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Abstract: We investigate a composite quantum collision model with measurements on the memory
part, which effectively probe the system. The framework allows us to adjust the measurement
strength, thereby tuning the dynamical map of the system. For a two-qubit setup with a symmetric
and informationally complete measurement on the memory, we study the divisibility of the resulting
dynamics in dependence of the measurement strength. The measurements give rise to quantum
trajectories of the system and we show that the average asymptotic purity depends on the specific
form of the measurement. With the help of numerical simulations, we demonstrate that the different
performance of the measurements is generic and holds for almost all interaction gates between the
system and the memory in the composite collision model. The discrete model is then extended to a
time-continuous limit.

Keywords: collision models; quantum measurements; non-Markovian quantum dynamics

1. Introduction

Collision models are a versatile tool for investigating open quantum system dynam-
ics (for examle, see the recent review [1]). They have been used to explore quantum
memory effects [2–7], quantum thermodynamics [8–16], and system–environment correla-
tions [10,17,18]. In this article, we focus on a so-called composite collision model. In such
a model, the system of interest interacts sequentially with a memory. The latter, in turn,
interacts with a sequence of environmental ancillas that are uncorrelated before and traced
out after their collision. By construction, a composite collision model explicitly allows
for the inclusion of possible memory effects of the environment into the dynamics. The
dynamics of the system of interest is then defined by tracing out the memory. It has been
shown that models of this type can, in general, lead to a non-Markovian behaviour in the
system and that they can efficiently mimic memory effects in the environment known from
microscopic open quantum system models [1,4,19].

Collision models often focus on the description of the reduced dynamics emerging
in the system. In this work, we will employ a quantum trajectory approach to analyse
which knowledge one can gain about the system when measurements are performed on the
memory part of the composite model. In particular, we ask how pure the conditional states
in the system can become on average. In a standard Markovian collision model without
memory, one can always obtain pure state trajectories in physically valid schemes [20].
In a time-continuous limit, this can lead, e.g., to a Markovian unravelling of a Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) equation into a stochastic Schrödinger equation
for pure states [21,22].

If memory effects are included, the situation is less clear. There are stochastic Schrödinger
equation approaches that are able to describe non-Markovian dynamics through an ensem-
ble of pure states such as, e.g., the non-Markovian quantum state diffusion (NMQSD) [23].
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In most cases a continuous measurement interpretation for a physical quantum trajectory is
missing [24–28]. The success of these methods is based on the fact that they can efficiently
solve the reduced dynamics of the system. Recently, however, a non-Markovian mixed
state trajectory theory has been established [29].

Composite collision models provide an ideal framework to discuss these issues. In
this contribution, we consider a composite collision model consisting of two qubits and
study the role of different measurement schemes and different measurement strengths
in the memory part. By construction, this setup generates physical quantum trajectories.
Clearly, although the considered measurement schemes realise the same dynamical map,
the resulting trajectories of the system can be quite different. In particular, the purity
of these trajectories strongly depends on the performed measurement on the memory.
Crucially, the trajectories of the joint state of system and memory can always be chosen to
be pure, since the behaviour of the joint state is Markovian. Thus, the non-pure states in
the system trajectories arise solely from the entanglement between system and memory.
Stronger measurements on the memory part reduce the quantum correlations with the
system part, and therefore allow for purer trajectories in the latter. On the other hand,
on average, stronger measurements also result in more disturbance and lead to a faster
degradation of the reduced state of the memory. As we will see, this in turn counteracts a
non-Markovian behaviour of the reduced dynamics in the system alone. Thus, generally
there is a trade-off between the non-Markovianity of the reduced dynamics and the purity
of the quantum trajectories. This can be understood by the fact that the more information a
measurement provides, the more it has to disturb the state on average.

In order to show that the different measurement strengths and schemes perform
differently in a generic situation, we sample collision models by randomly choosing the
interaction gate between the system and the memory. This ensures that the observed
relationship between the measurement strength and the non-Markovian behaviour, as well
as the different purities of the quantum trajectories for different measurement schemes, do
not stem from an accidental fine-tuning between the measurement and the interaction, but
hold in general.

The article is structured as follows. In Section 2, we present our measured composite
collision model and discuss relevant concepts needed in the remainder: channel divisibility,
quantum trajectories arising from underlying instruments, and their ensemble purities. In
the following Section 3, we describe a specific case and analyse its generic behaviour using
randomly sampled gates in a discrete collision model. We then show in Section 4 that a
time-continuous limit can be established and we compare the results to the discrete case.
We conclude in Section 5 with a brief outlook.

2. The Model

We consider a measured composite collision model as presented schematically in
Figure 1. In each step, the system S and the memory M interact by a unitary gate W.
Subsequently, a measurement is performed on the memory part. Such a measurement can
always be described as a coupling to an ancilla system and a subsequent measurement
of the latter. However, since we are not concerned with such an explicit dilation here,
we keep the notation simple and describe the measurements directly onM (see Figure 1
for details). In this article, we focus on finite quantum systems and measurements with
a finite number of outcomes. In general, an observable is given by a positive operator
valued measure (POVM), i.e., a collection of positive operators Ei > 0, which sum to unity
∑i Ei = 1, where i labels the measurement outcome [30]. Since the post-measurement
state is fed back into the circuit, the measurement process itself must be considered in
detail. The state transformation due to the measurement is given by a quantum operation
ρM 7→ ρi

M = Ii(ρM) = ∑k Mik ρM M†
ik such that pi = tr[ρMEi] = ∑k tr

[
Mik ρM M†

ik
]

for
any state ρM of the memory. We call Ii the instrument implementing the observable Ei.
It can be shown that there is no instrument that leaves all states of the system unchanged
unless the associated observable is trivial [31]. The measurement is called efficient if there
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is only one measurement operator Mik for each outcome i [32]. Inefficient measurements
will lead to additional noise and mixed trajectories, even for the joint state of the system
and the memory. Therefore, in this contribution we consider efficient measurements only.

W W
Λ Λ

S

M
W W

S

M

A
V

V

A

≙

Figure 1. The composite collision model. The system S interacts repeatedly with the same memory
system M. The memory M subsequently interacts with a fresh ancilla in each step. If only the
reduced dynamics of S and M is of interest, the ancillas can be traced out after their collision.
However, here we consider a model where the ancillas are measured after the interaction, which
allows us to obtain some information about the current state of S andM. This indirect measurement
can be seen as a dilation of a direct measurement onM, and therefore, the model can be given in an
equivalent but more compact form without an explicit reference to the ancillas. We will use the latter
description in this article. Discarding the outcome, the measurements constitute a channel Λ.

Let us, for a moment, focus on the average dynamics generated by this collision
model. Discarding the outcome of the measurement, the instrument describes a quantum
channel Λ:

Λ[ρM] = ∑
i
Ii[ρM] = ∑

i
Mi ρM M†

i . (1)

The single step map for the joint state of system S and memoryM is then given by

∆Ξ[ρSM] = (1S ⊗ΛM)[W ρSMW†]. (2)

Accordingly, the map for the nth step Ξ(n) is obtained by concatenating the single step map
n-times:

Ξ(n) = ∆Ξ ◦ . . . ◦ ∆Ξ︸ ︷︷ ︸
n-times

. (3)

Assuming an initial state of product form, i.e., ρ
(0)
SM = ρ

(0)
S ⊗ ρ

(0)
M , and fixing the initial

state of the memory ρ
(0)
M = ρinit

M , we can obtain a family of completely positive and trace-
preserving (CPT) maps that describe the dynamics in the system S alone by tracing over
the memory after n steps:

Γ(n)
S [ρ

(0)
S ] = trM[Ξ(n)[ρ

(0)
S ⊗ ρinit

M ]]. (4)

It should be noted here that the reduced dynamics does not, of course, depend on how the
channel Λ is implemented, nor that it is given by a measurement. In composite collision
models, one commonly describes such a channel Λ by a coupling of the memoryM to
environmental ancillas which are traced out after their collision [1].

2.1. Divisibility

It is well known that the dynamics in S , as given by the dynamical map Γ(n)
S , is in

general not divisible. A family of maps {Γ(n), n ∈ Z+
0 } is said to be completely positive (CP)

divisible if it can be decomposed as

Γ(n) = Γ(n,m) ◦ Γ(m), ∀m < n, (5)
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where Γ(n,m) is a CPT map describing the dynamics from step m to step n. If the maps Γ(n,m)

are positive but not completely positive, the dynamics is called P-divisible. If there is a
Γ(n,m) which is not positive, the dynamics is called indivisible [33]. The discrete dynamical
map Ξ(n)

SM for the joint state is CP-divisible by construction, since the propagator from one
step to the next is given by the CPT map ∆ΞSM. However, the map on the system alone
Γ(n)
S is generally indivisible.

In this work, we will make use of a criterion to detect indivisible dynamics which has
been proposed in ref. [34]. Under P-divisible dynamics, the state space volume accessible by
the dynamics decreases monotonically. Thus, if this volume increases during the dynamics,
the latter has to be indivisible. We briefly review this criterion in the following. The density
operator ρ of a quantum system of dimension d can be decomposed as

ρ =
d2−1

∑
i=0

Tr[ρ Gi] Gi =
d2−1

∑
i=0

~ri Gi, (6)

where the G1,...,d2−1 are the Hermitian and traceless generators of the group SU(d) and

G0 = 1/
√

d. The vector~r is called the generalised Bloch vector. The dynamical map Γ(n)
S

can be given in the basis {Gi}, acting on~r as

~r(n) = F(n)~r(0), F(n)
ij = Tr

[
Gi Γ(n)

S [Gj]
]
. (7)

Under P-divisible dynamics, the absolute value of the determinant of this matrix has to
decrease during the dynamics, i.e., [35]

|det F(n)| ≤ |det F(m)|, ∀n > m. (8)

Thus, an increase in |det F(n)| indicates an indivisible dynamics. Such an increase has an
intuitive geometrical interpretation, as it describes an inflation of the state space volume
accessible by the map [34]. For two subsequent maps, we define Dn = |det F(n+1)| −
|det F(n)|. We can then define a quantifier for indivisibility by summing up all positive Dn:

N = ∑
Dn>0

Dn. (9)

This measure was originally proposed for a time-continuous map F(t) and then reads [34]:

N =
∫

∂
∂t |det F(t)|>0

∂

∂t
|det F(t)| dt. (10)

2.2. Measurements and Conditional Dynamics

The measurement on the memory provides some information about the quantum state
inM. Additionally, since S andM have previously interacted, the measurement can tell
us something about the state of the system as well. The post-measurement joint state after
the first step and an outcome i1 for an efficient measurement reads

ρi1
SM =

(1⊗Mi)Wρ
(0)
SMW†(1⊗M†

i )

tr
[
(1⊗M†

i Mi)Wρ
(0)
SMW†

] , (11)

where ρ
(0)
SM is the initial joint state. This conditional state ρi1

SM then undergoes the next

step with outcome i2 and the corresponding conditional state ρ
(i1,i2)
SM , where the tuple in

the superscript indicates that the state is conditioned on both outcomes i1 and i2. Keeping
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track of the outcomes also in the following steps of the collision model, we get a sequence
of quantum states which is often referred to as a quantum trajectory [20,22,36–39].

For N steps, a trajectory is identified by an N-tuple of outcomes k = (i1, i2, . . . , iN)

with corresponding states (ρi1
SM, ρ

(i1,i2)
SM , . . . , ρk

SM). In general, there are nN different final
states ρk

SM, where n is the number of outcomes of a single measurement. Each of these
states has a probability pk, which is the probability of the corresponding trajectory. All
these final states form the ensemble

EN
SM = {ρk

SM, pk}. (12)

By construction, averaging over the ensemble we get the reduced joint state after N steps
in the collision model.

∑
k

pkρk
SM = ρ

(N)
SM = Ξ(N)[ρ

(0)
SM]. (13)

The reduced state ρ
(N)
SM only depends on the initial state, the interaction W, and the channel

Λ. However, its decomposition into an ensemble depends on the measurement operators
that implement the channel Λ.

2.3. The Reduced Ensemble and Its Purity

Given an ensemble EN
SM, we can ask what do we know about the system S alone. The

reduced ensemble in S is obtained by tracing over the memory for each ensemble state:

EN
S = {trM[ρk

SM], pk} = {ρk
S , pk}. (14)

The reduced ensemble contains everything we can know about the decomposition of
the average state of the system S when we probe it by measurements on the memory
systemM.

It is worth noting that in a standard Markovian collision model without memory, there
is always a measurement model which allows us to obtain a pure state trajectory in the
system. In a composite collision model, this is generally not the case because even if the
conditional states ρk

SM are pure, they may be entangled and, thus, the reduced state in S is
mixed. Therefore, we will use the average purity of the states in the reduced ensemble EN

S
as a quantifier for the information one can acquire about S by measurements onM.

P = ∑
k

pk pur[ρk
S ] = ∑

k
pk tr

[(
ρk
S

)2
]

. (15)

3. A Specific Case

Let us now consider a specific setup where both system S and memoryM are qubits.
We leave the interaction unitary W arbitrary for the moment, but fix the measurement
performed on the memoryM in each step to be a symmetric and informationally complete
(SIC) measurement [40]. The POVM of such a measurement is given by four rank-one
operators that are proportional to projectors which form a regular tetrahedron on the Bloch
sphere. A possible choice is given by

E1 =
1
4

(
1+

1√
3
(σx + σy + σz)

)
, E2 = σxE1σx, E3 = σyE1σy, E4 = σzE1σz. (16)

An efficient measurement implementing this POVM has the form

Ii[ρM] =
√

Ei ρM
√

Ei. (17)
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One can verify that such an instrument leads on average to a depolarising channel on the
memoryM

Λ[ρM] = ∑
i
Ii[ρ] = ∑

i

√
Ei ρM

√
Ei = (1− λ)ρM + λ

1

2
, (18)

with λ = 2/3 being the depolarising strength. Thus, in each step, after the unitary interaction
with the system S , the memoryM is partially depolarised. On average, the purity of the
state decreases due to the depolarisation. However, if one keeps track of the measurement
outcome, the opposite is the case. After the measurement, the memory is always in a pure
state corresponding to the rank-one element Ei.

3.1. Measurement Strength

The strong SIC measurement always results in a post-measurement joint state which
is of product form. Thus, on average the measurement acts as an entanglement-breaking
channel [41,42]. Let us introduce a weakened form of this measurement which does not
completely cut the correlations. To this end we add a new trivial measurement operator A0
to the instrument. With a measurement strength parameter 0 ≤ g ≤ 1. We then define

Ai =
√

g Ei, A0 =
√

1− g1. (19)

One can see this measurement as a probabilistic implementation of the strong measurement
with probability g. With probability (1− g) no measurement is performed and the trivial
operator A0 is applied. The measurement still implements a depolarising channel but the
degree of depolarisation now depends on g:

Λg[ρ] =

(
1− 2g

3

)
ρ +

(
2g
3

)
1

2
= (1− λA)ρ + λA

1

2
, (20)

which shows that the measurement strength g tunes between the strong case (g = 1, λA = 2/3)
given in Equation (18) and the trivial case (g = 0, λA = 0) where no measurement is
implemented and the channel is just the identity.

3.2. Divisibility

Before we investigate the ensemble purities and the information gain for different
measurement strengths g we briefly comment on the divisibility of the discrete dynamical
map Γ(n)

S on the system. In general the divisibility will depend on the unitary interaction
gate W. Here, we are interested in the generic behaviour of this model. Therefore, we
randomly sample collision models which only differ in their interaction gate W. This
unitary gate is randomly drawn from the Haar measure [43]. Note that the gate W is only
sampled once, but is then kept fixed during the steps of the collision model. We propagate
the model until the reduced state in the system S reaches a steady state and calculate the
indivisibility N in Equation (9) to check the P-divisibility of the dynamics.

By sampling sufficiently many unitaries W from the Haar measure, we can estimate
the ratio V between the volume of unitaries which lead to indivisible dynamics and the
volume of all possible unitaries. The results are plotted in Figure 2. As one might expect,
for small measurement strengths, i.e., g→ 0, almost any W leads to indivisible dynamics.
Interestingly, in the strong measurement limit, i.e., g → 1, where the measurement is
entanglement breaking, still more than half of the gates W generate indivisible dynamics.
This demonstrates yet again that entanglement between the system and an environment is
not necessary for a non-Markovian behaviour. The joint state of S andM is separable at
all steps (cf. [44]).

Furthermore, we plot the averageN of the indivisibility measureN . This curve shows
that, even though most of the dynamics are indivisible, for larger g the dynamics are very
close to dynamics for which P-divisibility cannot be detected.
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(a) (b)

Figure 2. (a) The plot shows the fraction of unitaries W which lead to indivisible dynamics in depen-
dence of the measurement strength g. For weak measurements, almost all W lead to indivisibility.
For larger g, the ratio decreases. However, it has to be stressed that even in the limit g→ 1, where
the channel Λ is entanglement breaking in each step, more than half of the unitaries W lead to
indivisible dynamics. (b) The average of the indivisibility quantifier N (see Equation (9)) is plotted.
The plot shows that the average values of N quickly decrease with increasing measurement strength
g. Thus, even though many W lead to indivisible dynamics also for large g, those will hardly be
distinguishable from a P-divisible dynamics with the measure N .

3.3. Different Measurements

The reduced dynamics in the system S and its P-divisibility does not depend on the
specific implementation of the depolarising channel. However, if one does not discard
the measurement outcomes but uses them to determine conditional dynamics, the specific
implementation of Λg plays a role and the instrument defined in Equation (19) is not the
only choice. In fact, there are infinitely many possible decompositions. In this article, we
consider two further measurements which are qualitatively different from measurement
A. We then investigate their different behaviours with respect to the information one
can obtain about the conditional states in the system, measured in terms of the ensemble
purity P .

To construct the weakened measurement A, we have added an element A0 propor-
tional to the identity, which tells us that nothing happened to the memory. Instead of
adding the identity as an additional measurement element, we can construct unsharp
versions of the original strong measurement operators Ei:

Bi =

√
f Ei + (1− f )

1

4
. (21)

Here, none of the measurement operators are of rank one, implying that this measurement
never leads to pure product states. As a third measurement we introduce the operators

Ci = Ui
√

h Ei, C0 =
√

1− h1, (22)

where Ui is the unitary that flips the rank-1 element Ei to its orthogonal which lies on the
opposite side of the Bloch sphere. This instrument is structurally similar to measurement A,
and could be implemented by first performing measurement A and subsequently applying
a unitary gate depending on the outcome i.

Both measurements B and C lead to a depolarizing channel with the depolarisation
strengths λB = 2/3(1−

√
1− f 2) and λC = 3h/4, respectively. We require that all measure-

ments generate the same channel Λg, so we have to set

f =
√

2g− g2, h =
g
2

. (23)
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The reduced dynamics of system S and memoryM is independent of the chosen mea-
surement. However, the information one can obtain about the conditional states in S
substantially depends on the implemented measurement.

3.4. The Corresponding POVMs

By construction, the different measurements lead to the same channel Λg. How-
ever, it has to be stressed that the measured POVMs differ. The POVM implemented by
measurement A consists of five elements:

A†
i Ai = g Ei, A†

0 A0 = (1− g)1. (24)

The third measurement C generates a similar POVM:

C†
i Ci = h Ei =

g
2

Ei, C†
0 C0 = (1− h)1 =

(
1− g

2

)
1. (25)

However, since h = g/2, the POVM corresponding to measurement C is less informative
than the one corresponding to measurement A. We will see below that this has an important
impact on the conditional dynamics.

In contrast to the cases A and C, the POVM corresponding to the second measurement
B has only four different elements

B†
i Bi = f Ei + (1− f )

1

4
=
√

2g− g2Ei +

(
1−

√
2g− g2

)
1

4
(26)

For 0 < g < 1, we have f =
√

2g− g2 > g, and thus, the strong POVM elements Ei appear
with a higher weight in measurement B than in measurement A. Therefore, one can expect
that measurement B is the most informative one.

To show this, we analyse the conditional ensembles EN
S in the steady-state limit, i.e.,

N → ∞. We numerically calculate the ensemble purity P from Equation (15) over unitaries
W from the Haar measure and plot in Figure 3 the average purity P as a function of the
measurement strength g. As expected, measurement B leads to higher ensemble purities
than measurement A and measurement C performs worse. In the weak measurement limit
(g→ 0), all three agree. Measurement A and B also agree in the strong measurement limit
(g→ 1), which is not surprising because both converge to the same instrument in this limit
(c.f. Equations (19) and (21)).

It is worth noting that the trajectories of the joint state of S andM are pure for any of
the measurements and for any g > 0. Thus, the lack of purity in the reduced ensemble in S
stems from the fact that the joint states are entangled on average.

A

B

C

0.2 0.4 0.6 0.8 1.0
g

0.85

0.90

0.95

1.00



Figure 3. We plot the average purity of the steady state ensembles averaged over random unitary
interaction gates W (in each run the gate is fixed for all steps in the collision model). As expected, one
can see that the purity increases with the measurement strength. Furthermore, the better performance
of measurement B is a generic feature.
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4. Time-Continuous Limit

So far, we only considered a discrete model. We now study the continuous limit
and demonstrate that the behaviour observed in the discrete case similarly holds. We can
approximate such dynamics by looking at short time intervals ∆t. The interaction gate W is
generated by a Hamiltonian H. During a time interval ∆t, the transformation reads to first
order in ∆t

W = 1− i∆t H. (27)

In order to obtain a time-continuous limit, the subsequent measurement has to result in
a channel whose effect on the state is also of order ∆t. In other words, the measurement
strength needs to scale with the time step as g ∝ ∆t. Looking at the form of the resulting
channel in Equation (20) we set, for convenience, g = 3/2γ∆t, where gamma is a positive
real constant describing the strength of the measurement. In a single time step, the joint
state ρSM changes to first order in ∆t as

ρSM(t + ∆t) = (1⊗Λg)[W ρSM(t)W†]

= ρSM(t)− i[H, ρSM(t)]∆t− γ∆t
(

ρSM(t)− trM[ρSM]⊗ 1M
2

)
. (28)

Thus, in a time-continuous limit the joint state evolves according to the following differen-
tial equation.

lim
∆t→0

ρSM(t + ∆t)− ρSM(t)
∆t

= ρ̇SM(t) (29)

= −i[H, ρSM(t)]− γ

(
ρSM(t)− trM[ρSM(t)]⊗ 1M

2

)
.

It contains a unitary part governed by the interaction Hamiltonian H and the depolarising
process onM.

In order to investigate the generic behaviour of this continuous model, we sample the
unitary gate W through its Hamiltonian H. These are drawn from the Gaussian unitary
ensemble (GUE) [45]. To this end, we generate two real matrices S and T with all entries
being randomly chosen from a normal distribution with mean µ = 0 and width σ = 1. The
matrix H = [(S + iT)† + (S + iT)]/2 is a Hamiltonian belonging to the GUE [46].

4.1. Divisibility

In the time-continuous model, the divisibility increases with increasing measurement
strength γ, too. In Figure 4a, we plot the fraction V of the GUE for which the collision
model leads to indivisible dynamics. Again, for small measurement strengths, almost all
Hamiltonians lead to indivisible dynamics. For large γ, the dynamics are almost always
divisible, as can be expected, since in this regime the strong depolarisation suppresses
possible revivals in the system dynamics. The average over the indivisibility N , as defined
in Equation (10), is plotted in Figure 4b. As in the discrete case, N quickly drops with
increasing measurement strength γ.
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(a) (b)

Figure 4. (a) We plot the fraction V of Hamiltonians in the Gaussian unitary ensemble (σ = 1) that
lead to indivisible dynamics. For small measurement strength (weak depolarisation), almost all
Hamiltonians lead to indivisible dynamics. For stronger measurements, more and more Hamiltonians
generate divisible dynamics. (b) The average divisibility (see Equation (10)) shows a steep decrease
with increasing measurement strength γ. Already at γ = 2, where still more than 50% of the
Hamiltonians lead to indivisible dynamics, the average divisibility has dropped to a value below
N = 0.01, so most of the dynamics are hard to distinguish from P-divisible ones.

4.2. Ensemble Purity

As in the discrete case, we can implement the depolarisation onM using the three
different instruments A, B, C. The three measurement schemes are obtained by plugging
g = 3γ∆t/2 into the Equations (19), (21) and (22).

In Figure 5 we plot the ensemble purity averaged over the random Hamiltonians
sampled from the GUE. As in the discrete case, measurement B performs better than A and
C. In the weak measurement limit γ→ 0, all measurements perform equally. In contrast
to the discrete case, now measurement C can also produce pure ensembles in the strong
measurement limit γ → ∞. However, the necessary strength is much larger than for the
other two measurements. Thus, on average, measurement B indeed leads to the most pure
trajectories and ensembles in the system S .
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C
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Figure 5. The average ensemble purity P for the three different measurements (see
Equations (19), (21) and (22)) is plotted in dependence of the measurement strength γ. The aver-
age is taken over interaction Hamiltonians from the Gaussian unitary ensemble (σ = 1). As in the
discrete model, measurement B leads to the most pure ensembles, followed by A and C. All three
measurement scenarios lead to pure ensembles in the strong measurement limit γ→ ∞.

5. Conclusions

In this article, we have investigated quantum trajectories in composite collision models.
While standard Markov collision models always allow for a measurement model that
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produces pure state trajectories, this is generally not the case in collision models with
memory due to possible entanglement between the system and the memory, even in the
measured quantum trajectories. We have analysed a two-qubit model where the memory
undergoes a depolarising channel on average. This channel can be implemented as a
measurement of a SIC observable. By introducing a weakened form of this measurement,
we have shown that the divisibility of the resulting dynamics of the system S depends on
the measurement strength.

We have investigated three different measurements which all lead to the same dy-
namical map but to different quantum trajectories. While the joint trajectories of system
S andM are in general pure, the reduced ensembles in S alone are not. The purity of
the latter strongly depends on the measurement performed on the memoryM. To draw
conclusions about a generic case, we determine the divisibilities and the ensemble purities
for randomly sampled unitary interaction gates W in the composite collision models and
estimate the quantities as averages over the Haar measure. The model can be extended
to a time-continuous case where the measurement strength becomes infinitesimal. To in-
vestigate the generic behaviour, the averaging is now taken over interaction Hamiltonians
sampled from the Gaussian unitary ensemble. The qualitative differences between the
measurements also persist in the continuous case.

For Markov evolutions, it is well understood how different measurements lead to
different unravellings of the dynamics. In particular, pure state unravellings always exist.
For dynamics with memory effects, many questions related to quantum trajectories remain
open. In our contribution, we show how composite collision models can be used to gain
an understanding of why physically valid quantum trajectories are not necessarily pure.
Our findings show that different measurements on the memory part can reveal a different
amount of information about the state of the system. The different performances do not
depend on a fine tuning of the measurement with respect to the interaction, but are generic.

A qualitative relationship between the divisibility and the achievable ensemble purity
becomes apparent. On the one hand, stronger measurements allow for a higher purity
in the trajectories, but on the other hand they also lead to a faster depolarisation of the
memoryM and therefore increase the divisibility. Thus, there is a trade-off between the
non-Markovian behaviour of the system dynamics and the knowledge one can gain about
the systems state. However, it has to be stressed that even though this interplay is a generic
feature, as can be seen from our simulations, a more quantitative relation is still missing.

For a better understanding of physical quantum trajectories in a non-Markovian sys-
tem, optimality conditions for the performed measurements would be desirable. Such
an optimal choice will always depend on the figure of merit one is interested in. Com-
posite collision models can provide a powerful framework for these questions because
the memory effects are transparently included into the setup. The model is not restricted
to the depolarising case investigated here. Furthermore, the homogeneous form of the
measurement scenario is a strong restriction. Adaptive measurements, i.e., measurements,
where the instrument in the next step depends on the previous outcomes, could further
improve the scheme.
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