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Abstract: Automatic building semantic segmentation is the most critical and relevant task in several
geospatial applications. Methods based on convolutional neural networks (CNNs) are mainly used
in current building segmentation. The requirement of huge pixel-level labels is a significant obstacle
to achieve the semantic segmentation of building by CNNs. In this paper, we propose a novel
weakly supervised framework for building segmentation, which generates high-quality pixel-level
annotations and optimizes the segmentation network. A superpixel segmentation algorithm can
predict a boundary map for training images. Then, Superpixels-CRF built on the superpixel regions
is guided by spot seeds to propagate information from spot seeds to unlabeled regions, resulting in
high-quality pixel-level annotations. Using these high-quality pixel-level annotations, we can train
a more robust segmentation network and predict segmentation maps. To iteratively optimize the
segmentation network, the predicted segmentation maps are refined, and the segmentation network
are retrained. Comparative experiments demonstrate that the proposed segmentation framework
achieves a marked improvement in the building’s segmentation quality while reducing human
labeling efforts.

Keywords: building semantic segmentation; deep learning; weakly supervised learning; very high
resolution; imagery

1. Introduction

Automatic building semantic segmentation in very high resolution (VHR) remote
sensing images has proved use in a range of applications, including emergency manage-
ment, urban planning, traffic evaluation, and mapping [1,2]. Segmentation is often used
in computer vision [3,4] and industrial robots [5,6], but it has lately been used in remote
sensing, which is important in a variety of applications such as environmental monitoring
and danger identification [7]. Building segmentation using distant sensing photos (VHR im-
ages) is often more challenging than segmenting objects from ordinary photographs. Many
factors, however, influence and complicate the extraction of 2D buildings from VHR photos,
including sizes, backdrop complexity (i.e., water, shadow, vegetation, bodies, and other
physical elements), roof diversities, and other topological difficulties [8]. For building
extraction from two-dimensional and three-dimensional data, several techniques have been
proposed, which include deep learning and traditional methods. In traditional methods,
hand-crafted features, such as geometrical information and spectral/spatial information,
are used [8,9]. In random field, clustering, and active contours, low-level features, such
as color, texture, etc., are used [10,11]. However, they reduce representational ability and
performance, and rely on an inefficient manual feature selection process.

Deep learning algorithms can extract high-level characteristics from 2D/3D data sets,
harmonizing various absorption levels. As a result, deep learning dominates the field of
building extraction [12,13]. A number of deep learning techniques have been developed for
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building extraction. The fully convolutional networks and the convolutional networks are
often used as a foundation for newer image segmentation techniques [14]. Deeplab-V3 [15],
VGG-16 [16], ResNet [17] and DensNet [18] are some of the pre-trained deep convolutional
neural networks that have been designed to identify images.

Features are taken and integrated for each of the aforementioned networks to provide
efficient segmentation. Furthermore, for the semantic segmentation of large things, abstract
characteristics and high levels are utilized, whereas natural features and low levels are
appropriate for tiny items. Several supervised semantic segmentation techniques based on
deep networks have also been developed.

In semantic segmentation, the suggested approach for producing a building segmenta-
tion image assigns a class name to every pixel. To achieve outstanding results, deep neural
networks must be trained with a high number of pixel-level segmentation labels. The most
major constraint of the segmentation challenge is the collecting of pixel-level information.
It will take some extra time and money because it is a bit challenging. Many researchers
have developed a variety of DCNN-based weakly supervised segmentation approaches
to lower the degree of pixel-level annotations. Only a few annotations, such as bounding
boxes,image-level labels, and scribbles, are used in these techniques.

Although the image level label is the most time consuming and simple of all of these
weakly supervised methods, the semantic segmentation accuracy is still considerably infe-
rior to strongly supervised results when only image-level labels are used. Box-level annota-
tions produce results that are quite analogous to real pixel-level annotations. However, box
annotations include the object bounds and trusted background regions, and therefore box-
supervised training is not possible for distributing information. Spot and scribble weakly
supervised learning, on the other hand, occupies a center ground between image-level
and box-level supervision. With spots, a few pixel locations are provided, which should
lead to a higher level of performance than with image annotations [2,4,7,19] . A few extra
pixels of location data provided by spots are expected to improve performance, compared
to box-level annotations [18,20]. Spot seeds are more vague and lack a defined boundary of
objects; compared to scribble [21], sparse spot seeds [21] are more efficient for annotating
images. Additionally, spots are easier to note “things” (for example, sky, grass, ocean
waters, and so on) that have hazy and ill-defined boundaries. In this paper, the training
images are fed into a superpixels algorithm in order to forecast a boundary map.

The information from spot seeds is then propagated from spot seeds to unmarked
regions, using a graphical model (superpixels-CRF) developed over superpixel regions
to create the first pixel-level annotations, which can accommodate more boundaries and
capture exact local structure while maintaining object shape. After that, the segmentation
network is used to train and prophesy segmentation maps using the initial pixel-level
annotations. The proposed refining technique is then used for segmentation masks in
order to obtain precise and complete annotations at the pixel level, which are subsequently
used to start training again the segmentation network. These steps are repeated continu-
ously to provide high-quality annotations at the pixel level and to train a more accurate
segmentation network. Our proposed method, as shown in Figure 1, enables more exact
pixel-level annotations than earlier annotations, which improves the segmentation per-
formance. The proposed method is known as the “spots supervised iteration framework
(SSIF)” for weakly supervised building semantic segmentation in very high resolution
(VHR images). Compared to previous fully supervised works, the proposed framework
achieves comparable results while significantly reducing the annotation workload. To the
best of our knowledge, this study is the first work to use spot annotations for weakly super-
vised building semantic segmentation. Our contributions to this work can be summarized
as follows.

1. We release novel spot annotation datasets for building semantic segmentation.
2. We propose a method for generating high-quality pixel-level annotations using spot

annotations and a graphical model based on superpixel segmentation.
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3. A novel iterative training framework is proposed in our work. The performance can
be improved by refining the pixel level annotation and iteratively optimizing the
segmentation network.

4. According to experimental results on three public datasets, the proposed framework
achieves a marked improvement in the building’s segmentation quality while reduc-
ing human labeling efforts.

R
e

fi
n

e
m

e
n

t 
P

ro
ce

ss

Superpixels

Input Image Slices

Initial Ground Truth

Input Image Slices

Initial Ground Truth

(a)

(b)

Segmentation Maps 

Update ground truth
in the next iteration

Iteration

Figure 1. Pipeline of the proposed framework for the building’s semantic segmentation. (a) Generat-
ing initial ground truth: first, spot seeds are used to guide a superpixels-CRF model over superpixels
segmentation to produce the initial ground truth. (b) Then, our framework utilizes the initial ground
truth for the segmentation network training and predicts the segmentation masks of training images.
In order to produce more accurate ground truth, we utilize a refinement process to smooth the
segmentation network, which retrains again to provide more precise segmentation prediction as we
iteratively optimize the segmentation.

The following chapters are organized as follows. Section 2 reviews related work in
skin lesion segmentation. Section 3 elaborates on the mechanisms used in our framework.
Section 4 demonstrates the experiment setting, results, analysis, etc. Finally, we conclude
in Section 5.

2. Related Work
2.1. Semantic Segmentation of Remote-Sensing Images

Every pixel in an image is labeled using semantic segmentation techniques. In com-
puter vision, semantic segmentation is used frequently. However, it has also recently
become widely used in remote sensing. It has several applications, such as environment
monitoring, natural hazard detection, urban planning, and land-cover classification [7].
Remote-sensing images have extremely high resolution and distinct properties compared to
conventional digital images, which offer obstacles for semantic segmentation goals. Thus,
semantic segmentation images require an efficient feature representation. The segmentation
of remotely sensed images has been the subject of a considerable body of research. To create
segments for images, traditional approaches, such as active contours and clustering, mean
shifts, watersheds and Markov random field models, have been frequently employed.
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Hand-crafted feature selection is a frequent shortcoming of these systems that is difficult to
optimize. Deep learning algorithms have lately demonstrated tremendous effectiveness on
both remotely sensed and other images in semantic segmentation.

Semantic segmentation is presented using several deep learning architectures. Seg-
Net [22,23] is a deep fully convolutional encoder–decoder architecture for semantic seg-
mentation that has been proposed to be incorporated into a single framework. In SegNet,
the lower connected layers of the network are replaced with convolutional layers, thus
achieving robust end-to-end learning. Additionally, it employs an alternate decoder vari-
ant, which makes use of pooling indices to calculate the max-pooling step of the encoder
through nonlinear sampling. As a result of this modification, the robustness of SegNet
is improved, and sufficient memory is ensured. Another variant of the encoder–decoder
model is U-Net [24,25], which enables the decoder to relearn key features that are lost
during pooling in the encoder. A probabilistic graph model called conditional random
field (CRF) was proposed in [26] to improve the output quality. CRF enhances the object
boundary [27] and is used to further develop the network into an end-to-end trainable
network. Semantic segmentation methods [5,6,28,29] have been helpful in the development
of electrical monitoring systems for use in the electronic manufacturing industry.

2.2. Weakly Supervised Learning

Building segmentation has achieved excellent results in a fully supervised method
in recent years, and segmentation performance has significantly increased. In order to
reduce the time cost of data labeling and ensure the performance of the network, most
recent studies for semantic segmentation focus on training models in semi-supervised or
weakly supervised environments [30]. Image-level labels [31,32] or bounding boxes [33]
have become the dominant weakly supervised setting. Jing et al. [31] proposed a new
recursive coarse-to-fine semantic segmentation framework that requires only image-level
annotations and allows for the generation of masks for multiple-labeled images, using a
single class-labeled image. Dai et al. [33] leveraged bounding box annotations to iterate
between automatically generating region proposals and training a convolutional network
to gradually improve the performance of segmentation. In this work, we propose a weak
supervision framework based on image-level labels that requires minimal labeling time
but does not significantly impair performance.

3. The Proposed Method

This section introduces the training strategy for extracting buildings from VHR images
using weakly supervised semantic segmentation, as well as the proposed framework in
detail. The components of the proposed framework are first described. Second, we show
how the initial ground truth annotations are made. Finally, we show how we may iteratively
update the initial ground truth annotations using the refinement process and train the
segmentation network. Figure 2 shows the main steps of the proposed method.

3.1. The Proposed Framework’s Architecture

A set of pixels with a category label is called an annotated spot seed with a category.
The spot seeds are provided in a sparse manner, which is in contrast to the requirements
of pixel-level semantic segmentation, which requires the identification of dense, internal,
and integral regions in order to perform pixel-level inference. As a solution to this problem,
we employ spot seeds to drive a superpixels-CRF model through superpixels segmentation,
resulting in high-quality ground truths. Then, using the high-quality ground facts as
supervision, the segmentation network is trained, and the anticipated segmentation masks
are generated. The proposed refining approach is then applied to segmentation masks,
resulting in more precise and full ground truths for retraining the segmentation network.
These steps are repeated iteratively to obtain high-quality ground facts and improve the
segmentation network.
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Figure 2. The main steps of the proposed framework.

3.2. Generating High-Quality Initial Ground Truths

The semantic segmentation criteria are not met because the spot seeds are too sparse,
but they do offer position information for a few pixels of an object. With the aim of
identifying the high-quality ground-truth value, a superpixels-CRF model is built over
superpixels segmentation, which can propagate information from spot seeds to unmarked
regions. We propose that these regions could potentially retain object contour, catch the
deep local structure, and outperform spot seeds, which may include many little bits in the
object segment but are not located on area bounds. We find that ground truth annotations
obtained during the training stage with the proposed method will speed up network
learning and provide more precise segmentation masks than spot seeds.

3.3. Spot-Seeds Guided Superpixels-CRF Model for Object Region Supplement

The superpixels-CRF model was utilized to disseminate data from spot seeds to
unknown regions. To accomplish this, we create a network based on the superpixels
segmentation. A vertex in the graph represents a region, and an edge in the graph rep-
resents the similarity between two regions. The proper segment image is denoted as I,
and the {rk} is set of non-overlapping regions, which satisfies the condition ∪k(rk) = I
and rk ∩ rm = φ, ∀k,m. Moreover, spots of an input image are C = {ci, li}, where ci is the
pixels of spot in category i and 0 ≤ li ≤ L is the spot’s category label (supposing that
there are L categories and li = 0 for background).The region rk is used for a category label
y ∈ {0, 1, ..., L}. Additionally, in order to determine the final label and minimize the energy,
a graph-cut optimization framework [34] is used to find the final label, which minimizes
the energy,

E(label(I)) = ∑
k

ψ
spot
u (label(rk)) + ∑

k,m
ψp(label(rk), label(rm)), (1)

where ψ
spot
u is a unary term that includes the region rk determined by the spot seed, and ψp

and is a pairwise term that connects two regions, rk and rm. The following is the definition
of the unary term:

ψ
spot
u (label(rk) = y) =


0, if y = li and rk ∩ ci 6= φ

−log(
1
|{li}|

), if y ∈ {li} and rk ∩ {ci} = φ

∞, otherwise

(2)

According to the first condition in this equation, when a region rk overlaps with a spot
seed ci, the cost is zero when this region is allocated to the label li. On the contrary, when
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the region rk does not overlap with any spot having the same probability, |{li}| , denotes
the number of spot labels on this image. This exclusive information is helpful in reducing
false-positive predictions.

In this model, ψp, the pairwise term, indicates the similarity between two regions.
Furthermore, it is seen as a simple look of similarity to its bordering regions. After that, we
construct the histograms of the color and texter region rk. The color histogram hlab(rk) on
area rk is based on the CIE Lab color space and is divided into 30 bins uniformly. The tex-
ture histogram ht(rk) and a bank of 38 filters [35], including the Gaussian and Laplacian of
Gaussian filters, edges and bar filters with three scales and six orientations, convolve the
image. All bins are concatenated and standardized in color/texture histograms. If back-
ground pixels are near object spots and have a similar appearance to the object spots, or if
background pixels are classified as object areas, object spots should be kept far away from
them. This may have an impact on the segmentation quality. As a result, the pairwise term
ψp can be defined as follows:

ψp(label(rk), label(rm)) = [label(rk) 6= label(rm)].

exp{−Simi(rk, rm)},
(3)

where [.] is 1 if the condition is met and 0 otherwise, and similarity is defined as

Simi(rk, rm) = Similab(rk, rm) + Simit(rk, rm), (4)

The color similarity and texture similarity are defined as

Similab(rk, rm) =
‖hlab(rk)− hlab(rm)‖2

2
λ2

lab
, (5)

Simit(rk, rm) =
‖ht(rk)− ht(rm)‖2

2
λ2

t
, (6)

where hlab is the color histogram built on the CIE Lab color space, and ht is the texture
histogram. In our experiment, we set empirically λlab = 5 and λt = 10. The definition
implies that if the appearance of contiguous regions belonging to different labels is similar,
the expenses will be higher. However, the labeling problem in Equation (1) is an NP-hard
problem to solve. The expansion and swap moves technique [34], which determines the
shortest cut for a given graphical model, can be used to solve it.

3.4. Network Training

To create segmentation masks, we use VGG16 [16] as our backbone network. As shown
in Figure 1, we train the prediction network using initial ground truths. A discussion is
held in Section 5 to explore the effectiveness of using VGG16 [16] compared to the other
networks as the backbone. The cross-entropy loss is the loss function that promotes the
prediction to match the real-world regions:

Ls( fl,c(I|θ), T, Sc) = −
1

∑T
c=1 |Sc|

T

∑
c=1

∑
l∈Sc

log( fl,c(I|θ)), (7)

where Sc is a collection of pixels in the supervision that are labeled with class c. To begin,
we employ a VGG16-net [16] that is pre-trained on the ImageNet dataset [21]. Empirically,
we select a learning rate of 0.0001 as our starting point. It takes an average of 50 epochs to
converge. Stochastic gradient descent (SGD) with mini batch is used for the training classi-
fication and segmentation network. We set 0.5 as the dropout rate, 0.9 as the momentum,
0.0005 as the weight decay, and 12 as the batch size. After one iteration, we predict on the
training dataset using the model with the lowest loss, and then refine the new predicted
result using fully connected CRF [20]. The whole process iterates several times until the
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network finally converges. Our implementation is based on a NVIDIA GeForce TITAIN
GPU with 12 GB memory.

3.5. The Proposed Refinement Process

Although the initial ground truth annotations are improved in accuracy, they are
still distant from the true pixel-level annotations. The segmentation results obtained by
training the segmentation network with initial ground truth annotations as supervision
can be improved further. As a result, we introduce a refinement method in order to obtain
more precise ground truth annotations. The original input image is denoted by the letter
I, and the associated initial ground truth annotation is denoted by the letter Ganno. We
use the trained model to generate segmentation maps after the initial complete training
of the segmentation network is converged. We denote the predicted segmentation map
as Spred . In addition, we thoroughly couple the CRF operation to the initial ground truth
annotations, as well as the projected segmentation maps. The segmentation maps that
emerge are referred to as Canno, and Cpred, respectively. According to Algorithm 1, we
update the training samples as well as their related ground truth annotations for the
following iteration. The CRF operation is denoted by CRF() , and Supdate signifies the
updated ground truth annotation, which is then utilized as the segmentation ground truth
for the next iterative training. The average pixelwise absolute difference between two
segmentation maps (i.e., S1 and S2) is defined as APW(), which is determined as follows:

APW(S1, S2) =
1

w× h

w

∑
i=1

h

∑
j=1
|S1(i, j)− S2(i, j)|, (8)

the width and height of the segmentation map are w and h, respectively. We evaluate
the mean APW() between each pair of initial ground truth annotations Ganno after each
training round. For the predicted segmentation map Spred, when the mean APW() falls
below a certain level or the total number of training rounds exceeds 5, the halting criteria
are defined as the CRF output of the current segmentation map annotation Ganno, and the
CRF output of the predicted segmentation map Cpred. We empirically set the thresholds,
δ and θ to 15 and 40, respectively, during the annotation updating process, and we set
the mean APW() for the training stop criteria at 0.05. The quality of segmentation maps
is discussed in Section 5, with and without the proposed refinement process in order to
demonstrate the influence of refined segmentation maps in terms of accuracy.

Algorithm 1: Segmentation refinement process.
Input : Current ground truth annotation Ganno, the predicted segmentation map

Spred, CRF output of current segmentation map annotation Canno and CRF
output of the predicted segmentation map Cpred

Output : Update segmentation map Supdate

1 if APW(Ganno,Cpred) ≤ δ then

2 Supdate = CRF(
Sanno + Spred

2
)

3 end
4 if APW(Sanno,Spred) > θ then

5 Supdate = CRF(
Canno + Cpred

2
)

6 end
7 if APW(Canno,Cpred) < APW(Sanno, Spred) then
8 Supdate = Canno

9 else
10 Supdate = Cpred

11 end
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4. Experimental Results and Analysis

The effectiveness of the proposed method for building footprint segmentation is
discussed in this section. The classification and segmentation network are trained and
evaluated using Tensorflow on GPU (TITAIN). The goal of this framework is to bridge the
gap between weakly and fully supervised semantic segmentation algorithms for build-
ing footprint segmentation. As a result, this gap remains an important measure of the
effectiveness of weakly supervised semantic segmentation algorithms.

ISPRS Potsdam Challenge Dataset (Potsdam) Dataset: The ISPRS two-dimensional
semantic label contest (Potsdam) is a standard dataset with accurate images, including 38
high-resolution actual orthophoto tiles chosen from a sizable TOP mosaic, which can be
downloaded from the general website (https://www2.isprs.org/commissions/comm2
/wg4/ (accessed on 7 May 2022 )). To increase the visibility of the small details, we adopt a
tile that contains pixels size of 6000× 6000 and a 5 cm resolution. The ground truth consists
of 6 of the highest mutual land cover classes. For instance, buildings, invincible superficies,
cars, plants, low vegetation, and clutter/background.

WHU Building Dataset: The WHU building dataset contains aerial and satellite sub-
sets, as well as photos and labels for each, which can be downloaded from the general
website (http://gpcv.whu.edu.cn/data/ (accessed on 7 May 2022)). For comparison with
the proposed approach, we used an aerial subset that was widely used in previous studies.
The data have 8189 images with 30 cm ground resolution and cover a 450 km2 area km2

in Christchurch, New Zealand. Each image is 512× 512 and comprises three bands with
pixels that correspond to red (R), green (G), and blue (B) wavelengths. The dataset broken
into three sets: training (4736 images), validation (1036 images), and testing (2416 images).
There are buildings, including 130,500, 14,500, and 42,000 tiles for the training, validation,
and test datasets, respectively.

Vaihingen Dataset: The Vaihingen dataset is a public dataset for the ISPRS (2D)
semantic labeling challenge dataset, which can be downloaded from the general website
(http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html/ (accessed
on 7 May 2022)). The Vaihingen dataset includes 33 spectral orthoimages with annotated
images. Each image has a resolution of 0.09 m and an average size of 2100× 2100 pixels.
These date were also chosen because the buildings have different shapes and sizes; the
diversity of the elements that make up the roofs of the buildings; and also because there
are similarities with the other components of the images.

4.1. Dataset Preprocessing

On the Potsdam and Vaihingen datasets, due to the limited GPU memory and the
necessity for more samples in training, the images with the average size of (6000 × 6000)
are divided into minimal patches of (256 × 256). Finally, we obtain training (18,122 images),
validation (10,874 images), and testing (7249 images) for the Potsdam dataset, and training
(4059 images), validation (2435 images), and testing (1624 images) for the Vaihingen dataset.
We keep the original image size of 512× 512 pixels in the WHU dataset and resize them to
256× 256. Table 1 summarizes the characteristics of each dataset after preprocessing.

Table 1. Summary of the datasets used in this study.

Dataset
Name Total Images Image Size Train Set Validation

Set Test Set

Potsdam 36,245 256× 256 18,122 10,874 7249
WHU 8189 512× 512 4736 1036 2416

Vaihingen 8118 256× 256 4059 2435 1624

4.2. Evaluation

In this study, for the task evaluation, we employ pixel-based measures instead of
object-based measures. The pixel-based technique works on the number of pixels in elicited
buildings and determines the number of building while providing a quick and accurate

https://www2.isprs.org/commissions/comm2/wg4/
https://www2.isprs.org/commissions/comm2/wg4/
http://gpcv.whu.edu.cn/data/
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html/
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estimate. The F1 score, lastly (MIOU)is used to measure the quantitative efficiency in the
pixel-based evaluation. Hence, the F1 score can be computed as

F1 = 2× precision× recall
precision + recall

, (9)

where,

precision =
tp

tp + fp
, recall =

tp

tp + fn
, (10)

where tp, fp, and fn are true positive, false positive, and false negative, respectively. These
values can be calculated by the pixel-based confusion matrices per tile, or an accumulated
confusion matrix. IoU is an average value of the intersection of the prediction and ground
truth regions over their union, as follows. Then, the MIoU can be computed by averaging
the IoU of all classes.

IoU =
precision× recall

precision + recall − precision× recall
. (11)

4.3. Comparison with Other Methods on ISPRS Potsdam Challenge Dataset (Potsdam) Dataset

We compared the proposed weakly supervised method to other state-of-the-art fully
supervised building footprint segmentation methods. The performance of building foot-
print segmentation is compared in Table 2, which shows that, while the proposed method’s
various indicators are lower than other recently fully supervised and weakly supervised
building footprint segmentation methods on the Potsdam dataset, the gap between the in-
dicators is not big. Compared with these methods, the proposed method gives comparable
results on most indications and greatly reduce the workload of annotation, demonstrat-
ing the effectiveness of the proposed method. Figure 3 shows the obtained results on
the Potsdam dataset. The four approaches, as well as the Deeplab-V3 [15] MFRN [36]
and DAN [14], are built and tested on the same empirical datasets (RGB images) used
in the ISPRS 2D semantic-labeling contest (Potsdam). Nevertheless, several lower-level
features of the Deeplab-V3 [15] and MFRN [36] networks have been overused, leading to
over-segmentation due to limited spatial consideration; the fusion unit turns the produced
fragmentary and minor buildings for five validity images. The boxes in red as indicated in
Figure 3 exhibit the improvement gained after applying the proposed method. These results
emphasize that the proposed method achieves comparable results. Moreover, the proposed
method achieves remarkable performance in building extractions from the VHR images,
despite a few false classified buildings (refer to the highlighted boxes in Figure 3.

Table 2. The proposed network vs. other networks on Potsdam test set.

Methods Recall (%) Precision (%) F1 IoU (%)

Deeplab-V3 [15]
(fully) 88.89 83.00 83.36 79.37

MFRN [36]
(fully) 86.24 74.43 91.80 89.74

DAN [14] (fully) 84.13 83.00 92.56 90.56
Li et al. [37]

(weakly) 91.60 87.60 89.50 81.00

ACGC [38]
(weakly) 91.20 92.00 91.60 84.50

Ours (weakly) 84.05 77.15 87.45 85.65
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Original Image Ground Truth DeeplapV3MFRN DANOur results

Figure 3. The building’s segmentation segmentation on Potsdam dataset. From left to right: original
image, ground truth, our results, the multiple-feature reuse network (MFRN), Deeplab-V3, and the
dense-attention network (DAN). The red boxes indicate improvement, while the yellow boxes indicate
a false classification.

4.4. Comparison with Other Methods on WHU Building Dataset

On WHU buildings dataset, we compare the obtained outcomes against FastFCN [39]
and Deeplab-V3 [15] to describe the proposed method’s efficiency. The improvement
obtained after using the proposed method is shown in red boxes in Figure 4. These
findings demonstrate that the proposed method produces comparable outcomes also
on the test images from the WHU dataset. The numerical performance indexes of several
models are illustrated in Table 3. On all the four metrics, our proposed method produces
comparable results compared to fully supervised and weakly supervised building footprint
segmentation methods.
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Original Image Ground Truth DeeplapV3 FastFCNOur results

Figure 4. The building’s segmentation segmentation on WHU building dataset. From left to
right: original image, ground truth, our results, Deeplab-V3, and FastCCN. The red boxes indicate
improvement, while the yellow boxes indicate a false classification.

Table 3. The proposed network vs. other networks on WHU building test set.

Methods Recall (%) Precision (%) F1 IoU (%)

FastFCN [39]
(fully) 81.37 87.98 84.55 73.23

Deeplab-V3 [15]
(fully) 92.99 93.11 93.05 87.00

Xin et al.
(weakly) [40] - - 68.98 52.64

Ours (weakly) 86.75 87.02 85.45 82.34
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4.5. Comparison with Other Methods on Vaihingen Dataset

To investigate our model’s robustness and cross-dataset performance, we employ the
Vaihingen dataset. As shown in Table 4, the proposed weakly supervised model performs
well compared to the fully supervised methods, as shown in Figure 5. This demonstrates
that the proposed framework has comparable accuracy and non-destructive segmentation
ability, as well as good overall pixel-level segmentation performance. Furthermore, other
methods are based on the concept of fully supervised learning and require a large number
of manual annotation labels. The proposed weakly supervised framework not only reduces
human efforts significantly, but it also outperforms some previous weakly supervised
works in terms of some indicators.

Original Image Ground Truth DeeplapV3 UNet++Our results Unet-8s

Figure 5. The building’s segmentation segmentation on Vaihingen dataset. From left to right:
original image, ground truth, our results, Deeplab-V3, UNet++, and UNet-8s. The red boxes indicate
improvement, while the yellow boxes indicate a false classification.
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Table 4. The proposed network vs. other networks on Vaihingen test set.

Methods Recall (%) Precision (%) F1 IoU (%)

UNet [24] (fully) 90.66 91.95 94.98 91.58
UNet++ [41] (fully) 91.90 92.87 95.54 92.37

Deeplab-V3 [15] (fully) 92.75 95.15 96.73 94.05
Li et al. [37] (weakly) 84.50 83.60 84.10 72.50
ACGC [38] (weakly) 83.40 92.80 87.90 78.40

Ours (weakly) 88.02 90.89 91.75 89.34

5. Ablation Study

In this section, we explore the effectiveness of the proposed framework’s individ-
ual components.

5.1. The Influence of Backbone Networks

We conducted experiments using different backbone networks to evaluate its use.
We found that by using Deeplab-V3 [15], it gives the best performance but it takes more
time for training and inference, compared to using VGG16 [16], which gives the second
best performance with less time, as shown in Table 5. For weakly supervised methods,
the performance depends on the quality of ground truths. Therefore, it demonstrates the
effectiveness of using VGG16 [16] in this study.

Table 5. The computational cost of using different backbone networks on Potsdam dataset. Training
and inference use images with a resolution of 256 × 256 pixels.

Backbone
Network MIoU (%) Training Time/Image

(s)
Inference Time/Image

(s)

VGG16 [16] 75.24 0.556 0.119
Resnet-101 [42] 74.65 1.725 0.195
Deeplab-V3 [15] 75.82 2.986 1.563

UNet [24] 72.58 0.835 0.205

5.2. The Influence of Refinement Process

We conducted experiments with and without the refinement process to evaluate its
effectiveness. This experiment involves training a segmentation network using initial
ground truths, followed by the refinement process to refine the segmentation maps pro-
duced by the segmentation network. We find that with the refinement process, all metrics
are improved, as shown in Table 6. It demonstrates that the proposed refinement process
increases the accuracy of the initial ground truths and further enhances the performance of
the segmentation network. The experiments demonstrate that the refinement process is
useful to the segmentation task.

Table 6. The segmentation results with and without the refinement process.

Dataset Training Type Recall (%) Precision (%) F1 MIoU (%)

Potsdam w/o the refinement process 65.34 69.28 71.42 63.47
w/ the refinement process 84.05 77.15 87.45 75.24

WHU w/o the refinement process 73.56 75.68 72.54 71.73
w/ the refinement process 86.75 87.02 85.45 82.34

Vaihingen w/o the refinement process 78.62 76.27 77.85 76.82
w/ the refinement process 88.02 90.89 91.75 89.34
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6. Conclusions

In this paper, we propose a new weakly supervised framework for building semantic
segmentation. The framework first generates high-quality pixel-level labels, which are
used as information to supervise the training of the network. In order to generate more
precise pixel-level annotations, we use spot seeds to guide a graphical model construct over
superpixel regions so that the information may be propagated to unmarked regions. These
annotations at the pixel level are then used to supervise the network training and to forecast
the segmentation performance. Compared to the initial annotations, the predicted result
contains more complete regions of objects. The segmentation network is retrained using
refined segmentation maps. The iterative training of these processes generates high-quality
annotation information to be input into the subsequent segmentation network, making
the training more accurate. The framework effectively reduces the gap between weakly
supervised and fully supervised building semantic segmentation and reduces human
labeling efforts. In future work, we will pay more attention to improving the quality
of the initial annotations and developing weakly supervised approaches for building
semantic segmentation.
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