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Abstract: In this paper, a recompression S-CO2 Brayton cycle model that considers the finite-
temperature difference heat transfer between the heat source and the working fluid, irreversible
compression, expansion, and other irreversibility is established. First, the ecological function is
analyzed. Then the mass flow rate, pressure ratio, diversion coefficient, and the heat conductance
distribution ratios (HCDRs) of four heat exchangers (HEXs) are chosen as variables to optimize cycle
performance, and the problem of long optimization time is solved by building a neural network
prediction model. The results show that when the mass flow rate is small, the pressure ratio, the
HCDRs of heater, and high temperature regenerator are the main influencing factors of the ecolog-
ical function; when the mass flow rate is large, the influences of the re-compressor, the HCDRs of
low temperature regenerator, and cooler on the ecological function increase; reasonable adjustment
of the HCDRs of four HEXs can make the cycle performance better, but mass flow rate plays a
more important role; the ecological function can be increased by 12.13%, 31.52%, 52.2%, 93.26%,
and 96.99% compared with the initial design point after one-, two-, three-, four- and five-time
optimizations, respectively.

Keywords: recompression S-CO2 Brayton cycle; finite-time thermodynamics; neural network
prediction; ecological function

1. Introduction

A gas turbine (GT) has the advantages of a compact structure, small volume, light
weight, high power density, and high thermal efficiency and is mostly used as a driving
machine in surface ships and civilian ships. However, its waste heat temperature is high
and has the possibility of re-utilization. Strengthening the utilization of this part of the
waste heat can effectively improve the energy utilization rate [1]. The characteristics of
high efficiency, better stability, economy, compactness, and simplicity make the Brayton
cycle (BC) system based on supercritical carbon dioxide (S-CO2) have broad application
prospects [2–6]. Moreover, the optimal heat source temperature range of the S-CO2 Brayton
cycle (SCBC) is 450~700 ◦C [1], which matches the exhaust gas temperature of GT. Therefore,
it is an ideal cycle for recovering the waste heat of GTs [7–11].

Sulaiman et al. [12] analyzed the performances of five different types of SCBCs inte-
grated with solar thermal power plants, including regenerative, recompression, etc. The
results show that the recompression S-CO2 Brayton cycle (RCSCBC) has the highest thermal
efficiency. Vasquez et al. [13] analyzed the regenerative, recompressed, partially cooled,
and intercooled SCBC integrated with the solar receiver and obtained the optimal operating
conditions through multi-objective thermodynamic optimization. Anton et al. [14] used
thermodynamic modeling and analysis based on the combination of the RCSCBC with a
sodium-cooled fast reactor to explore the effect of different structural layouts on the thermal
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efficiency of the cycle. Alharbi et al. [15] proposed a multi-effect desalination system driven
by RCSCBC waste heat, which can be used for electricity and fresh water production.

Liu et al. [16] carried out the design and analysis of the RCSCBC for ships with an
output power of 40MW. The research results showed that the designed RCSCBC reached
an efficiency of 45.06% at 823.15 K, which meets the design requirements and improves
by 8.28% over the simple regenerative cycle. Li et al. [17] conducted a comparative study
on SCBC for waste heat recovery from GTs, where selected cycles were optimized and
analyzed in terms of system efficiency, etc. Khadse et al. [18] conducted a thermodynamic
optimization study of the RCSCBC for waste heat recovery applications; the results show
that higher pressures can result in a higher cycle power output.

Mohammadi et al. [19] proposed a combined cycle consisting of a GT cycle, an RC-
SCBC, and an organic Rankine cycle. The research results showed that the cycle could
effectively improve the utilization rate of heat recovery. Saeed and Kim [20] proposed a
novel SCBC, which consisted of four compression processes and one expansion process,
with a better ability to integrate with heat sources by comparing with the regenerative,
recompression, and intercooling and regenerative cycles, and the results showed that the
thermal efficiency (TEF) was comparable to that of the intercooling and regenerative cycle.
Khatoon et al. [21] investigated the thermodynamic performance of an RCSCBC integrated
with a direct air-cooled heat exchanger (HEX), and the research results showed that the
cooling process of S-CO2 was sensible heat transfer, and the thermophysical properties
changed nonlinearly.

Although the above work has carried out analysis and research on different types of
SCBCs, these studies have not considered in detail the effects of irreversible factors such as
irreversible compression and irreversible expansion. The overall optimum performances of
the SCBC device have not been obtained under the condition of a constant overall size of
the heat exchange devices.

Finite-time thermodynamics (FTT) [22–27] realizes the cross-integration of multiple
basic discipline theories including thermodynamics, heat transfer, and fluid mechanics
and is an important branch of modern thermodynamic theory. FTT seeks more practical
and useful performance bounds and obtains the optimal performance under limited size
constraints and the optimal way to achieve the goal [28–31], whose results have important
engineering value. FTT has been used in the studies of a wide variety of processes and
cycles, such as the organic Rankine cycle [32–34], Carnot cycle [35], thermoelectric gen-
erator [36], Kalina cycle [37,38], and Stirling heat engine [39,40]. Combining the analysis
method of FTT theory with the SCBC, on the one hand, makes up for the deficiency of the
traditional pure thermodynamic analysis method in the irreversibility analysis of the SCBC.
On the other hand, it can further expand the scope of application research objects of FTT,
which has important theoretical and engineering significances.

In Brayton cycle research based on the “ideal gas hypothesis”, Cheng and Chen [41–43]
established a Brayton cycle model by considering the irreversible losses of the cyclic
processes; derived the functional expressions of the cyclic power, efficiency, and ecological
functions; and optimized the cycle with these performance objectives. Ust et al. [44]
analyzed and studied the irreversible closed Brayton cycle with a constant-temperature
heat source and the ecological performance coefficient. Kaushik et al. [45] studied the
closed variable-temperature irreversible regenerative Brayton cycle model, aiming at cycle
power and efficiency. Tyagi et al. [46–49] established a closed irreversible intercooling
regenerative Brayton cycle model with constant-temperature and variable-temperature
heat sources, respectively, and analyzed the power, efficiency, and ecological performance
coefficient of the cycle.

In the FTT study of the SCBC, Na et al. [50] studied a preheating SCBC and investigated
the influences of related parameters on thermal efficiency and net power output. Jin
et al. [51] established an FTT model of the regenerative S-CO2 Brayton cycle and carried
out multi-objective optimization.
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An RCSCBC model that considers the finite temperature difference heat transfer
between the heat source and the working fluid (WF), irreversible compression, and irre-
versible expansion will be established in this paper. Firstly, the ecological functions are
analyzed; then, under the constraint of the total HEX inventory, taking the mass flow rate,
pressure ratio, diversion coefficient, and the heat conductance of each HEXs as optimization
variables, performance optimization for ecological function will be performed; and the
optimal design results with practical engineering application value will be given.

2. Physical Model

Figures 1 and 2 are the RCSCBC device diagram and T-s diagram, respectively. The
RCSCBC device is mainly composed of the main compressor, re-compressor, low tempera-
ture regenerator (LTR), high temperature regenerator (HTR), heater, turbine, and cooler.
In Figure 2, 1-2S and 1-2 denote the ideal reversible and the actual irreversible adiabatic
compression processes in the main compressor, respectively; 2-8 and 8-3 denote the heat
absorption process in the LTR and HTR, respectively; 3-4 denotes the heat absorption pro-
cess from the high-temperature heat reservoir; 4-5 and 4-5S denote the actual irreversible
and the ideal reversible adiabatic expansion processes, respectively; 5-6 and 6-7 denote
the heat release processes in the LTR and HTR. At state point 7, the WF is divided by a
flow divider, and a part of the WF enters the re-compressor; 8-7 is the actual irreversible
adiabatic compression process in the re-compressor. After this, part of the WF leaves the
re-compressor; it reaches the temperature of state point 8 after an isenthalpic mixing process
with the WF after endothermic heating in the LTR, and 7-1 indicates the exothermic process.
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Figure 1. The device diagram of RCSCBC. Figure 1. The device diagram of RCSCBC.

We regarded mwf as the mass flow rate of the WF; mwf,1 as the mass flow rate of WF
entering the cooler through the splitter after the S-CO2 comes out of the LTR; and mwf,2 as
the mass flow rate of WF entering the re-compressor through the splitter. Defining the ratio
of mwf,1 to mwf as the diversion coefficient xp, there is the following formula:

mwf,1 = xp · mwf (1)

mwf,2 =
(
1 − xp

)
· mwf (2)
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Figure 2. The T-s diagram of RCSCBC.

The efficiencies of main compressor, re-compressor, and turbine are represented by ηc,
ηc,2, and ηt:

ηc = (h2s − h1)/(h2 − h1) (3)

ηc,2 = (h8s − h7)/(h8,RC − h7) (4)

ηt = (h4 − h5)/(h4 − h5s) (5)

where h1, h2s, h8,LTR, h8,RC, h8, h2, h3, h4, h5s, h5, h6, h8s, and h7 are the specific enthalpies of
the corresponding state points.

π is the pressure ratio. TH,in, TH,out, TL,in, and TL,out are the inlet and outlet temper-
atures of the hot and cold source, respectively. T8,LTR is the temperature of the WF after
being heated by LTR, T8,RC is the temperature of S-CO2 after leaving the re-compressor,
and T8 is the temperature of WF after the isenthalpic mixing process; T0 is the ambient
temperature. mH and mL are the mass flow rates of the heat source and the cold source.
The heat conductances of the heater, the cooler, the LTR, and the HTR are expressed as UH,
UL, ULTR, and UHTR, respectively. According to the HEX theory, the heat absorption rate
QH, heat release rate QL, and heat recovery rates QLTR and QHTR are, respectively, given
by [52–56]:

QH = UH · (TH,in − T4)− (TH,out − T3)

ln[(TH,in − T4)/(TH,out − T3)]
= cp,H · mH · (TH,in − TH,out) (6)

QL = UL · (T7 − TL,out)− (T1 − TL,in)

ln[(T7 − TL,out)/(T1 − TL,in)]
= cp,L · mL · (TL,out − TL,in) (7)

QLTR = ULTR · (T6 − T8,LTR)− (T7 − T2)

ln[(T6 − T8,LTR)/(T7 − T2)]
(8)

QHTR = UHTR · (T5 − T3)− (T6 − T8)

ln[(T5 − T3)/(T6 − T8)]
(9)
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From the thermal properties of the WF, QH, QL, QHTR, and QLTR are, respectively,

QH = mwf · (h4 − h3) (10)

QL = mwf,1 · (h7 − h1) (11)

h8 · mwf = h8,LTR · mwf,1 + h8,RC · mwf,2 (12)

QHTR = mwf · (h3 − h8) = mwf · (h5 − h6) (13)

QLTR = mwf,1 · (h8,LTR − h2) = mwf · (h6 − h7) (14)

The total HEX inventory UT is the sum of the UH, UL, ULTR, and UHTR.

UT = ULTR + UHTR + UL + UH (15)

Define the heat conductance distribution ratio ψ. The ψ of the heater, the cooler, LTR,
and HTR are expressed as ψH = UH/UT,ψL = UL/UT, ψLTR = ULTR/UT, and ψHTR =
UHTR/UT, respectively. The ψH, ψL, ψLTR, and ψHTR have the following relationship:

ψH + ψLTR + ψL + ψHTR = 1 (16)

For the RCSCBC, the Wnet is the difference between the turbine power Wt and the
compressor power consumption, Wc, and the compressor power consumption is the sum
of the main compressor power consumption Wc,1 and re-compressor power consumption
Wc,2. They are given by

Wc,1 = mwf,1 · (h2 − h1) (17)

Wc,2 = mwf,2 · (h8,RC − h7) (18)

Wc = Wc,1 + Wc,2 (19)

Wt = mwf · (h4 − h5) (20)

Wnet = Wt − Wc (21)

The entropy production rate and ecological function E of the cycle are:

sg = mL · cp,L · ln
(

TL,out

TL,in

)
− mH · cp,H · ln

(
TH,in

TH,out

)
(22)

E = Wnet − T0 · sg (23)

Since S-CO2 is an actual gas, the p-V-T (V is the volume) relationship does not sat-
isfy the ideal gas equation of state. In addition, the relationship between the specific
heat capacity of S-CO2, pressure, and temperature is very complicated, so it is impossi-
ble to obtain the explanatory formula for the temperature and specific enthalpy at each
state point of the cycle. Numerical solutions for temperature and specific enthalpy can
only be obtained programmatically. Under the given boundary conditions (TH,in, TL,in,
UH, UL, ULTR, UHTR, ηc, ηc,2, and ηt), the nonlinear equation system composed of the
Equations (1)–(16) is solved by the refpropm function and the @fsolve function, and the
temperature and specific enthalpy of each state point can be obtained. The calculated
specific enthalpy is further imported into Equations (17)–(23) to solve the NPO and TEF
under the given boundary conditions. The specific calculation flow chart is shown in
Figure 3. The cycle calculation program is written by MATLAB software, and the physical
properties of S-CO2 were calculated by REFPROP [57].
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According to the Ref. [50], Table 1 gives the initial design point (IDP) parameters.

Table 1. Initial design parameters.

Parameter Value Parameter Value

TH,in 805.15 K ηt 0.89
TL,in 298.15 K ηc,2 1.0
mH 89.9 kg·s−1 UHTR 600 kW·K−1

mL 1000 kg·s−1 UH 1200 kW·K−1

mwf 120 kg·s−1 ULTR 300 kW·K−1

xp 0.8 UL 900 kW·K−1

pmin 7.7 MPa cp,L 4181.3 kJ·(kg·K)−1

pmax 20 MPa cp,H 1103.7 kJ·(kg·K)−1

ηc 0.89 - -

Firstly, the cycle performance is analyzed, and the relationship between the E, xp, and
π are studied and analyzed under the conditions of different mwf, ηc, and ηt. Then, with the
goal of maximizing E, under the constraint that the UT is a fixed value, the optimization will
be carried out with the mwf, xp, π, ψH, ψL, ψLTR, and ψHTR as the optimization variables.

3. Results and Discussion
3.1. Ecological Function Analysis of RCSCBC

Let ψLTR = 0.1, ψHTR = 0.2, ψH = 0.4, ψL = 0.3, and π = 3, respectively. Figure 4 shows
the variation trend of E with the xp. Since the physical properties of CO2 change drastically
near the critical point, it is best to keep the T1 above the critical point. In the case of
given other parameters, the effect of the xp on the T1 is very obvious. Figure 4 shows the
minimum xp that can be selected according to the criterion that the T1 must be higher than
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the critical temperature under different mwf. When the mwf is 120 kg·s−1, the selectable
minimum xp is 0.718, and when the mwf is 130 kg·s−1, the selectable minimum xp is 0.76.
When the mwf is 140 kg·s−1, the selectable minimum xp is 0.808. Within the value range
of 0.45 < xp < 1, the E increases first and then decreases with the xp. After exceeding the
marked minimum xp, the E shows a decreasing trend. The xp and mwf are not just isolated
variables; there is also an interaction between them. Further analysis of the regulation of
the curve in Figure 4 showed that the smaller mwf, the smaller the minimum xp of the T1
exceeding the critical temperature. This indicates that the WF split affects the temperature
of each state point of the cycle, and the increase of mwf can expand the selection range of
the xp.
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Figure 4. Effect of mwf on E–xp relation.

Let ψLTR = 0.1, ψHTR = 0.2, ψH = 0.4, ψL = 0.3, and xp = 0.8, respectively. Figure 5 shows
the variation trend of the E with the π under different mwfs. Under the same mwf, the E
increases first and then decreases with the increase of the π. Additionally, there are the
following characteristics, that is, with the increase of the mwf, the optimal π corresponding
to the maximum E gradually decreases. This is due to that the π affects the size of the net
power output in both indirect and direct processes, and this influence will change with
the change of mwf and act on the specific value of E. In practical engineering, an appro-
priate π should be selected according to the corresponding environment to achieve better
ecological performance.

Let ψLTR = 0.1, ψHTR = 0.2, ψH = 0.4, ψL = 0.3, and xp = 0.8, respectively. Figure 6 shows
the variation trend of the E with the π under different ηts and ηcs. With the increase of
ηt and ηc, the maximum E of the cycle increases, and the corresponding optimal π also
increases gradually. This is due to that the values of ηt and ηc reflect the irreversibility of the
expansion and compression processes. The E, as a thermodynamic index that compromises
the sg and Wnet, can measure the irreversibility of the cycle to a certain extent; that is, there
is a correlation between ηt, ηc, and the E. Therefore, the higher the ηt and ηc, the smaller
the energy loss caused by the irreversibility of the cycle, and the larger the E value.
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Let ψLTR = 0.1, ψHTR = 0.2, ψH = 0.4, ψL = 0.3, and xp = 0.8, respectively. Figure 7
shows the three-dimensional relationship between the E, mwf, and π. From Figure 7, E
decreases gradually with the increase of the mwf and increases first and then decreases
with the increase of the π. The spherical point in Figure 7 is the maximum E when the T1
exceeds the critical temperature.
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Let mwf = 140 kg·s−1, ψLTR = 0.1, ψHTR = 0.2, ψH = 0.4, and ψL = 0.3, respectively.
Figure 8 shows the three-dimensional relationship between the E, xp, and π. The spherical
point in Figure 8 is the maximum E when the T1 exceeds the critical temperature. It can
be seen that the extreme points in Figures 7 and 8 are far away from the actual maximum
value point. This is due to that the π, mwf, and xp have great influences on the temperature
at each state point of the cycle, and the T1 will directly affect the stability of the cycle
operation. Under the combined action of these factors, the value range of the E is not the
entire surface, so the optimal value that can be selected is not the actual maximum value.
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Let mwf = 140 kg·s−1, xp = 0.8, π = 3, and ψLTR = 0.1, respectively. Figure 9 shows the
three-dimensional relationship between the E, ψH, and ψHTR. The spherical point in the
Figure 9 is the maximum point of the E, and the ψH at this point is significantly higher
than that of the ψHTR. It shows that under the condition of this parameter, the heater has a
great influence on the E. The best performance of the cycle can be obtained by adjusting the
values of the mwf, π, and xp and further optimizing the ψH, ψHTR, ψL, and ψLTR.
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3.2. Performance Optimization

This section will aim to maximize E under the constraint that the UT is a fixed value.
The optimization is carried out with the mwf, xp, π, ψH, ψHTR, and ψLTR as the optimization
variables, and the specific optimization process is shown in Figure 10.
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The parameter constraints are shown as follows:

60 ≤ mwf ≤ 140
(
kg · s−1)

2 ≤ π ≤ 7.5
0.45 ≤ xp ≤ 0.9
0.01 ≤ ψLTR ≤ 0.4
0.05 ≤ ψHTR ≤ 0.5
0.05 ≤ ψH ≤ 0.5

(24)

At the same time, it is best to keep the T1 above the critical temperature, so an
additional constraint is given by

T1 ≥ 304.42K (25)

The performance optimization of the RCSCBC includes six optimization variables,
including mwf, π, xp and ψLTR, ψH, ψHTR. Through the traditional solution method, there
will be a problem of a large amount of calculation, and the @fsolve function is used in the
calculation process to rely heavily on the initial value. The interruption of the calculation
program caused by calling the REFPROP physical property library to report an error has
added more difficulties to the research work. Using neural network prediction can increase
the calculation speed, eliminate the need to calculate the ecological function by solving the
nonlinear equation system, and get rid of the program’s dependence on the calculation of
the initial value. In the case of many optimization variables, neural network prediction is
an effective method to simplify the calculation steps.

Therefore, this section introduces neural network prediction in the optimization of the
cycle’s single-objective performance.

The method of using the neural network is relatively simple. As long as the corre-
sponding optimization variables are input into the neural network, the corresponding
performance target can be obtained. A neural network can be thought of as a very con-
venient function. In the optimization process, it is only necessary to specify the value
range of the corresponding optimization variables and then use the global search algorithm
@globalsearch to call the neural network to obtain the optimal ecological function under
different conditions.

Among them, constructing a neural network requires correct sample data to construct
a mapping function, so its training is carried out on the basis of computational data. By
constructing a neural network with a large sample amount of data, the target value of the
cycle can be predicted only by entering the corresponding parameter values. Additionally,
the more sample data, the closer the final trained model is to the real function. The
parameter settings for training the neural network are shown in Table 2.

Table 2. Parameter settings of neural network model for the RCSCBC.

Parameter Name E T1

Samples 6227 6227
Input nodes 6 6

Output 1 1
Hidden layers 2 2

Number of hidden layer nodes layer nodes 30, 15 30, 15
Hidden layer activation function tansig, purelin tansig, purelin

Training times 80,000 80,000
Minimum number of confirmation failures 10,000 10,000

Learning rate 120.0 120.0
Minimum training target error 1 × 10−6 1 × 10−7

Performance function mse mse

Neural networks are not just the starting point for optimization algorithms. When
there are few optimization variables, the calculation process is relatively simple, but every
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time one more variable is released, the calculation process becomes complicated. There-
fore, a global search algorithm is used for each optimization to call the neural network
for optimization.

The construction of the neural network model requires sample points, and each
optimization variable is used as the input value; ecological function is the output value.
The value range of each variable is shown in Equation (24). There were 6227 random
sample points within the calculation range obtained by calculation, and these data are used
as samples to train the neural network prediction model.

To verify the reliability of neural network prediction model, it is necessary to re-collect
36 sets of data and compare the calculated values with the predicted values. The re-collected
36 sets of test data cannot be any of the sample data. The comparison results are shown in
Figure 11. According to Figure 11, neural network prediction is reliable.
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Let π = 3, xp = 0.8, mwf = 140 kg·s−1, and ψLTR = 0.1. Figure 12 shows the variation
trend of E and its corresponding ψH and ψL with ψHTR. From Figure 12, with the increase
of ψHTR, E first increases and then decreases, ψH gradually decreases, and ψL increases first
and then decreases. When ψHTR = 0.38, ψH = 0.25, and ψL = 0.27, E reaches the maximum
value. The reason for the difference from the optimal value given in Figure 9 comes from
two aspects: one is that there is a certain error in the neural network itself, and the other is
that the prediction of the neural network has volatility, but this part of the gap is within an
acceptable range.

Let π = 3, xp = 0.8, and mwf = 140. Figure 13 shows the maximum E and the cor-
responding optimal ψHTR, ψH, and ψL under different ψLTRs. From Figure 13, with the
increase of ψLTR, E first increases and then decreases, and its corresponding optimal ψHTR
has a very obvious downward trend. ψL first increases and then decreases, but the change
is small. Although ψH also shows a downward trend, the change is relatively small. It
shows that under the premise of given other parameters, there is a relationship of mutual
influence and restriction between the LTR and HTR. The reasonable distribution of ψHTR
and ψLTR can make the ecological performance of the RCSCBC reach a better level.
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Let π = 3 and xp = 0.8. Figure 14 shows the E of the RCSCBC and its corresponding
ψHTR, ψH, ψLTR, and ψL under different mwf. It can be seen from Figure 14 that, given the xp
and π, the optimal value of the cyclic E first increases and then decreases with the increase
of the mwf. Additionally, it reaches the maximum value when the mwf is in the range of
100~110 kg·s−1. The changing trends of the four heat conductance distribution ratios with
the mwf show that ψH gradually decreases, ψL gradually increases, and ψLTR and ψHTR
fluctuate up and down within a certain range. When the mwf is 70, 80, and 90 kg·s−1, there
are inflection points in the ψH and ψLTR. The main reason for these inflection points is that
the T1 needs to exceed the critical temperature of carbon dioxide.
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Taking into account the possibility of too many variables causing the curves to be
unclear in the picture, the images after four- and five-time optimizations are no longer
given, and the results after four- and five-time optimizations are directly given in Table 3.

Table 3. Optimization calculation results of E based on design point.

Parameters
and Objective

Initial
Design Point

One-Time
Optimization

Result

Two-Time
Optimization

Result

Three-Time
Optimization

Result

Four-Time
Optimization

Result

Five-Time
Optimization

Result

mwf/kg·s−1 140 140 140 105 86.35 85.26
π 3 3 3 3 5.02 5.83
xp 0.8 0.8 0.8 0.8 0.80 0.90

ψLTR 0.1 0.1 0.39 0.13 0.28 0.23
ψHTR 0.2 0.38 0.1 0.27 0.15 0.16
ψH 0.4 0.22 0.22 0.33 0.37 0.39
ψL 0.3 0.27 0.29 0.27 0.20 0.22

E/×106 W 3.75 3.972 4.937 5.707 7.25 7.387
δE/% - 5.92 31.65 52.2 93.26 96.99

Table 3 shows the results obtained by performing one-, two-, three-, four- and five-
time optimizations in turn with the goal of maximizing E. It can be seen from Table 3 that
after the one-time optimization, the E can be improved by 12.13% compared with the IDP.
After the two-time optimization, the E can be improved by 31.52%. After the three-time
optimizations, the E can be improved by 52.2%. After four-time optimization, the E can
be improved by 93.26%. After five-time optimization, the E can be improved by 96.99%.
From the changes of cycle parameters in the one-, two- and three-time optimizations, it can
be found that when the mwf is large, the ψLTR is the main factor affecting the E. After the
three-time optimization, the mwf corresponding to the optimal value of the E decreases, the
ψLTR decreases, and the ψHTR increases. This shows that when the mwf is small, the HTR is
the main factor affecting the E. In addition, in the three-time optimization, the improvement
of the E produces a sudden change. It shows that the heat conductance distribution ratio
can make the distribution of cycle performance better, but the mwf plays a much more
important role.
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Comparing three-, four- and five-time optimizations, it can be found that after releasing
the π and mwf, the parameters corresponding to the maximum E have changed significantly,
which indicates that the π and mwf are the main factors affecting the E.

In the five-time optimization, the xp corresponding to the best E reaches 0.9, which is the
calculation boundary of the selected parameters, which is influenced by other parameters.

Comparing the results of the five-time optimization with those of the four-time opti-
mization, in addition to the increase of the xp, the optimal π corresponding to the optimal
E of the cycle also gradually increases, the ψH increases, the ψHTR increases, the ψLTR grad-
ually decreases, and the ψL increases. The values of all parameters have been re-arranged
and changed, which further illustrates that the relationship between the various cycle
parameters is also mutual influential.

Table 4 shows the maximum E of the RCSCBC and its corresponding optimal param-
eters under different mwfs. According to Table 4, when the mwf is small, the π and xp
corresponding to the optimal value of the E are relatively large. When the mwf is larger, the
π and xp are smaller. According to the definition of the xp, the larger the xp, the smaller
mwf entering the re-compressor. When the xp is one, the RCSCBC is transformed into a
RSCBC with two regenerators connected in series.

Table 4. Calculation results for the case with Emax as the optimization objective.

Optimization Variables Objective Results

mwf/kg·s−1 π xp ψLTR ψHTR ψH ψL E/×106 W δE/%

60.00 5.76 0.83 0.28 0.21 0.37 0.15 5.998 59.93
65.00 6.55 0.90 0.24 0.29 0.31 0.17 6.512 73.66
70.00 6.15 0.90 0.15 0.20 0.47 0.18 6.844 82.49
75.00 5.88 0.89 0.22 0.22 0.37 0.19 7.127 90.05
80.00 6.00 0.90 0.19 0.17 0.43 0.21 7.305 94.79
85.00 5.83 0.90 0.24 0.18 0.36 0.22 7.350 96.01
90.00 5.67 0.87 0.21 0.16 0.40 0.23 7.286 94.30
95.00 5.04 0.79 0.30 0.15 0.33 0.22 7.205 92.13

100.00 5.19 0.82 0.32 0.15 0.28 0.24 7.029 87.44
105.00 4.47 0.79 0.28 0.17 0.30 0.25 6.900 83.99
110.00 4.60 0.76 0.29 0.18 0.28 0.25 6.712 78.97
115.00 4.20 0.73 0.33 0.15 0.27 0.25 6.606 76.15
120.00 4.04 0.73 0.29 0.18 0.26 0.27 6.371 69.89
125.00 3.84 0.72 0.34 0.15 0.23 0.28 6.212 65.66
130.00 3.71 0.70 0.34 0.15 0.23 0.28 6.006 60.16
135.00 3.58 0.67 0.33 0.18 0.22 0.27 5.765 53.74

This shows that when the mwf is small, the E of the RSCBC is larger and more ad-
vantageous, and when the mwf is large, the E of the RCSCBC is larger, which is more ad-
vantageous than the RSCBC. Besides, the optimal π gradually decreases with the increase
of mwf and directly affects the ecological performance of the cycle. In actual engineering,
appropriate parameters can be selected for different situations according to the data in
Tables 3 and 4 to achieve the best ecological performance of the cycle.

Comparing the data in Table 4, it can be found that when the mwf is 65, 75 and
100 kg·s−1, there are some inflection points in the values of the xp and π.This is due to the
influence of the computational boundary, the additional constraint from the T1, and the
influence of the volatility of the neural network prediction. Considering the functionality of
the RCSCBC, the xp cannot take a value of 1, and according to Equation (24), the xp cannot
take a value greater than 0.9. Under this premise, when the mwf is small, the calculation of
the optimal value of the E is limited.

To sum up, when the mwf is small, the π, heater, and HTR are the main factors
influencing the ecological function. At a higher mwf, the effects of the re-compressor,
LTR, and cooler on the E increases. According to Table 4, after optimization, the E can be
improved by at least 53.74% compared with the IDP.



Entropy 2022, 24, 732 16 of 19

Figure 15 shows the T1, TH,out, and the T4 at each value point in Figure 14. From
Figure 15, the T1 is maintained above 304.42K but has not changed significantly. With the
increase of the mwf, both the TH,out and T4 decrease. The temperature of each state point
can provide a reference for the stable operation of the cycle and reflect the accuracy of the
optimization results to a certain extent.
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4. Conclusions

In this paper, an FTT model of the RCSCBC was established. First, the performance
analysis of the E was carried out. Then, on the premise of a certain total heat exchanger
inventory, the E as optimized with the mwf, π, xp, ψH, ψHTR, and ψLTR as optimization
variables, and the following conclusions were obtained.

(1) The values of ηt and ηc reflect the irreversibility of the expansion process and the
compression process, and the E is used as a thermodynamic index for compromising
entropy yield and net power. The irreversibility of the cycle can be measured to a
certain extent, that is, there is a correlation between ηt, ηc, and E. The higher the ηc
and ηt, the smaller the energy loss caused by the irreversibility of the cycle, and the
larger the E value.

(2) When the mwf is small, the π, heater and HTR are the main influencing factors on the
ecological function. When the mwf is large, the influences of the re-compressor, LTR,
and cooler on the E increases. A reasonable adjustment of the distribution ratios of
ψH, ψHTR, ψLTR, and ψL can make the cycle performance better, but mwf plays a much
more important role.

(3) Each cycle parameter not only affects the performance of the cycle, but also has a
mutual influence relationship. The ecological function can be increased by 12.13%,
31.52%, 52.2%, 93.26%, and 96.99% compared with the IDP after one-, two-, three-,
four-, and five-time optimizations.
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Nomenclature

cp Specific heat capacity at constant pressure, J · kg−1 · K−1

E Ecological function, W
h Specific enthalpy, J · kg−1

m Mass flow rate, kg · s−1

p Pressure, Mpa
Q Heat transfer rate, W
sg Entropy production rate, W · K−1

T Temperature, K
U Heat conductance, kW · K−1

W Net power output, W
x Diversion coefficient
Greek letters
ψ Heat conductance distribution ratio
π Pressure ratio
η Efficiency
Subscripts
c Compressor
H Heat source
HTR High temperature regenerator
in Inlet or inside
L Cold source
LTR Low temperature regenerator
out Outlet or outside
RC Re-compressor
T Total
t Turbine
Abbreviations
BC Brayton cycle
FTT Finite-time thermodynamics
GT Gas turbine
HCDR Heat conductance distribution ratio
HEX Heat exchanger
NPO Net power output
RCSCBC Recompression S-CO2 Brayton cycle
S-CO2 Supercritical Carbon-dioxide
SCBC S-CO2 Brayton cycle
TEF Thermal Efficiency
WF Working Fluid
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