descent bit-
flipping (GDBF) algorithm [14], together with the recently proposed improvements, has
the potential to meet these requirements.

In this paper, we identify the drawbacks of the GDBF algorithm responsible for failing
to correct some low-weight error patterns. We propose modifications that address these
drawbacks, and thus improve the performance and convergence speed, even for codes
with short blocklength and a small VN degree.

1.1. Related Work

The main idea of the GDBF algorithm [14] is that a non-linear objective function is
defined for every VN in every iteration. It is calculated based on the received word from
the channel, the current bit estimate for this VN, and the number of unsatisfied parity
checks for that VN. Only the nodes with the maximum value of the objective function are
“suspected” to be in error, and are flipped in that iteration. Although this approach results
in faster convergence and increased correction capability when compared with typical
bit-flipping-based algorithms [15,16], there are error patterns for which the decoding halts
because a local minimum of the GDBF objective function is reached. One way to alleviate
this drawback is to introduce randomness in VN or CN update functions. The algorithm
that improves the decoder performance over the binary symmetric channel (BSC) by adding
random binary sequences to the bit decisions during iterations is known as the probabilistic
gradient descent bit-flipping (PGDBF) algorithm [17]. The impacts of randomness on per-
formance improvement in the additive white Gaussian noise (AWGN) channel is analyzed
in [18]. Another effect that adversely impacts convergence is the oscillatory behavior of a
decoder—ns in a periodic fashion, and the algorithm loops endlessly. To avoid the “loops”
in GDBF decoding, various approaches are proposed in the literature. An escaping scheme
based on syndrome weight is proposed in [19]. In our work [20], we show that the same
suspicious positions in subsequent iterations indicate the uncorrectable error patterns for
the GDBF algorithm, known as trapping sets. In the same paper, we explained that the
negative effect of the trapping sets can be avoided by applying multiple decoding attempts

Entropy 2022, 24, 558 3 of 22

and random re-initialization (MUDRI). In fact, if the decoder is trapped in a local minima
of the objective function, random perturbations can help the decoder to escape from these
minima, and converge to a correct codeword. If the randomness is added to all VNs, the
PGDBF decoder with restarts and re-initialization can approach the maximum likelihood
(ML) performance after a sufficiently large number of iterations [21]. The multiple decoding
with random re-initializations can also be applied to the other hard-decision decoders, and
the corresponding theoretical analysis is given for the Gallager-B decoder in [22,23].

Speeding up the PGDBF decoder convergence has been studied by numerous re-
search groups in recent years. One approach is to use the threshold that corresponds to
the maximum value of the objective function from the previous iteration, as proposed
in [24]. Another method is to modify the objective function to include the information
about the number of flipping for every VN as in [25]. In the taboo-list random GDBF
(TRGDBF) [26,27], a binary random sequence is added to the objective function, and VNs
flipped in the previous iteration are prevented from flipping in the current iteration. If
every VN has knowledge about the number of iterations since the last flip, this knowledge
can also be used in the objective function to further improve the performance [28]. All these
results indicate that a time dimension of every particular VN plays a significant role in
the decision process, and this can be further optimized similarly as in the concept of finite
alphabet iterative decoders (FAID) [11]. This observation is at the heart of our method too.

However, the algorithms that apply randomness have increased complexity, as pseudo
random number generators, producing independent “random” sequences in every iter-
ation, are required for every VN. It has been shown that hardware implementation of
these algorithms is not a trivial task [27,29,30]; however, as shown in [31], determinis-
tic improvements of the GDBF—typically based on adaptive thresholds—are effective
for high-variable-degree codes only. The goal of this paper is to design a deterministic
algorithm applicable to LDPC codes with low variable degree (less than five) with low
implementation complexity and high convergence speed.

1.2. Summary and Organization

In this paper, we propose an algorithm that utilizes the reliability information passed
from neighboring VNs. The name Suspicion Distillation Gradient Descent Bit-Flipping
Algorithm (SDGDBF) reflects its main feature that in every iteration to every VN we assign a
level of suspicion about its current bit value. How much we suspect a VN is not only used to
decide whether a bit of this VN will be flipped, but also in each iteration, we determine the
number of satisfied and unsatisfied checks that connect that VN with the other suspected
VNs. In this way, in the course of iterations, we “distill” such suspicious bits and flip them.
We show that information if the VN was flipped in the previous iterations can be combined
with this variable-suspicion information to provide a significant performance improvement
for various LDPC codes. Moreover, the algorithm is completely deterministic, i.e., it does
not require randomness in any step during the decoding process.

The rest of the paper is organized as follows. In Section 2, the generalized GDBF
algorithm for the BSC is presented, and an overview of the trapping sets is given. The
SDGDBF algorithm is proposed in Section 3, where a few introductory examples are given,
modification of the flipping rule is proposed, and the algorithm is formally defined. The
complexity analysis is given in Section 4. Numerical results obtained by Monte Carlo
simulations are presented in Section 5 for various LDPC codes. Optimization of the decoder
parameters and further work is given in Section 6. The final conclusions are outlined in
Section 7.

2. GDBF Decoding and the Impact of Trapping Sets

At the encoder side, a (n, k) binary LDPC code C of rate R = k/n is applied, where
the information word with length k is represented with the corresponding codeword x
with length n. The corresponding Tanner graph G consists of the set of variable nodes
V = {v1, v2, . . . , vn} and the set of check nodes C = {c1, c2, . . . , cm}. Parity check matrix H

Entropy 2022, 24, 558 4 of 22

is the bi-adjacency matrix of G. Two nodes in G are neighbors if there is an edge between
them, and the degree of a node is the number of its neighbors. In this paper, we consider
regular LDPC codes where each variable node has degree γ and every check node has
degree ρ. The sets of neighbors of nodes vi and cj are denoted as Nvi and Ncj , respectively.

The transmission of a codeword x through the BSC with crossover probability αBSC
is modeled as a modulo-2 addition of a Bernoulli B(1; αBSC) random sequence of errors e,
Pr(ei = 1) = αBSC. The received word at the output of the BSC channel is then y = x⊕ e,
where ⊕ denotes logical XOR operation, i.e., bitwise addition modulo 2.

In the rest of this section, the decoder input will be denoted by r. At the start of the
decoding, the input to the decoder is equal to the channel output (r = y). In a more general
framework, where the overall decoding process can be divided into multiple stages, we
allow the decoder input to be re-initialized to another value during the decoding (it will be
further explained in the next section); therefore, the initial estimation x̂(0) will be equal to a
reference r in the analysis given below.

For the decoder input r, the decoder calculates the energy function for the i-th variable
node in the `-th iteration [14,17] as

Λ(`)
i (x̂(`), r) = x̂(`)i ⊕ ri + ∑

cj∈Nvi

⊕
vk∈Ncj

x̂(`)k , (1)

where
⊕

denotes modulo-2 summation. Only those bits that have the maximum value of
Λ(`)

i are called suspicious nodes, which means that they are most likely erroneous. Suspicious
VNs are flipped in every iteration. The decoding is finished if all parity checks are satisfied
or if the maximum number of decoding iterations, denoted by L, is elapsed.

Even if the number of erroneous variables is low, they might be positioned in such
a way that causes decoding oscillations and prevents convergence of the decoder to a
valid codeword. This situation is illustrated in Figure 1, where correct variable nodes
are represented with white circles , while erroneous variable nodes are represented
with black circles . Satisfied parity checks are represented by white squares , while
unsatisfied parity checks are represented by using black squares . Variable nodes v1,
v2, v3, and v4 are suspicious both in the first and second iterations (with Λ(1)

i (x̂(`), r) = 2

and Λ(2)
i (x̂(`), r) = 4, for i = 1, 2, 3, 4); therefore, the corresponding three-bit error pattern

cannot be corrected.

v4

v3

v2

v5

v1

(a) l = 1

v4

v3

v2

v5

v1

(b) l = 2

Figure 1. Decoding of three-bit error pattern by using GDBF decoder; flipping decisions after the first
and the second iteration.

In the PGDBF algorithm [17], the suspicious VNs are flipped with a predefined proba-
bility p. It is necessary to generate Bernoulli B(1; p) random variables a(`)i (∀i, `); only the

variable nodes with a(`)i = 1 and maximum value of Λ(1)
i (x̂(`), r) are flipped. In the MUDRI

Entropy 2022, 24, 558 5 of 22

algorithm, the decoding is performed in multiple stages, where a randomized received
word is used as the decoder input in every particular decoding attempt.

Further improvement is proposed in the TRGDBF algorithm [27], where Bernoulli
B(1; p) random variable λi is added to the objective function, and taboo list Ti of the VNs
flipped in the previous iteration is created. If Ti = 1 the corresponding node is prevented
from flipping, and this can be obtained if we set Λi(x̂(`), r)(`) = 0 for variable nodes on the
tabu list. For the TRGDBF, the energy function can be written in the following form:

Λ(`)
i (x̂(`), r) =

x̂(`)i ⊕ ri + ∑
cj∈Nvi

⊕
vk∈Ncj

x̂(`)k + λi

(1− Ti). (2)

In a recent paper [28], the GDBF algorithm with momentum (GDBF-w/m) is proposed.
The number of iterations from the previous flipping of vi is denoted by wi, and the corre-
sponding momentum vector is defined as µ = (µ(1), µ(2), . . . , µ(wmax)), where we assume
µ(wi) = 0 for wi > wmax. It has been shown in [28] that the convergence speed can be im-
proved by using the correlation coefficient α. With the aim to easily provide integer values
of energy functions, we introduce another coefficient β, as in the following expression

Λ(`)
i (x̂(`), r) = α(x̂(`)i ⊕ ri) + β

 ∑
cj∈Nvi

⊕
vk∈Ncj

x̂(`)k

− µ(wi). (3)

All of the above improvements of the GDBF algorithm can be summarized in Algorithm 1.
The energy function is calculated according to the Equation (3). We set r = y in all
algorithms except the MUDRI, where the decoder input r is re-initialized at every decoding
attempt. For the GDBF, PGDBF, and MUDRI we set α = 1, β = 1, µ = 0, and for the
TRGDBF we set α = 1, β = 1, µ = γ + 1. In the PGDBF, MUDRI, and TRGDBF algorithms,
we set p < 1 to incorporate randomness in the decoding process.

Algorithm 1 Generalized GDBF Algorithm

1: Input: r, p, α, β, µ

2: ∀vi ∈ V : x̂(0)i ← ri

3: s(0) ← x̂(0)HT
(
∀cj ∈ C : s(0)c ← ⊕

j∈Nj
x̂(0)j

)
4: ` = 0
5: while s(`) 6= 0 and l ≤ L do
6: ∀i ∈ V: Compute Λ(`)

i (x̂(`), r)) for given α, β, µ

7: Λ(`)
max ← max

i
(Λ(`)

i (x̂(`), r)))

8: for i← 1 to n do
9: a(`)i = B(1; p)

10: if Λ(`)
i (x̂(`), r) = Λ(`)

max then

11: x̂(`+1)
i ← (1⊗ a(`)i)⊕ x̂(`)i

12: else
13: x̂(`+1)

i ← x̂(`)i
14: end if
15: end for
16: s(`+1) ← x̂(`+1)HT

17: l ← l + 1
18: end while
19: Output: x̂(`)

Entropy 2022, 24, 558 6 of 22

3. Suspicion Distillation GDBF Algorithm

Although the algorithms that introduce a randomness into the decoding process can
be very effective, generating independent random sequences in all iterations increase
complexity and there is a need for a deterministic algorithm with similar performances.

The suspicion distillation GDBF (SDGDBF) algorithm uses the existing GDBF algo-
rithms as its components, and in some iterations invokes a procedure for locating satisfied
parity checks connected to erroneous variable nodes and unsatisfied checks connected
to correct variable nodes. This procedure, as well as the rule in which (a small fraction
of) iterations are used to invoke it, is the main novelty in the paper. In those iterations
when a modification is applied, we set µ = 0. The intuition behind this is that the graph
structure plays a more important role in these iterations than the messages in the previous
iterations. In such an iteration, the reference is equal to the input estimate x̂(`), and therefore
x̂(`) ⊕ r = 0. It is clear that the energy function is equal to the number of unsatisfied checks
if β = 1 (for any value of α). The output of the modification will be the updated reference r.

3.1. Modification of the Flipping Rule

The proposed modification follows the basic steps:

1. For the given codeword estimate x̂(`), the set of candidates for flipping is expanded.

The set of suspicious variable nodes V(`)
S contains VNs with Λ(`)

i (x̂(`), x̂(`)) ≥ Λ(`)
max2.

Λ(`)
max2 = 2ndmax

i
(Λ(`)

i (x̂(`), x̂(`))) denotes the second maximum value of the energy

function, wherein the function 2ndmax(.) computes the second maximum value of
its vector-valued argument. We set the indicator that the VN is suspicious I(`)S,i = 1
if vi ∈ VS (and equal to zero otherwise). The nodes with the energy function equal
to Λ(`)

max form a set of very suspicious variable nodes, denoted by V(`)
VS ;

2. For all VNs, we identify neighboring parity checks that are satisfied (cj = 0) and
have at least one more suspicious VNs as their own neighbor. The number of
such unreliable satisfied checks for the i-th variable node in the `-th iteration is
denoted as N(`)

SC,i. The energy function is set to Λ(`)
i (x̂(`), x̂(`)) = γ if the condition

N(`)
SC,i + Λ(`)

i (x̂(`), x̂(`)) = γ is satisfied. In such a case, we add vi to the set V(`)
S ;

3. For vi ∈ V(`)
S , we update N(`)

SC,i and recalculate Λ(`)
i (x̂(`), x̂(`)) ← Λ(`)

i (x̂(`), x̂(`)) +

N(`)
SC,i. We update Λ(`)

max and the corresponding set V(`)
VS ;

4. For vi ∈ V(`)
VS , we identify parity check neighbors that are not satisfied (cj = 1), and

have at least one more very suspicious VN as their neighbor. The number of such
unreliable unsatisfied checks for the i-th variable node in the `-th iteration is denoted
as N(`)

NC,i, and number of all unsatisfied checks is denoted as N(`)
UC,i. If N(`)

NC,i = N(`)
UC,i,

we recalculate Λ(`)
i (x̂(`), x̂(`))← Λ(`)

i (x̂(`), x̂(`))− N(`)
NC,i, and update V(`)

VS ;
5. The node vi is flipped if vi ∈ VVS.

The modification is used in certain iterations to improve the reliability of the flipping
decisions by updating the reference r, and it can be applied to any GDBF-based algorithm.
In this section, we show a few illustrative examples of when the modification is applied to
the standard GDBF algorithm. It can be noticed that, by applying the proposed modification,
the decoder now searches for the parity checks that are misleading for the standard bit-
flipping algorithm, i.e., for the parity checks that we call unreliable:

• Unreliable satisfied parity check, denoted by , is satisfied but does not represent a
reliable indicator that vi is correct;

• Unreliable unsatisfied parity check, denoted by , is unsatisfied but does not represent
a reliable indicator that vi is erroneous;

• Reliable parity checks are those that do not belong to the above two unreliable cate-
gories, and are denoted in a typical fashion— is a reliable satisfied check, while is
a reliable unsatisfied check.

Entropy 2022, 24, 558 7 of 22

In Figure 2a, a typical four-bit error pattern for a code with girth g = 8 and variable
node degree γ = 3 is presented. Variable nodes v1, v2, v3, and v4, as well as the other
variable nodes connected to unsatisfied checks, are very suspicious both in the first and
the second iteration (as Λ(1)

max2 = 0, we can notice that V(`)
VS = V(`)

S). Very suspicious VNs
are marked with red circles. This four-bit error pattern is uncorrectable using the GDBF, as
the GDBF decoder in all further iterations flips the same positions. We identify unreliable
satisfied parity checks for every particular VN. Two unreliable satisfied checks (denoted by

) are neighbors of node v1—one of them is connected to the suspicious node v2, and the
other is connected to the suspicious node v3. A similar situation is found with the nodes v2,
v3, and v4; therefore, N(1)

SC,i = 2 and after the recalculation, we obtain Λ(1)
i (x̂(1), x̂(1)) = 3,

for i = 1, 2, 3, 4 (for the other VNs, the energy function is not updated). VNs that correspond
to the updated set VVS are shown in Figure 2b, marked with red circles, while green circles
correspond to the other VNs that belong to the updated set VS. This four-error pattern is
corrected in the same iteration when the modification is applied.

v4

v2

v3

v1

(a)

v4

v2

v3

v1

 ...

 ...

 ...

 ...

(b)

Figure 2. Decoding of four-bit error pattern with four very suspicious variable nodes, flipping deci-
sions after the first iteration of GDBF, without modification and after the applied modification. Red cir-
cles correspond to very suspicious nodes; green circles to suspicious nodes. (a) without modification.
(b) applied modification.

The graph that corresponds to another four-bit error pattern is given in Figure 3a.
Node v5 has two unsatisfied parity checks, and only this node is very suspicious. In the
next iteration, the energy function for v5 is equal to Λ(2)

5 (x̂(2), r) = 2. As the same VN is
suspicious in both iterations, this pattern cannot be corrected without a modification.

In this example, the only very suspicious node is v5 (marked with a red circle); the
other suspicious nodes are all VNs connected with one unsatisfied check (marked with
green circles). There are N(1)

SC,i = 2 unreliable satisfied parity checks that connect v1
with suspicious nodes v2 and v3. These satisfied checks are no more assumed as valid
indicators if the node v1 is correct, and the corresponding energy function is recalculated as
Λ(1)

1 (x̂(1), x̂(1)) = 3. Repeating the same procedure for the other variable nodes, we easily
obtain that the very suspicious nodes are now v1, v2, v3, and v4 (Figure 3b).

v4

v2

v3

v1

v5

...

......

...

(a)

v4

v2

v3

v1

v5

(b)

Figure 3. Decoding of four-bit error pattern with one very suspicious variable node and a large
number of less suspicious-looking variable nodes, flipping decisions after the first iteration of
the GDBF, without modification and after applying the modification. (a) Without modification.
(b) Applied modification.

Entropy 2022, 24, 558 8 of 22

In the following example, we analyze the correction of the seven-bit error pattern and
illustrate a situation in which a node outside V(l)

S is a flipping candidate (Figure 4a).

v4

v3

v2

v1 v5

v6

v8
v7

(a)

v4

v3

v2

v1 v5

v6

v8
v7

(b)

Figure 4. Decoding of seven-bit error pattern with four very suspicious variable nodes, after the
first iteration of GDBF, without modification and after the applied modification. The blue circle
corresponds to the node that should be added in the sets VS and VVS. (a) Without modification.
(b) Applied modification.

Red circles denote six very suspicious nodes, with an energy function equal to
Λ(1)

max = 2, and green circle denotes another suspicious node v4 with Λ(1)
max2 = 1. If we con-

centrate on v3, we will see that it has all three satisfied parity checks as its neighbors. Each of
these checks are connected to one suspicious VN. According to the proposed modification,
these parity checks cannot be considered valid indicators of the correctness of v3. These
checks are satisfied but unreliable, and we obtain N(1)

SC,3 = 3. Although v3 is initially not a

suspicious node (Λ(1)
3 (x̂(1), x̂(1)) = 0), it satisfies the condition Λ(1)

3 (x̂(1), x̂(1)) + N(1)
SC,3 = γ,

meaning that among the neighbors of the node v3 there are not any reliable satisfied checks.
Thus, we mark v3 by a blue circle. Following the modification rule presented in step 2, we
recalculate Λ(1)

3 (x̂(1), x̂(1)) = 3, and this node will be added in sets V(`)
S and V(`)

VS .
According to step 3, the energy function values for the other suspicious nodes are also

updated (Λ(1)
i (x̂(1), x̂(1)) = 3, i = 1, 2, 4, 5, 6, 7, 8). Notice that the parity check that connects

v2 and v4 is also unreliable satisfied. The set V(`)
VS is updated.

Finally, node v8 is connected with N(1)
UC,8 = 2 unsatisfied checks. These parity checks

are unreliable unsatisfied (denoted by in Figure 4b), which have at least one more
neighbor that is very suspicious, i.e., N(1)

NC,8 = 2. As all unsatisfied checks are unreliable,

we update Λ(1)
8 (x̂, r) = 1. This node is removed from VVS, and all errors in the pattern are

corrected (see red circles in Figure 4b).
The exact formulation of the flipping rule modification is presented in Algorithm 2.

The sets VVS and VS are initially created according to the value of the energy function, for
r = x(`). Both sets are extended with the variable nodes vi that satisfy the condition defined
in step 2, and the energy function of the suspicious nodes are updated following the rule
from step 3. After the recalculation of the energy functions, we remove vi from VVS if it
satisfies the condition from step 4. As explained later, the proposed modification is applied
only in certain iterations.

Entropy 2022, 24, 558 9 of 22

Algorithm 2 Modification of the flipping rule

1: Input: x̂(`)

2: ∀vi ∈ V: Compute Λ(`)
i (x̂(`), x̂(`)) for α = 0, β = 1 and ρ = 0

3: Λ(`)
max ← max

i
(Λ(`)

i (x̂(`), x̂(`))), V(`)
VS = {vi|Λ

(`)
i (x̂(`), x̂(`)) = Λ(`)

max}

4: Λ(`)
max2 ← 2ndmax

i
(Λ(`)

i (x̂(`), x̂(`))), V(`)
S = {vi|Λ

(`)
i (x̂(`), x̂(`)) ≥ Λ(`)

max2}, I(`)S,i = 0 ∀i

5: for i← 1 to n do
6: if vi ∈ V(`)

S then

7: I(`)S,i = 1
8: end if
9: end for

10: for i← 1 to n do
11: N(`)

SC,i = ∑cj=0∧cj∈Nvi
∨vk∈Ncj /vi

I(`)S,k

12: if N(`)
SC,i + Λ(`)

i ((x̂(`), x̂(`))) = γ then

13: Λ(`)
i (x̂(`), x̂(`)) = γ, V(`)

VS = V(`)
VS ∪ vi, V(`)

S = V(`)
S ∪ vi, I(`)S,i = 1

14: end if
15: end for
16: for i← 1 to n do
17: if vi ∈ V(`)

S then

18: N(`)
SC,i = ∑cj=0∧cj∈Nvi

∨vk∈Ncj /vi
I(`)S,k

19: Λ(`)
i ((x̂(`), x̂(`)))← Λ(`)

i ((x̂(`), x̂(`))) + N(`)
SC,i

20: end if
21: end for
22: Λ(`)

max ← max
i

(Λ(`)
i (x̂(`), x̂(`))), V(`)

VS = {vi|Λ
(`)
i (x̂(`), x̂(`)) = Λ(`)

max}, I(`)S,i = 0 ∀i,

23: for i← 1 to n do
24: if vi ∈ V(`)

VS then

25: I(`)S,i = 1
26: end if
27: end for
28: for i← 1 to n do
29: if vi ∈ V(`)

VS then

30: N(`)
NC,i = ∑cj=1∧cj∈Nvi

∨vk∈Ncj /vi
I(`)S,k

31: N(`)
UC,i = ∑cj∈Nvi

⊕
vk∈Ncj

x̂(`)k

32: if (N(`)
NC,i > 0) ∧ (N(`)

NC,i = N(`)
UC,i) then

33: Λ(`)
i ((x̂(`), x̂(`)))← Λ(`)

i ((x̂(`), x̂(`)))− N(`)
NC,i

34: else
35: x̂i

(`) = x̂i ⊕ 1
36: end if
37: end if
38: end for
39: Output: r = x̂(`)

Lines 1–9 in Algorithm 2 correspond to the first step defined on page 6. Lines 10–15
correspond to the second step, where we extend the set of suspicious VNs with the VNs
that have no reliable satisfied parity checks as their neighbors. Lines 16–27 correspond to
the third step, where we update the energy function for suspicious VNs, as well as the set
VVS. Lines 28–38 correspond to the fourth and the fifth step defined on page 6. The value of
the energy function for very suspicious VNs is reduced if it has no reliable unsatisfied parity
checks among its neighbors. If this condition is not satisfied, we flip the very suspicious
variable node. Line 39 defines the output of the algorithm.

Entropy 2022, 24, 558 10 of 22

3.2. Modification Strategy and the Reference Update

In this paper, we consider the design of the deterministic low-complexity GDBF-based
algorithm with superior performance. To avoid an increase in complexity, it is desirable not
to apply the previously proposed modifications in every iteration of the decoding process.
In fact, the best performance is obtained if the modification is applied in the following
cases: (a) only for the patterns that cannot be decoded by using the basic algorithm and
(b) in the iterations when it is detected that the decoding algorithm does not converge.

If the GDBF based on Equation (1) is used as a basic algorithm, and the same positions
are selected for flipping in two subsequent iterations (example from Figure 1), it is obvious
that the decoding will be terminated without any success if the modification is not applied.
To implement the corresponding “alarm”, it is necessary to remember the flipping positions
in at least two subsequent iterations.

If we use the GDBF-w/m as a basic algorithm, the trapping sets with short cycles
will be corrected, and there is no need to check if all flipping positions are repeated after
a certain number of iterations. After a certain number of iterations, even for this type of
decoder, the probability of correcting any error pattern is negligible (this is illustrated in
Section 5). This number of iterations after which no more bits are corrected is estimated
empirically and denoted by K1. K1 determines the right moment to apply the modification
described in Section 3.1.

The codeword estimate obtained after the applied modification can be used as a new
reference r; therefore, the modification formulated in Algorithm 2 can be considered as
the function Ω(.) that converts a codeword estimate x̂(`) into the new reference r, that will
be used as the input of the basic decoder (with any GDBF-based algorithm) in the next
decoding round, during the next K2 iterations. Various decoding strategies are possible.
Modification can be applied to the codeword estimate obtained after the first attempt of K1

iterations of the GDBF-based algorithm, denoted by x̂(K1)
I . In this scenario, the modification

should be applied after every decoding attempt, as illustrated in Figure 5a; however, this
is not useful if the Hamming distance between the codeword and its estimate is too large.
The other approach would be to apply successive modifications to the received word, and
use the corresponding vectors as the references in multiple decoding attempts (Figure 5b).
We focus on this approach in the next section.

(a)

(b)

Figure 5. Reference updating after the decoding rounds (K iterations each); two approaches.
(a) Modifications applied on the estimates. (b) Successive modifications applied on the received word.

Entropy 2022, 24, 558 11 of 22

3.3. The Decoder Input Re-Initializations

In our previous work, we noticed that the random re-initializations of the decoder
input combined with the multiple decoding attempts resulted in more significant perfor-
mance improvement [20].

In this paper, we apply a deterministic re-initialization, where the reference update
can be performed by using a deterministic function Φq(.) that transforms the received
word y into the reference rq. This reference will further be used as the initial estimate in
the corresponding decoding attempt, as illustrated in Figure 6. The decoding trajectories
are given in Figure 7. The re-initializations are applied only if the basic GDBF decoder
fails to decode the codeword after K1 iterations (decoding trajectory represented with black
lines). Red dots represent the updated references that should be used as the input of the
basic GDBF decoder in the corresponding re-initialization, and arrows without additional
notations correspond to one iteration of the basic GDBF decoder, described in Algorithm 1.

Figure 6. Reference updates by using the deterministic re-initializations; illustration of the multiple
decoding attempts.

Figure 7. Various strategies for the decoder input re-initializations.

The following approaches, illustrated in Figure 7, have been shown to be very effective:

• The codeword estimate after the first iteration is used as a new input for the decoder,
i.e., flipping decisions in the first iteration define how to obtain the reference from
y (the decoding trajectory represented by an orange color in Figure 7), and the
function Φ1(.) that assigns y to reference r1 corresponds to one iteration of the GDBF
decoding algorithm described in Algorithm 1;

• The modification described in Algorithm 2 can also be considered as a special case
of the reference re-initialization if we apply transformation r2 = Φ2(y) = Ω(y) (the
decoding trajectory represented by the blue color in Figure 7);

• The reference r3 used in the purple trajectory represents the received sequence y
changed in a single bit position. The position of the received bit that will be changed
(flipped) is chosen among bits that were flipped during the first few iterations of the
basic algorithm run prior to the modification.

Entropy 2022, 24, 558 12 of 22

Finally, the overall flowchart of the SDGDBF algorithm is presented in Figure 8. It is
based on Algorithm 1, where the energy function is calculated by Equation (3). After K
iterations, modification defined in Algorithm 2 is applied in one iteration, and the reference
is updated. If the modification is repeated Z times, the re-initialization is applied. The
decoding stops if a codeword is reached, or if a maximum number of iterations is elapsed.
As we show in the next section, even if parameters K and Z are determined empirically, a
significant performance improvement compared to the existing GDBF-based algorithms
is possible.

Figure 8. The flowchart of the SDGDBF algorithm.

Entropy 2022, 24, 558 13 of 22

4. Implementation Complexity
4.1. Computational Complexity

In this subsection, we examine the complexity of the SDGDBF decoder and make
comparisons with the state-of-the-art GDBF and PGDBF decoders. Without going into a
specific hardware realization, we estimate the number of arithmetical and logical operations
required to perform a single decoding iteration. According to Algorithm 1, there are four
types of operations in the GDBF-w/m decoder: binary XOR operations with ρ inputs,
integer additions, a global maximization (with n inputs), and integer comparisons (Table 1).
The global maximization is implemented by n− 1 integer comparisons, and it was estimated
that the GDBF has 40% larger complexity when compared to the BF algorithm [12]. The
GDBF-w/m decoder has n extra integer additions (with the momentum vector).

Table 1. Computational complexity per decoding iteration.

Type of Operation GDBF-w/m (Algorithm 1) The Modification (Algorithm 2)

ρ-input XOR m m
(ρ− 1)-input OR - <3m
1-bit comparison - <2n
Integer addition 2n <5n

Global maximization 1 3
Integer comparison n <5n

The modification, proposed in Algorithm 2, contains all operations of the GDBF-
w/m decoder; however, it also requires computational resources to perform: (i) integer
additions, which are proportional to sizes of sets VS and VVS (both are lower than n); (ii) two
additional global maximization operations as well as additional integer comparators;
(iii) binary OR operations and single bit comparators. Given the fact that the complexity
of the modification varies depending on the decoded sequence, in Table 1 we give an
upper complexity bound. It should be noted that in the complexity analysis, we neglect
possible integer multiplications, required for α and β scaling, given the fact that α and β
are usually small integers (the most often values are α = β = 1), and that such scaling
can be implemented through decimal point shifting, or small lookup tables. We also do
not include logical circuits for syndrome calculation, nor do we include circuits that count
iterations from previous variables flips, needed for the momentum term calculations. All
the neglected operations are common to the GDBF-w/m and the proposed modification,
and do not significantly influence the relative complexity ratio between the two solutions.

Roughly, an iteration where the proposed modification is applied is three times more
complex than one iteration of the GDBF-w/m decoder; however, we use the modification
only in cases that the GDBF-w/m fails to decode the received sequence in K1 iterations,
meaning that Algorithm 2 is rarely used. For example, when the BSC crossover probability
is equal to αBSC = 0.01 and average number of iterations is equal to Iav = 1.87. In this case,
the GDBF-w/m decoder applied on Tanner code for K1 = 25 iterations lowers the FER to
approximately 10−5, meaning that the modification is employed, on average, only once in
105 decoded sequences. In the rest of the decoding process, the modification is periodically
applied every K2 = 20 iterations and the computational complexity at the worst case can be
estimated as CSDGDBF = (19/20)× (CGDBFwm) + (1/20)× (3CGDBFwm) = 1.1× CGDBFwm,
where CGDBFwm denotes computational complexity of the GDBF-w/m decoder.

On the other hand, employing random generators in the PGDBF decoder through
linear feedback shift registers, as the alternative to the approach proposed in this paper,
leads to a nine times larger memory requirements and close to 60% computational increase,
compared to the GDBF decoder [32]. The random generators are used in every iteration,
which means that they influence evenly the worst case and average complexities. It should
be emphasized that a less complex random generator architecture is proposed in [29];
however, it is uncertain how it will influence the performance of arbitrary chosen code.

Entropy 2022, 24, 558 14 of 22

4.2. Efficient Implementation

Figure 9 illustrates the basic implementation concept of the proposed algorithm.
During the decoding, we use three n-bit memory registers:

• RECEIVED WORD contains the received word from the channel, and it is stored here
for possible re-initializations.

• REFERENCE is used to store vector r, which will be used as the decoder input in the
current attempt. Initially, this register contains the received word from the channel
(r = y), and its update is very simple. If re-initialization is applied, the reference is
equal to a slightly changed received word, as explained in the previous section.

• ESTIMATE is the memory that contains the current estimation of the codeword, i.e.,
the estimation after the `-th iteration, with initial value x̂(0) = y. In addition, the
information if the node is suspicious or very suspicious is stored here.

Figure 9. Main blocks in the implementation of the SDGDBF algorithm.

Parity checks for the estimated codeword are realized using XOR gates with ρ inputs.
A variable node processor is realized using majority logic (MAJ) gates. DIAGNOSTICS
uses counters to determine parameters l, k, z and logic gates that compare it with predefined
values L, K, Z, respectively (to check if a modification is necessary). Further, it calculates
the thresholds for MAJ gates in the `-th iteration.

When compared to the GDBF-w/m algorithm, we have an additional n-bit memory
register REFERENCE (in the GDBF, received word y is used as the reference in all iterations),
memory for storing suspicious, and very suspicious positions. Block MODIFICATION
is used for modifying the flipping rule (that is not used in all iterations). This block uses
one OR logic gate with ρ − 1 inputs in each check node, as well as the integer adders
that calculate N(`)

SC,i and N(`)
NC,i; however, only m OR gates are required, as the 3m OR

operations in steps 2–4 are consequently performed on the same logical gates. The same
maximization circuit that is used to find the maximum of the energy functions in the
GDBF-w/m algorithm can be also used to find the second maximum, and to update the
maximum of the energy function in step 3. In addition, the same integer comparators and
integer adders that are used in step 1 can be reused to perform integer comparisons in
further steps.

Entropy 2022, 24, 558 15 of 22

5. Numerical Results

In this section, we illustrate the decoding performance of the SDGDBF decoder. It
is compared with the decoding performance of the existing GDBF-based algorithms. In
addition, the floating-point implementation performance of the sum-product algorithm
(SPA) is included for reference. To make a fair comparison, the maximum number of
iterations is set to L = 300 for all bit-flipping-based algorithms and L = 50 for the SPA
algorithm, if not specified otherwise. The same assumption is used in the previous relevant
papers [27,28], and it is based on the throughputs achieved in hardware implementations
[33]. The numerical results are obtained by using Monte Carlo simulations, and the frame
error rate (FER) estimation is terminated when at least 100 failed codewords are collected.

In all performed simulations, the GDBF algorithm with momentum is selected as
a base for the SDGDBF decoder (the energy function is calculated by using expression
Equation (3)). Although the modifications presented in Section 3 can also be applied to
the other types of the decoders, we have selected the GDBF-w/m to reduce the decoder
complexity as there is no need to apply a random generator and there is no need to detect
the occurrence of uncorrectable error patterns with short cycles in this case.

We first compare the FER performance of the proposed algorithm with the other
GDBF-based algorithms for the (155, 64) Tanner code, with code rate R = 0.4. The code
has a quasi-cyclic structure with construction proposed in papers [34,35] and it can be
represented by using bipartite graph with n = 155 variable nodes and m = 93 check nodes,
with VN degree γ = 3, CN degree ρ = 5, and girth g = 8.

The FER performance for the Tanner code is presented in Figure 10. For the GDBF-
w/m and the SDGDBF, we set weighting factors α = 2, β = 2, and momentum vector
µ = [2, 1]. In the SDGDBF algorithm, the modification described in Algorithm 2 is applied
after K = 25 iterations. Further periodical re-initializations, based on the flipping of only
one suspicious position in the received word (as described in Section 3.3), are applied on
every K = 10 iterations and followed by Z = 1 modification each. This strategy resulted in
superior performance in the error floor region and the SDGDBF with L = 300 iterations
overcomes the performance of the floating-point SPA with L = 50 if αBSC < 0.025.

BSC crossover probability,
BSC

F
ra

m
e
 E

rr
o
r

R
a
te

,
F

E
R

BF

GDBF

PGDBF, p=0.7

GDBF-w/m, =[2, 1]

TRGDBF, =0.9

SDGDBF

SPA

Figure 10. Performance of the various decoding algorithms, Tanner code (n = 155, γ = 3, ρ = 5).

Entropy 2022, 24, 558 16 of 22

The FER performance for the Tanner code for various values of L is presented in
Figure 11, for crossover probability αBSC = 0.01. It is clearly visible that the deterministic
hard-decision algorithms (GDBF, Gallager-B, and GDBF-w/m) do not improve performance
after a certain number of iterations. The GDBF saturates after ten iterations, and further
iterations cannot reduce the FER level anymore. The GDBF-w/m algorithm corrects most
of the correctable error patterns in the first 20–30 iterations and saturates after 50 iterations;
therefore, it is a wise strategy to apply the modification when the most of the correctable
patterns are corrected by using the base algorithm. We empirically set the initial value
K1 = 25 in the case when the GDBF-w/m is chosen as a base algorithm. This value can
be further reduced to K2 = 10 after re-initializations are applied, as the benefit of frequent
re-initialization is estimated to be higher than the benefit of a larger parameter K. It can
be noticed that the SDGDBF algorithm has superior performance when compared with
the MUDRI algorithm with random re-initializations on L1 iterations, and the TRGDBF
algorithm that combines random sequences with the tabu-list principle. In addition, it is
visible that the SDGDBF algorithm with L = 100 has the same performance as the SPA
algorithm with L = 50. If L > 150, the SDGDBF algorithm results in better performance
than the SPA algorithm for the same value of L.

Maximum number of iterations, L

F
ra

m
e

 E
rr

o
r

R
a

te
,

F
E

R

GDBF

Gallager-B

PGDBF, p=0.7

MUDRI

TRGDBF, =0.9

GDBF-w/m, =[2,1]

SDGDBF

SPA

Figure 11. Convergence speed of the various decoding algorithms, Tanner code.

Performance of the analyzed GDBF-based algorithms for (1296, 648) QC-LDPC code
with code rate R = 0.5 is presented in Figure 12. The corresponding construction method is
presented in paper [33], and the code can be represented by using a bipartite graph with
n = 1296 variable nodes and m = 648 parity checks, with VN degree γ = 3, CN degree,
ρ = 6, and girth g = 8. For this code, it is obvious that the TRGDBF and the GDBF-w/m
algorithms have much better performance when compared to the GDBF and the PGDBF
algorithms. This illustrates the importance of the momentum for the longer codes. If the
modification proposed in Algorithm 2 is applied to the GDBF-w/m, further performance
improvement is possible if we choose the appropriate decoding parameters. The selection
of the decoder parameters are explained with the help of the results presented in Figure 13
(given for αBSC = 0.02). The decoding convergence for the GDBF-w/m is much faster
compared to the TRGDBF algorithm, and the GDBF-w/m provides lower FER values when
compared to the GDBF and the PGDBF for any value of L.

Entropy 2022, 24, 558 17 of 22

BSC crossover probability,
BSC

F
ra

m
e

 E
rr

o
r

R
a

te
 (

F
E

R
)

GDBF

PGDBF, p=0.7

TRGDBF, =0.9

GDBF-w/m, =[2,2,2,1]

SDGDBF

SPA

Figure 12. Performance of the various decoding algorithms, QC-LDPC code (n = 1296, γ = 3, ρ = 6).

Maximum number of iterations, L

F
ra

m
e

 E
rr

o
r

R
a

te
 (

F
E

R
)

GDBF

PGDBF, p=0.7

TRGDBF, =0.9

GDBF w/m

SDGDBF

Figure 13. Convergence speed of the various decoding algorithms, QC-LDPC code with n = 1296.

Based on its fast convergence, the GDBF-w/m is selected as an optimal candidate for
the basic algorithm. The corresponding weighting factors α = 1, β = 2 and momentum
vector µ = [2, 2, 2, 1] are taken from paper [28] (the weighting factors are adjusted to uni-
polar codewords, when compared to bi-polar implementation presented in [28], Table I).

As the GDBF-w/m algorithm corrects almost all correctable error patterns in the first
150 iterations, we empirically set the initial value K1 = 110. This value can be reduced

Entropy 2022, 24, 558 18 of 22

to K2 = 50 if re-initializations are applied to boost the benefit of frequent re-initialization.
Every re-initialization is followed with Z = 1 modification, so there are approximately
100 iterations in every re-initialization cycle. It can be noticed that the optimal value of K is
generally sensitive to BSC crossover probability. For short codes, such as (155, 64) Tanner
code, one value of K can be used for a wide range of αBSC without significant performance
degradation; however, for longer LDPC codes, it is highly desirable to determine parameter
K for any value of αBSC.

Finally, we consider (2640, 1320) Margulis code with the code rate R = 0.5 [36],
which can be represented by using bipartite graph with n = 2640 variable nodes and
m = 1320 parity checks, with VN degree γ = 3, CN degree ρ = 6, and girth g = 8. The
corresponding FER performance is presented in Figure 14. It is obvious that the SDGDBF
algorithm improves the performance of the GDBF-w/m algorithm (with parameters α = 1,
β = 2 and µ = [2, 1, 1, 1, 1, 1]) in the error floor region even for a small value of L. If
parameter L can be further increased, the performance is comparable with the floating
point decoding algorithms based on the message-passing principle.

BSC crossover probability,
BSC

F
ra

m
e

 E
rr

o
r

R
a

te
,

F
E

R

GDBF

Gallager B

PGDBF, p=0.7

TRGDBF, =0.9

GDBF-w/m, =[2,1,1,1,1,1]

SDGDBF, L=300

SDGDBF, L=10,000

SPA

Figure 14. Performance of the various decoding algorithms, Margulis code (n = 2640, γ = 3, ρ = 6).

The performance of the analyzed GDBF-based algorithms for αBSC = 0.03 and various
values of L is presented in Figure 15. It is obvious that the GDBF algorithm with momentum
has good performance even for a limited number of decoding iterations. If the modifications
presented in Section 3 are applied for K1 = 80, Z = 1, the resulting SDGDBF algorithm
has the potential to reach the performance of the SPA algorithm after a large number
of iterations.

Entropy 2022, 24, 558 19 of 22

Maximum number of iterations, L

F
ra

m
e
 E

rr
o
r

R
a
te

 (
F

E
R

)

GDBF

PGDBF, p=0.7

TRGDBF, =0.9

GDBF-w/m, =[2,1,1,1,1,1]

SDGDBF

Figure 15. Convergence speed of the various decoding algorithms, Margulis code.

6. Optimization of the Decoder Parameters and Further Work

It has been shown that various deterministic functions can be applied for the re-
initialization of the decoder input in multiple decoding attempts. In Figure 16, we present
the numerical results that correspond to various decoding strategies, and the results are
given for the short Tanner code and αBSC = 0.01. The FER plot is given for the classical
GDBF algorithm for the BSC channel, i.e., the effect of momentum is not considered in
this figure.

In the future work, we will consider the following intriguing directions related to the
decoding strategies presented in Sections 3.2 and 3.3:

• The modification described in Algorithm 2 is applied on a codeword estimate after
K = 10 iterations, i.e., r = Ω(x̂(10)), and the procedure is repeated as illustrated in
Figure 5a. In this case, the performance improvement is minor, as the Hamming
distance between the estimate and the codeword is usually too large after so many
iterations. Furthermore, this approach can result in miscorrection (the estimate is
equal to another codeword);

• The modification described in Algorithm 2 is applied to the received word, i.e.,
r = Ω(y), and the procedure is repeated as illustrated in Figure 5b. This approach
results in a more significant improvement, and miscorrections are avoided. As in
the first approach, the FER improvement is most significant for the first modification
and diminishes when it is repeated (for a longer code, further improvement can be
eventually visible for larger Z);

• On the other hand, we can modify the algorithm to remember a few positions of
the flipped bits during the first few iterations of the GDBF algorithm, denoted by
i1, i2, i3, In the q-th decoding attempt, the reference is obtained as riq = yiq ⊕ 1 and
rij = yij , j 6= q. The corresponding transformation r = Φq(y) results in the flipping of
only one bit in the received word. This approach prevents saturating of the FER, as
illustrated in Figure 16.

Entropy 2022, 24, 558 20 of 22

Maximum number of iterations, L

F
ra

m
e

 E
rr

o
r

R
a

te
,

F
E

R

GDBF

GDBF + modification applied on estimates, K=10

GDBF + modification applied on received word, K=10

GDBF + modifications
i
 applied on received word, K=10

SDGDBF, K
1
=10, and K

q
=5 for q>2

Figure 16. Various strategies for re-initializations, classical GDBF as the base algorithm, Tanner code.

The previously described approaches can be combined in successive decoding at-
tempts for a maximum number of iterations per attempt denoted by Kq. We estimated that
the largest performance improvement can be obtained if the proposed modification (given
by transformation Ω(.)) is followed by re-initialization based on Φq(.), ∀q (as proposed in
the flowchart given in Figure 8). Empirically, we estimate that the GDBF decoder should be
initially run for K1 = 10 iterations, and we set Kq = 5 for all re-initializations.

In our future research, we will try to further optimize parameters Kq under the con-
dition (K1 + K2 + · · · = L), as well as the sequence of applied deterministic functions. In
addition, we will concentrate on the extension of the proposed method to the irregular
codes, where the variable and check node degrees are node dependent. In such a case,
certain conditions (such as in step 2, defined on page 6) will depend on the variable node
degree, and therefore the scaling coefficients α and β should be adapted for various variable
nodes. We believe that the optimization of these parameters for a specific code by using
machine learning techniques will result in the additional improvement of the decoder
performance.

7. Discussion and Conclusions

By combining the concept of momentum and the graph properties of the typical
trapping sets, we have proposed a deterministic modification of the GDBF algorithm. In
previously proposed GDBF-based algorithms, the flipping decisions were based on the
energy function that takes into account the number of unsatisfied parity checks connected
to the corresponding variable node. In this paper, we analyze some typical error patterns
where the variable node is erroneous, but the connected parity checks are satisfied (and
vice versa). The proposed modification of the flipping rule takes into account these parity
checks, that are no more assumed as valid indicators if the corresponding VN is correct. We
have shown that the most significant performance improvement is obtained if the proposed
modification is successively applied to the received word. We have also proposed a more
general framework based on deterministic re-initializations of the decoder input in multiple
decoding attempts.

Entropy 2022, 24, 558 21 of 22

The proposed algorithm results in significant performance improvement for the LDPC
codes with various codeword lengths, obtained by using various construction procedures.
It has been shown that the proposed algorithm can be extremely useful for short codes,
even for a moderate number of iterations. When the maximum number of iterations can be
increased, the proposed algorithm has the potential to provide very reliable transmission
even for codes with large codeword lengths.

Author Contributions: Conceptualization, P.I. and S.B.; methodology, P.I.; software, P.I. and B.V.;
validation, P.I., S.B. and B.V.; formal analysis, P.I.; investigation, P.I., S.B., and B.V.; writing—original
draft preparation, P.I.; writing—review and editing, S.B. and B.V.; visualization, P.I.; supervision, B.V.;
project administration, P.I. and B.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Science Fund of the Republic of Serbia, grant No. 6462951,
Learning Iterative Decoding Algorithms—LIDA, and the APC was partially funded by National
Science Foundation (NSF) under grant CCSS-2027844.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Predrag Ivaniš and Srdjan Brkić acknowledge the support of the Science Fund
of the Republic of Serbia, grants No. 6462951 (Learning Iterative Decoding Algorithms-LIDA) and
No 7750284 (Hybrid Integrated Satellite and Terrestrial Access Network—hi-STAR). Bane Vasić
acknowledges the support of NSF under grants CIF-1855879, CCF 2106189, CCSS-2027844, CCSS-
2052751, and CCF-2100013, as well as the support of the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration and funded
through JPL’s Strategic University Research Partnerships (SURP) program.

Conflicts of Interest: Bane Vasić has disclosed an outside interest in Codelucida to the University
of Arizona. Conflict of interest resulting from this interest are being managed by The University of
Arizona in accordance with its policies.

References
1. Gallager, R.B. Low Density Parity Check Codes; MIT Press: Cambridge, MA, USA, 1963.
2. Richardson, T.; Shokrollahi, M.; Urbanke, R. Design of capacity approaching irregular low-density parity-check codes. IEEE Trans.

Inform. Theory 2001, 47, 619–637. [CrossRef]
3. 3rd Generation Partnership Project. Technical Specification Group Radio Access Network; NR; Multiplexing and Channel Coding (Release

16), 3GPP TS 38.212 V16.5.0 (2021-03); 3GPP: Valbonne, France, 2021.
4. ETSI Digital Video Broadcasting (DVB). Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,

Interactive Services, News Gathering and other Broadband Satellite Applications; Part 2: DVB-S2 Extensions (DVB-S2X), ETSI EN
302307-2 V.1.1.1 (2014-10); ETSI: Sophia Antipolis, France, 2014.

5. IEEE Standard 802.11-2016; IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific
Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: New York,
NY, USA, 2016.

6. IEEE Standard 802.16-2004; IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband
Wireless Access Systems. IEEE: New York, NY, USA, 2004.

7. IEEE Standard 802.3ca-2020; IEEE Standard for Ethernet Amendment 9: Physical Layer Specifications and Management Parameters
for 25 Gb/s and 50 Gb/s Passive Optical Networks. IEEE: New York, NY, USA, 2020.

8. Chen, J.; Fossorier, M.P.C. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE
Trans. Commun. 2002, 50, 406–414. [CrossRef]

9. Chen, J.; Dholakia, A.; Eleftheriou, E.; Fossorier, M.P.C.; Hu, X.-Y. Reduced-complexity decoding of LDPC codes. IEEE Trans.
Commun. 2005, 53, 1288–1299. [CrossRef]

10. Chen, H.; Abbas, R.; Cheng, P.; Shirvanimoghaddam, M.; Hardjawana, W.; Bao, W.; Li, Y.; Vucetic, B. Ultra-Reliable Low Latency
Cellular Networks: Use Cases, Challenges and Approaches. IEEE Commun. Mag. 2018, 56, 119–125. [CrossRef]

11. Planjery, S.K.; Declercq, D.; Danjean, L.; Vasic, B. Finite Alphabet Iterative Decoders, Part I: Decoding Beyond Belief Propagation
on the BSC. IEEE Trans. Commun. 2013, 61, 4033–4045. [CrossRef]

http://doi.org/10.1109/18.910578
http://dx.doi.org/10.1109/26.990903
http://dx.doi.org/10.1109/TCOMM.2005.852852
http://dx.doi.org/10.1109/MCOM.2018.1701178
http://dx.doi.org/10.1109/TCOMM.2013.090513.120443

Entropy 2022, 24, 558 22 of 22

12. Khoa, L.T. New Direction on Low Complexity Implementation of Probabilistic Gradient Descent Bit-Flipping Decoder. Ph.D.
Thesis, Université de Cergy Pontoise, École Nationale Supérieure de l’Électronique et de ses Applications, Cergy Pontoise,
France, 2017.

13. Chilappagari, S.K.; Nguyen, D.V.; Vasic, B.; Marcellin, M.W. On Trapping Sets and Guaranteed Error Correction Capability of
LDPC Codes and GLDPC Codes. IEEE Trans. Inf. Theory 2010, 56, 1600–1611. [CrossRef]

14. Wadayama, T.; Nakamura, K.; Yagita, M.; Funahashi, Y.; Usami, S.; Takumi, I. Gradient descent bit flipping algorithms for
decoding LDPC codes. IEEE Trans. Commun. 2010, 58, 1610–1614. [CrossRef]

15. Miladinovic, N.; Fossorier, M. Improved Bit-Flipping decoding of low-density parity-check codes. IEEE Trans. Inf. Theory 2005, 51,
1594–1606. [CrossRef]

16. Guo, F.; Henzo, H. Reliability ratio based weighted bit-flipping decoding for low-density parity-check codes. IEEE Electron. Lett.
2004, 40, 1356–1358. [CrossRef]

17. Al Rasheed, O.; Ivaniš, P.; Vasic, B. Fault-Tolerant Probabilistic Gradient-Descent Bit Flipping Decoder. IEEE Commun. Lett. 2014,
18, 1487–1490. [CrossRef]

18. Sundararajan, G.; Winstead, C.; Boutillon, E. Noisy gradient descent bit-flip decoding for LDPC codes. IEEE Trans. Commun. 2014,
62, 3385–3400. [CrossRef]

19. Li, H.; Ding, H.; Zheng, L. An escaping scheme for gradient descent bit-flipping decoding of LDPC codes. In Proceedings of the
2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong,
China, 15–17 October 2016.

20. Ivaniš, P.; Al Rasheed, O.; Vasić, B. MUDRI: A Fault-Tolerant Decoding Algorithm. In Proceedings of the 2015 IEEE International
Conference on Communications (ICC 2015), London, UK, 8–12 June 2015; pp. 4291–4296.

21. Vasić, B.; Ivaniš, P.; Declercq, D.; LeTrung, K. Approaching Maximum Likelihood Performance of LDPC Codes by Stochastic
Resonance in Noisy Iterative Decoders. In Proceedings of the 2016 Information Theory and Applications Workshop (ITA 2016),
San Diego, CA, USA, 31 January–5 February 2016.

22. Ivaniš, P.; Vasić, B.; Declercq, D. Performance Evaluation of Faulty Iterative Decoders using Absorbing Markov Chains. In
Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT 2016), Barcelona, Spain, 10–15 July 2016.

23. Ivaniš, P.; Vasic, B. Error Errore Eicitur: A Stochastic Resonance Paradigm for Reliable Storage of Information on Unreliable
Media. IEEE Trans. Commun. 2016, 64, 3596–3608. [CrossRef]

24. Declercq, D.; Winstead, C.; Vasic, B.; Ghaffari, F.; Ivanis, P.; Boutillon, E. Noise-Aided Gradient Descent Bit-Flipping Decoders
approaching Maximum Likelihood Decoding. In Proceedings of the 9th International Symposium on Turbo Codes and Iterative
Information Processing (ISTC 2016), Special Session: Noisy Error Correction, Brest, France, 5–9 September 2016.

25. Ren, D.; Sha, J. Improved gradient descent bit flipping decoder for LDPC codes on BSC channel. IEICE Electron. Express 2018,
15, 20180195. [CrossRef]

26. Cui, H.; Lin, J.; Song, S.; Wang, Z. A New Probabilistic Gradient Descent Bit Flipping Decoder for LDPC Codes. In Proceedings of
the 2019 IEEE International Symposium on Circuits and Systems (ISCAS 2019), Sapporo, Japan, 26–19 May 2019.

27. Cui, H.; Lin, J.; Wang, Z. An Improved Gradient Descent Bit-Flipping Decoder for LDPC Codes. IEEE Trans. Circuits Syst. I Regul.
Pap. 2019, 66, 3188–3200. [CrossRef]

28. Savin, V. Gradient Descent Bit-Flipping Decoding with Momentum. In Proceedings of the 2021 11th International Symposium on
Topics in Coding (ISTC), Montreal, QC, Canada, 30 August–3 September 2021.

29. Le, K.; Ghaffari, F.; Declercq, D.; Vasić, B. Efficient Hardware Implementation of Probabilistic Gradient Descent Bit-Flippings.
Trans. Circuits Syst. I Regul. Pap. 2017, 64, 906–917. [CrossRef]

30. Unal, B.; Akoglu, A.; Ghaffari, F.; Vasić, B. Hardware Implementation and Performance Analysis of Resource Efficient Probabilistic
Hard Decision LDPC Decoders. Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3074–3084. [CrossRef]

31. Jiang, M.; Fan, D. A Low-Latency BF Decoding of LDPC Codes With Dynamic Thresholds. IEEE Commun. Lett. 2021, 25,
2781–2785. [CrossRef]

32. Le, K.; Declercq, D.; Ghaffari, F.; Spagnol, C.; Popovici, E.; Ivanis, P.; Vasic, B. Efficient realization of probabilistic gradient descent
bit flipping decoders. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal,
24–27 May 2015; pp. 1494–1497

33. Le, K.; Declercq, D.; Ghaffari, F.; Kessal, L.; Boncalo, O.; Savin, V. Variable-node-shift based architecture for probabilistic gradient
descent bit flipping on QC-LDPC codes. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2183–2195. [CrossRef]

34. Tanner, R.M.; Sridhara, D.; Fuja, T. A class of group-structured LDPC codes. In Proceedings of the ISTA, Ambleside, UK,
20 March 2001.

35. Tanner, R.M.; Sridhara, D.; Sridharan, A.; Fuja, T.; Costello, D.J. LDPC block and convolutional codes based on circulant matrices.
IEEE Trans. Inf. Theory 2004, 50, 2966–2984. [CrossRef]

36. Margulis, G.A. Explicit constructions of graphs without short cycles and low density codes. Combinatorica 1982, 2, 71–78.
[CrossRef]

http://dx.doi.org/10.1109/TIT.2010.2040962
http://dx.doi.org/10.1109/TCOMM.2010.06.090046
http://dx.doi.org/10.1109/TIT.2005.844095
http://dx.doi.org/10.1049/el:20046400
http://dx.doi.org/10.1109/LCOMM.2014.2344031
http://dx.doi.org/10.1109/TCOMM.2014.2356458
http://dx.doi.org/10.1109/TCOMM.2016.2590547
http://dx.doi.org/10.1587/elex.15.20180195
http://dx.doi.org/10.1109/TCSI.2019.2909653
http://dx.doi.org/10.1109/TCSI.2016.2633581
http://dx.doi.org/10.1109/TCSI.2018.2815008
http://dx.doi.org/10.1109/LCOMM.2021.3088579
http://dx.doi.org/10.1109/TCSI.2017.2777802
http://dx.doi.org/10.1109/TIT.2004.838370
http://dx.doi.org/10.1007/BF02579283

	Introduction
	Related Work
	Summary and Organization

	GDBF Decoding and the Impact of Trapping Sets
	Suspicion Distillation GDBF Algorithm
	Modification of the Flipping Rule
	Modification Strategy and the Reference Update
	The Decoder Input Re-Initializations

	Implementation Complexity
	Computational Complexity
	Efficient Implementation

	Numerical Results
	Optimization of the Decoder Parameters and Further Work
	Discussion and Conclusions
	References

