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Abstract: This article estimates several integral inequalities involving (h − m)-convexity via the
quantum calculus, through which Important integral inequalities including Simpson-like, midpoint-
like, averaged midpoint-trapezoid-like and trapezoid-like are extended. We generalized some
quantum integral inequalities for q-differentiable (h−m)-convexity. Our results could serve as the
refinement and the unification of some classical results existing in the literature by taking the limit
q→ 1−.
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1. Introduction

Quantum Calculus, simply represented by q-calculus, deals with the study of calculus
without limits. Thus, the q-analogues of mathematical objects can be recaptured through
q → 1−. This area of study was apparently first discovered by Euler in the eighteenth
century where the parameter q was introduced in the finite series studied by Newton.

Quantum Calculus has attracted the attention of many researchers. This is due to
the numerous applications of the field in different areas of sciences such as combinatorics,
mechanics, orthogonal polynomials. Other applications include the quantum information
theory, an interesting area with many branches like computer science, cryptography and
philosophy [1–3]. For example, both q-derivative and q-integral of a function were defined
on a finite interval, and the results obtained were applied to determine the existence and
uniqueness solution of q-impulsive equations diffrence equtions [4]. Others include the
construction of a q-deformed variant for the conformal quantum mechanics models—with a
complex deformation parameter, and the differential calculus associated with such quantity
was equally studied [5].

Considering these vast applications, many researchers extend the concept of q-calculus
to incorporate different integral inequalities including Newton’s, Simpson’s, Ostrowski,
Hölder, Grüss Simpson’s, Grüss-Čebyšev, Hermite-Hadamard, Cauchy-Bunyakovsky-
Schwarz inequalities [6–9]. These can be studied through classical convexity as well as their
generalizations, such as m-convexity, s-convexity and preinvex functions [10–12].

In the literature, many studies focused on q-analogues of midpoint type, trapezoidal
type and Ostrowski’s type inequalities for q-differentiable variant type of convex func-
tions [13–16]. For example, Sudsutad et al. [17] established new q-analogues of trapezoid-
like for q differentiable convex functions. A variant type of midpoint-like and trapezoid-like
of quantum inequalities for (α, m)-convexity have been studied [18]. Others include the
work of Dafang Zhao et al. [15] who established some quantum inequalities of midpoint
and trapezoidal type via quasi-convexity.

Motivated by the aforementioned literature, this study is concerned with establishing
variant types of q-integral inequalities for (h, m)-convexity, associated with Simpson-like,
midpoint-like, trapezoid-like and averaged midpoint-trapezoid-like types inequalities. We
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equally obtained some results—by choosing a special parameter value—that are relevant
with those reported in previous studies.

The rest of this paper is organized as follows: Section 2 presents the preliminary
studies. While Section 3 generalizes several q-integral inequalities via (h−m)-convexity,
Section 4 discusses different special cases of the main results. The study is concluded in
Section 5.

2. Preliminaries

This section presents some important definitions in the q-calculus along with inequali-
ties related to them. These Preliminary results would later in this study help us prove some
of our results. We first begin with the following notation [2]:

[s]q = (1− qs).
1

1− q
= 1 + q + q2 + · · ·+ qs−1, 0 < q < 1.

The q-Jackson integral of a mapping A from 0 to c is defined follows [19]:∫ c

r
A(θ)dqθ =

∫ c

0
A(θ)dqθ −

∫ r

0
A(θ)dqθ

Definition 1 ([20]). Assume that A : J → R is a continuous mapping and θ ∈ J. Then the q-
derivative on J of A at θ is given as

rDqA(θ) =
A(θ)−A(qθ + (1− q)r)

(1− q)(θ − r)
, θ 6= r, rDqA(r) = lim

θ→r
rDqA(θ)

Definition 2 ([20]). Assume that A : J → R is a continuous mapping. Then the q-integral on J is
given as ∫ m

r
A(θ)r dqθ = (1− q)(z− r)

∞

∑
s=0

qsA(qsz + (1− qs)r)

for z ∈ I. Moreover, if c ∈ (r, z), then the q-integral on J is given as∫ m

c
A(θ)rdqθ =

∫ z

r
A(θ)r dqθ −

∫ c

r
A(θ)r dqθ

Definition 3 ([20]). Assume that A : [r, c]→ R is a mapping. The qr-definite integral on [r, c] is
defined as follows

∫ c

r
A(θ)rdqθ = (1− q)(c− r)

∞

∑
s=0

qsA(qsc + (1− qs)r)

= (c− r)
∫ 1

0
A((1− θ)r + θc)dqθ

Following the above definitions, the Hölder inequality was studied in the setup of
q-calculus

Theorem 1 ([20]). Suppose that A,W : I → R are two continuous mappings. The following

∫ x

r
|A(θ)||W(θ)|r dqθ ≤

(∫ x

r
|A(θ)|v1 r dqθ

) 1
v1
(∫ x

r
|W(θ)|v2 r dqθ

) 1
v2

holds for all x ∈ I and v1, v2 > 1 with v−1
1 + v−1

2 = 1.

Using the q-calculus, Alp et al. [21] improved the Hermite-Hadamard inequality as
follows.
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Theorem 2. Suppose that A : J → R is convex and differentiable on J with q ∈ (0, 1). Then the
following

A

(
qr + c
1 + q

)
≤ 1

c− r

∫ c

r
A(θ)r dqθ ≤ qA(r) +A(c)

1 + q

holds.

The following theorem present the q-midpoint type inequality via convexity.

Theorem 3 ([21]). Suppose that A : [r, c] → R is a q-differentiable function on (r, c), rDqA be
continuous and integrable on [r, c] and 0 < q < 1. If

∣∣rDqA
∣∣ is convex on [r, c], then the following

q-midpoint type inequality∣∣∣A( qr+c
1+q

)
− 1

(c−r)

∫ c
r A(θ)rdqθ

∣∣∣
6 q(c− r)

[∣∣rDqA(c)
∣∣ 3
(1+q)3(1+q+q2)

+
∣∣rDqA(r)

∣∣ −1+2q+2q2

(1+q)3(1+q+q2)

]
holds.

The new q-integral inequalities for (α, m)-convexity werer studied by Zhang et al. [18]
through the following lemma

Lemma 1. Assume that A : J → R is a continuous and q-differentiable mapping on J◦ with
q ∈ (0, 1). Then the following

γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ1)A(γ2c + (1− γ2)r)− 1
c−r
∫ c

r A(x)rdqx
= (c− r)

{∫ γ2
0 (qθ + γ1γ2 − γ1)rDqA(θc + (1− θ)r)0 dqθ

+
∫ 1

γ2
(qθ + γ1γ2 − 1)rDqA(θc + (1− θ)r)0 dqθ

}
holds for all γ1, γ2 ∈ [0, 1] if rDqA is integrable on I

In [22], the authors introduced the definition of the class (h, m)-convexity as

Definition 4. Let h : I ⊆ R → R be a positive function. The function A : [0, b] → R is called
(h−m) convex function, if A is positive and

A(θr + m(1− θ)c) ≤ h(γ)A(r) + mh(1− θ)A(c) (1)

for all r, c ∈ [0, b], m ∈ [0, 1] and θ ∈ (0, 1).

If the inequality (1) is reversed, then A is said to be (h−m)-concave mapping on [0, b].

3. Mian Result

In this section, we give generalization of quantum integral inequalities for (h−m)-
convexity of the absolute values of the q-derivative.
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Theorem 4. For 0 ≤ r < c and m ∈ (0, 1], assume that A :
[
r, c

m
]
→ R is a continuous and

q-differentiable mapping on
(
r, c

m
)
. Let rDqA be integrable on

[
r, c

m
]

with 0 < q < 1, then the
inequality∣∣∣∣γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ1)A(γ2c + (1− γ2)r)−

1
c− r

∫ c

r
A(x)rdqx

∣∣∣∣
≤ (c− r)

{[∫ γ2

0
h(θ)|qθ − (γ1 − γ1γ2)|0dqθ +

∫ 1

0
h(θ)|qθ − (1− γ1γ2)|0dqθ

−
∫ γ2

0
h(θ)|qθ − (1− γ1γ2)|0 dqθ

]∣∣rDqA(c)
∣∣

+m
[∫ γ2

0
h(1− θ)|qθ − (γ1 − γ1γ2)|0dqθ +

∫ 1

0
h(1− θ)|qθ − (1− γ1µ)|0dqθ

−
∫ γ2

0
h(1− θ)|qθ − (1− γ1γ2)|0dqθ

]∣∣∣∣rDqA
( r

m

)∣∣∣∣}
(2)

holds for all γ1, γ2 ∈ [0, 1] if rDq f is (h−m)-convex on
[
r, c

m
]
.

Proof. Applying the (h, m)-convexity of
∣∣rDqA

∣∣, property of the modulus and Lemma 1,
we obtain

| γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ1)A(γ2c + (1− γ2)r)−
1

c− r

∫ c

r
A(x)r dqx |

≤(c− r)
{ ∫ γ2

0
|qθ + γ1γ2 − γ1|

∣∣∣∣rDqA(θc + (1− θ)r)
∣∣∣∣0dqt

+
∫ 1

γ2

|qθ + γ1γ2 − 1|
∣∣∣∣rDqA(θc + (1− θ)r)

∣∣∣∣0dqt
}

≤(c− r)
{∫ γ2

0
|qθ − (γ1 − γ1γ2)|

[
h(θ)

∣∣rDqA(c)
∣∣+ mh(1− θ)

∣∣∣rDqA
( r

m

)∣∣∣]0dqθ

+
∫ 1

γ2

|qθ − (1− γ1γ2)|
[

h(θ)|rDqA(c)|+mh(1− θ)|rDqA
( r

m

)
|
]

0dqθ

}
=(c− r)

{∫ γ2

0
|qθ − (γ1 − γ1γ2)|

[
h(θ)

∣∣rDqA(c)
∣∣+ mh(1− θ)|rDqA

( r
m

)
|
]

0dqθ

+
∫ 1

0
|qθ − (1− γ1γ2)|

[
h(θ)|rDqA(c)|+mh(1− θ)|rDqA

( r
m

)
|
]

0dqt

−
∫ γ2

0
|qθ − (1− γ1γ2)|

[
h(θ)

∣∣rDqA(c)
∣∣+ mh(1− θ)

∣∣∣rDqA
( r

m

)∣∣∣]0dqθ

}
=(c− r)

{[∫ γ2

0
h(θ)|qθ − (γ1 − γ1γ2)|0dqt +

∫ 1

0
h(θ)|qθ − (1− γ1γ2)|0dqθ

−
∫ γ2

0
h(θ)|qθ − (1− γ1γ2)|0 dqθ

]∣∣rDqA(c)
∣∣

+ m
[∫ γ2

0
h(1− θ)|qθ − (γ1 − γ1γ2)|0dqθ +

∫ 1

0
h(1− θ)|qθ − (1− γ1γ2)|0dqθ

−
∫ γ2

0
h(1− θ)|qθ − (1− γ1γ2)|0dqθ

]∣∣∣∣rDqA
( r

m

)∣∣∣∣}.

If |rDqA
∣∣µ for µ ≥ 1 is (h, m)-convex, then we can obtain the following result.
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Theorem 5. Assume that A :
[
r, c

m
]
→ R is a continuous and q-differentiable function on

(
r, c

m
)
,

such that 0 ≤ r < c and m ∈ (0, 1]. Assume that rDqA is integrable on
[
r, c

m
]
, with 0 < q < 1,

the inequality

| γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ2)A(γ2c + (1− γ2)r)−
1

c− r

∫ c

r
A(x)r dqx |

≤(c− r)

{[∫ 1

0
|qθ − (1− γ1γ2)|0 dqθ

]1− 1
µ

×
[(∫ 1

0
h(θ)|qθ − (1− γ1γ2)|0dqθ

)∣∣rDqA(c)
∣∣µ

+m
(∫ 1

0
h(1− θ)|qθ − (1− γ1γ2)|0dqθ

)∣∣∣rDqA
( r

m

)∣∣∣µ] 1
µ

+ (1− γ1)γ
1− 1

µ

2

[(∫ γ2

0
h(θ)0dqθ

)∣∣rDqA(c)
∣∣µ

+ m
(∫ γ2

0
h(1− θ)0dqθ

)∣∣∣∣rDqA
( r

m

)∣∣∣∣µ]
1
µ


holds for all γ1, γ2 ∈ [0, 1] if |rDqA

∣∣µ for µ ≥ 1 is (h, m)-convex on
[
r, c

m
]
.

Proof. Since |µDqA
∣∣∣µ is (h, m)-convexity, we get

∫ 1

0
|qθ − (1− γ1γ2) |

∣∣rDqA(θc + (1− θ)r)
∣∣µ0dqθ

≤
∫ 1

0
|qθ − (1− γ1γ2)|

[
h(θ)

∣∣rDqA(c)
∣∣µ + mh(1− θ)

∣∣∣rDqA
( r

m

)∣∣∣µ]0dqt

=

(∫ 1

0
h(θ)|qθ − (1− γ1γ2)|0dqθ

)∣∣rDqA(c)
∣∣µ

+ m
(∫ 1

0
h(1− θ)|qθ − (1− γ1γ2)|0dqθ

)∣∣∣rDqA
( r

m

)∣∣∣µ
(3)

and ∫ γ1

0
|rDqA(θc + (1− θ)r) |µ 0 dqt

≤
∫ γ2

0

[
h(θ)

∣∣rDqA(c)
∣∣µ + mh(1− θ)

∣∣∣rDqA
( r

m

)∣∣∣µ]0 dqθ

=

(∫ γ2

0
h(θ)0dqθ

)∣∣rDqA(c)
∣∣µ + m

(∫ γ2

0
h(1− θ)0dqθ

)∣∣∣rDqA
( r

m

)∣∣∣µ.

(4)
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Applying power mean inequality, Lemma 1 and substituting inequalities (3) and (4)
into the result, we have the following

| γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ1)A(γ2c + (1− γ2)r)−
1

c− r

∫ c

r
A(x)r dqx |

≤ (c− r)

{(∫ 1

0
|qθ − (1− γ1γ2)|0 dqθ

)1− 1
µ

×
( ∫ 1

0
|qθ − (1− γ1γ2)|

∣∣∣∣
r
DqA(θc + (1− θ)r)

∣∣∣∣r
0

dqθ

) 1
µ

+(1− γ1)

(∫ γ2

0
10dqθ

)1− 1
µ
(∫ γ2

0

∣∣rDqA(θc + (1− θ)r)
∣∣µ
0 dqθ

) 1
µ

}

≤(c− r)

{[∫ 1

0
|qθ − (1− γ1γ2)|0 dqθ

]1− 1
θ

×
[(∫ 1

0
h(θ)|qθ − (1− γ1γ2)|0dqθ

)∣∣rDqA(c)
∣∣µ

+m
(∫ 1

0
h(1− θ)|qθ − (1− γ1γ2)|0dqθ

)∣∣∣rDqA
( r

m

)∣∣∣µ] 1
µ

+ (1− γ1)γ
1− 1

µ

2

[(∫ γ2

0
h(θ)0dqθ

)∣∣rDqA(c)
∣∣µ

+ m
(∫ γ2

0
h(1− θ)0dqθ

)∣∣∣∣rDqA
( r

m

)∣∣∣∣µ]
1
µ

.

The proof is complete.

When |rDqA
∣∣µ with µ > 1 is (h, m)-convex, then we obtain the following theorem.

Theorem 6. Assume that A :
[
r, c

m
]
→ R is a continuous and q-differentiable function on

(
r, c

m
)
,

such that 0 ≤ r < c and m ∈ (0, 1]. Assume that rDqA is integrable on
[
r, c

m
]
, with 0 < q < 1,

the inequality∣∣∣γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ1)A(γ2c + (1− γ2)r)− 1
c−r
∫ c

r A(x)µ dqx
∣∣∣

≤ (c− r)
{(∫ 1

0 |qθ − (1− γ1γ2)|ζ0 dqt
) 1

ζ

×
[(∫ 1

0 h(θ))0 dqθ
)∣∣rDqA(c)

∣∣µ + m
(∫ 1

0 h(1− θ)0 dqθ
)∣∣rDqA

( r
m
)∣∣µ] 1

µ

+(1− γ1)µ
1
ζ

[(∫ µ
0 h(θ)0 dqθ

)∣∣rDqA(c)
∣∣µ

+ m
(∫ µ

0 h(1− θ)0 dqθ
)∣∣

µDqA
( r

m
)∣∣µ] 1

µ

}
holds for all γ1, γ2 ∈ [0, 1] if |rDqA

∣∣µ for µ > 1, with µ−1 + ζ−1 = 1, is (h, m)-convex on
[
r, c

m
]
.
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Proof. Considering the Hölder inequality, the (h, m)-convexity for |rDq f
∣∣r and Lemma 1,

we have∣∣∣γ1[γ2A(c) + (1− γ2)A(r)] + (1− γ1)A(γ2c + (1− γ2)r)− 1
c−r
∫ c

r A(x)µ dqx
∣∣∣

≤ (c− r)
{(∫ 1

0 |qθ − (1− γ1γ2)|ζ0dqθ
) 1

ζ

×
( ∫ 1

0

∣∣∣rDqA(θc + (1− θ)r)
∣∣∣µ0dqθ

) 1
µ

+(1− γ1)
(∫ γ2

0 1ζ
0dqθ

) 1
ζ
(∫ γ2

0

∣∣
rDqA(θc + (1− θ)r) | 0 dqθ

) 1
µ

}
≤ (c− r)

{(∫ 1
0 |qθ − (1− γ1γ2)|ζ0dqθ

) 1
ζ

×
∫ 1

0

[
h(θ)

∣∣rDqA(c)
∣∣µ + mh(1− θ)

∣∣rDqA
( r

m
)∣∣µ]0dqθ

+(1− γ1)
(∫ γ2

0 1ζ
0dqθ

) 1
ζ ∫ γ2

0

[
h(θ)|rDqA(c)

∣∣µ + mh(1− θ)|rDqA
( r

m
)∣∣µ]0dqθ

≤ (c− r)
{(∫ 1

0 |qθ − (1− γ1γ2)|ζ0dqθ
) 1

ζ

×
[(∫ 1

0 h(θ))0dqθ
)∣∣rDqA(c)

∣∣µ + m
(∫ 1

0 h(1− θ)0dqθ
)∣∣rDqA

( r
m
)∣∣µ] 1

µ

+(1− γ1)µ
1
ζ

[(∫ µ
0 h(θ)0 dqθ

)∣∣rDqA(c)
∣∣µ

+ m
(∫ µ

0 h(1− θ)0dqθ
)∣∣

µDqA
( r

m
)∣∣µ] 1

µ

}
.

4. Special Cases

This section discuses some special cases of Theorems 4–6 along with the relationship
between the results reported therein.

Corollary 1. In Inequality (2) of Theorem 4,

i. Choosing h(θ) = θα with α ∈ (0, 1], we obtain Theorem 3.2 in [18].

ii. Taking γ1 = 0 and γ2 = 1
1+q , we get the q-midpoint-like integral inequality for (h − m)-

convexity ∣∣∣∣A( qr + c
1 + q

)
− 1

c− r

∫ c

r
A(x)rdqx

∣∣∣∣ ≤M(ς), (5)

where

M(ς) = (c− r)

{[∫ 1
1+q

0
h(θ)|qθ|0dqθ +

∫ 1

0
h(θ)|qθ − 1|0dqθ

−
∫ 1

1+q

0
h(θ)|qθ − 1|0dqθ

]∣∣rDqA(c)
∣∣

+m

[∫ 1
1+q

0
h(1− θ)|qθ|0dqθ +

∫ 1

0
h(1− θ)|qθ − 1|0dqθ

−
∫ 1

1+q

0
h(1− θ)|qθ − 1|0dqθ

]∣∣∣∣rDqA
( r

m

)∣∣∣∣}.
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iii. Setting γ1 = 1
3 , γ2 = 1

1+q and m = 1, we have q-Simpson-like integral inequality∣∣∣ 1
3

[
qA(r)+A(c)

1+q + 2A
(

qr+c
1+q

)]
− 1

c−r
∫ c

r A(x)rdqx
∣∣∣

≤ (c− r)
{[∫ 1

1+q
0 h(θ)|qθ − q

3(1+q) |0dqθ +
∫ 1

0 h(θ)|qθ − (1− 1
3(1+q) )|0dqθ

−
∫ 1

1+q
0 h(θ)|qθ − (1− 1

3(1+q) )|0dqθ

]∣∣rDqA(c)
∣∣

+m
[∫ 1

1+q
0 h(1− θ)|qθ − ( q

3(1+q) )|0dqθ +
∫ 1

0 h(1− θ)|qθ − (1− 1
3(1+q) )|0dqθ

−
∫ γ2

0 h(1− θ)|qθ − (1− 1
3(1+q) )|0dqθ

]∣∣∣∣aDqA
( r

m
)∣∣∣∣}.

(6)

iv. Choosing γ1 = 1
2 , m = 1 and γ2 = 1

1+q , we obtain the averaged midpoint-trapezoid-like integral
inequality for (h−m)-convexity∣∣∣ 1

2

[
qA(r)+A(c)

1+q +A
(

qr+c
1+q

)]
− 1

c−r
∫ c

r A(x)rdqx
∣∣∣

≤ (c− r)
{[∫ 1

1+q
0 h(θ)|qθ − q

2(1+q) |0dqt +
∫ 1

0 h(θ)|qθ − (1− 1
2(1+q) )|0dqθ

−
∫ 1

1+q
0 h(θ)|qθ − (1− 1

2(1+q) )|0dqθ

]∣∣rDqA(c)
∣∣

+m
[∫ 1

1+q
0 h(1− θ)|qθ − ( q

2(1+q) )|0dqθ +
∫ 1

0 h(1− θ)|qθ − (1− 1
2(1+q) )|0dqθ

−
∫ µ

0 h(1− θ)|qθ − (1− 1
2(1+q) )|0dqθ

]∣∣∣∣rDqA
( r

m
)∣∣∣∣}.

(7)

v. Taking γ1 = 1 and γ2 = 1
1+q , we get the q-trapezoid-like integral inequality via (h − m)-

convexity ∣∣∣ qA(r)+A(c)
1+q − 1

c−r
∫ c

r A(x)rdqx
∣∣∣

≤ (c− r)
{[∫ 1

1+q
0 h(θ)|qθ − q

1+q |0dqθ +
∫ 1

0 h(θ)|qθ − q
1+q |0dqθ

−
∫ 1

1+q
0 h(θ)|qθ − q

1+q |0dqθ

]∣∣rDqA(c)
∣∣

+m
[∫ 1

1+q
0 h(1− θ)|qθ − q

1+q |0dqθ +
∫ 1

0 h(1− θ)|qθ − q
1+q |0dqθ

−
∫ 1

1+q
0 h(1− θ)|qθ − q

1+q |0dqθ

]∣∣∣∣rDqA
( r

m
)∣∣∣∣}.

(8)

Remark 1. As a especial case of Corollary 1, for h(θ) = θ, one can get some more results.

i. In Inequality (5), choosing m = 1, we get Theorem 3 which is established in [21].
ii. In Inequality (6), if q→ 1−, then we obtain Corollary 1 in [23].
iii In Inequality (7), if q→ 1−, then we obtain Corollary 3.4 in [24].
iv. In Inequality (8), taking m = 1, we obtain Theorem 4.1 in [17].

Corollary 2. In Theorems 5 and 6, if taking γ2 = 1
1+q , we have the following particular cases

i. Choosing γ1 = 0, we obtain q-midpoint-like integral inequality for (h−m)-convexity.

ii. Taking γ1 = 1
3 , we have q-Simpson-like integral inequality via (h−m)-convexity.

iii. Choosing γ1 = 1
2 , we have the averaged midpoint-trapezoid-like integral inequality via (h−m)-

convexity.

iv. Taking γ1 = 1, we get q-trapezoid-like integral inequality for (h−m)-convexity.
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Remark 2. If γ2 = 1
1+q , when substituting γ1 = 1

3 , γ1 = 0, γ1 = 1 and γ1 = 1
2 in

Theorems 5 and 6, we obtain the Simpson-like, the midpoint-like, the trapezoid-like and the av-
eraged midpoint-trapezoid-like integral inequalities, respectively.

5. Conclusions

In this study, variant types of q-integral inequalities including Simpson-like, midpoint-
like, averaged midpoint-trapezoid-like types inequalities are generalized. It is important
to note that the results obtained in this study in particular cases provide extensions to the
results reported earlier in the literature. One advantage of our new inequalities is that they
can be reproduced to several Riemann integral inequalities as well as classical integral
inequalities for different classes of convexities, without proving each result independently.
Since the study of Quantum calculus along with mathematical inequalities is still an active
area of research, this work can be extended to coordinated convexity.
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