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Abstract: In order to improve the transmission efficiency and security of image encryption, we
combined a ZUC stream cipher and chaotic compressed sensing to perform image encryption. The
parallel compressed sensing method is adopted to ensure the encryption and decryption efficiency.
The ZUC stream cipher is used to sample the one-dimensional chaotic map to reduce the correlation
between elements and improve the randomness of the chaotic sequence. The compressed sensing
measurement matrix is constructed by using the sampled chaotic sequence to improve the image
restoration effect. In order to reduce the block effect after the parallel compressed sensing operation,
we also propose a method of a random block of images. Simulation analysis shows that the algorithm
demonstrated better encryption and compression performance.

Keywords: ZUC stream cipher; compressed sensing; chaos; image encryption

1. Introduction

Under the background of the rapid development of data network and information
technology, the application of image is increasingly extensive. Image encryption is one of
the common means to protect image information [1]. The classical cryptographic encryption
algorithms, including DES(Data Encryption Standard) and AES(Advanced Encryption
Standard),mainly deal with text information, and the processing efficiency is not high.
Traditional encryption algorithms cannot achieve efficient encryption of images.

In recent years, many image encryption schemes have been proposed successively,
such as chaos theory [2–5], the DNA method [6–9], cellular automata [10–13] and so on. The
article published by Fridrich in 1997 used chaos theory for the first time [14]. He designed
an image-encryption algorithm and constructed a classical scrambling-diffusion image
encryption framework. Chaos can be divided into two categories: high-dimensional chaos
and one-dimensional chaos [15]. A one-dimensional chaotic system is a simple function
with a low computational cost.

Due to its simplicity and efficiency, these have been used in various encryption al-
gorithms [16–18]. However, they have the disadvantages of a small key space, single
parameter and weak randomness of the generated chaotic sequence [19,20]. The high-
dimensional chaotic structure is complex and is more sensitive to the initial values and
parameters. However, it is difficult to implement software and hardware due to its complex
structure and huge iterative calculation amount [21]. Therefore, the algorithm in this paper
mainly uses a one-dimensional chaotic system to ensure the efficiency of encryption.

At first, scholars made efforts in the design of image-encryption algorithms based on
one-dimensional chaotic systems. For example, in 2012, Wang et al. proposed a chaotic
image encryption scheme, in which only the classical Logistic system was used to scramble
and diffuse images [22]. In the following year, Arroyo successfully cracked the scheme of
Wang by choosing plaintext attack [23]. It is shown that this method of scrambling and
diffusing images with a one-dimensional chaotic system has a small key space and low
sensitivity of plaintext.
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In recent years, people have begun to use treatments on one-dimensional chaotic
systems to improve the chaotic performance. PakC et al. used the difference between
the one-dimensional chaotic map output sequence and its rounded and amplified output
sequence to construct a new system with better performance and a wider chaotic range [24].
In 2018, Lan et al. used three one-dimensional chaotic maps to construct two more chaotic
integrated chaotic systems and performed cascade, nonlinear combination and switching
operations [25].

In the same year, Parvaz et al. combined Logistic, Sine and Tent chaotic maps to
construct a combined chaotic system to perform multiple rounds of cyclic shift encryption
on images [26]. This method of combining multiple one-dimensional chaotic systems to
form a new chaotic system not only improves the performance of the original chaotic
system but also ensures the operation efficiency.

Image information faces the dual pressures of security and resource constraints during
storage and transmission. The theory of compressed sensing (CS) [27] realizes the simulta-
neous encryption and compression of the image and reconstructs the signal through the
convex optimization solution process. Many scholars have implemented image encryption
using compressed sensing [28–31].

It should be indicated that, when using compressed sensing to encrypt an image, in
essence, the measurement matrix is used as the encryption key, and the corresponding
measurement result is used as the ciphertext. This is essentially a linear measurement
process so that it cannot resist known-plaintext attacks and chosen-plaintext attacks. It is
necessary to combine compressed sensing with traditional diffusion encryption algorithms
to ensure sufficient security of the encryption scheme [32]. By further improving the sparse
basis, measurement matrix and reconstruction algorithm in compressed sensing theory, the
quality of the restored image under the same compression rate can be effectively improved.

This paper uses a one-dimensional chaotic map to generate a measurement matrix for
compressed sensing. The ZUC cryptosystem [33] is introduced to improve the shortcomings
of the one-dimensional chaotic system, which has a small key space and insufficient
randomness.The algorithm adopts parallel compressed sensing technology as a whole.
First, the sparse coefficient matrix of the image is obtained by discrete wavelet transform,
and then it is randomly divided into blocks. Then, we set the initial chaotic value and
use the one-dimensional Sine–Tent–Logistic (STL) chaotic map to iteratively generate the
chaotic sequence.We use the ZUC stream cipher system to sample the STL sequence to
obtain a new chaotic sequence.

In the compressed sensing stage, the new chaotic sequence is used to construct the
compressed sensing measurement matrix and parallel compressed sensing processing is
performed on the divided matrix. Finally, subsequent scrambling and diffusion operations
are performed on the compressed matrix. The image is reconstructed using the Orthogonal
Matching Pursuit (OMP) algorithm at the decryption stage.

The main contributions of this algorithm are:
(1) Randomly partition the sparse coefficient matrix of the image to reduce the pixel

correlation of the image. (2) Use the chaotic initial value as the key for encryption and
decryption to avoid the waste of resources caused by transmitting the entire measurement
matrix. (3) After the image is divided into blocks and encrypted in parallel, the time re-
quired for image encryption can be reduced, and the encryption efficiency can be improved.
(4) Using the ZUC stream cipher system to sample the one-dimensional chaotic sequence,
the randomness of the one-dimensional chaotic system is improved, and the key space
is enlarged.

The remainder of this article is as follows. Section 2 introduces the fundamental
knowledge involved in the proposed encryption algorithm, mainly including compressed
sensing, STL chaotic map and ZUC stream cipher. Section 3 introduces the sampling method
of a one-dimensional chaotic system and the effect after sampling. A image random block
method is also proposed in this section. Section 4 summarizes the specific details of the
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proposed encryption scheme. Section 5 presents the simulation results of the algorithm and
analyzes its performance. Section 6 presents our conclusions and summarizes the full text.

2. Fundamental Knowledge and Related Technologies

This section mainly introduces the basic theories and techniques involved in the
proposed algorithm, including the compressed sensing technology, STL chaotic map and
ZUC stream cipher system. The main purpose of this section is to facilitate the description
of the encryption schemes that follow.

2.1. Parallel Compressed Sensing

CS breaks through the limitation of the traditional Nyquist sampling theorem. Par-
allel compression sensing technology [34] is divided into compression measurement and
reconstruction. Signal compression is achieved through linear measurement, and signal
reconstruction is achieved through sparse prior characteristics of signals. Divide an image
of size M× N into K sub-blocks xi of size M× n, K = N/n. Represented as follows:

xi = Ψsi, (1)

where Ψ is a sparse basis matrix. The block operation can perform the process of image
compression measurement, and reconstruction can be performed in parallel, which can
reduce the image processing time. The image is measured in columns, and the measurement
process can be expressed as:

yi = Φxi = ΦΨsi, (2)

where Φ is the measurement matrix of size m×M. m = round(r × M), and r is the
compression ratio. The measured value of the whole image can be expressed as:

Y = [y1, y2, · · · , yn], (3)

In the process of image restoration, the sparse sparse matrix of the original image can
be recovered by solving the L1 norm problem as long as it meets the requirements of Φ

and Ψ is not relevant. In the process of image restoration, the complicated operation of
inverting the matrix is avoided. This process can be described as follows:

ŝi = arg min
si∈RN

‖si‖ s.t. ŷi = ΦΨsi, (4)

Commonly used measurement matrices include the Gaussian random matrix, partial
Adama matrix and measurement matrix constructed by a chaotic sequence, etc., [35]. There
are two reconstruction methods of compressed sensing [36]. One is to seek a minimum l0
norm based on a greedy iterative algorithm, including matching pursuit (MP), orthogonal
matching pursuit (OMP), etc. The other is a convex optimization algorithm to find the l1
norm, including the base tracking method, gradient projection method, etc. In the proposed
scheme, the OMP algorithm is used to reconstruct the image.

2.2. STL Chaotic Map

Zhou proposed a method of a cascading Tent and Logistic chaotic system to improve
the performance of a one-dimensional chaotic system [37]. On this basis, Pounma et
al. proposed STL (Sine–Tent–Logistic) chaotic system. This is a one-dimensional system
combining the above three chaotic systems [38]. The Sine map, Tent map and Logistic map
are shown in (5). 

Sn+1 = µS sin(πSn); 0 ≤ µS ≤ 1, Sn ∈ [0, 1]
Tn+1 = 1− µT |Tn − 0.5|; 0 ≤ µT ≤ 2, Tn ∈ [0, 1]

Ln+1 = µLLn(1− Ln); 0 ≤ µL ≤ 4, Ln ∈ [0, 1]
, (5)
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where µS, µT and µL are chaotic parameters. The steps of constructing the STL system are
as follows:

(1) Fusion: Since Tent mapping shows highly chaotic behavior when the parameters
are controlled, the control parameter is fixed, and the Logistic and Tent seed mappings are
fused to generate a new mapping;

(2) Cascading: Use the Sine mapping and the mapping generated in Step (1) to perform
cascading. As the Sine mapping shows highly chaotic behavior, the control parameter of
the Sine mapping in the cascading step is set to 1.

Figure 1 shows the STL map structure. The fusion operation combines Tent and
Logistic seed maps in a nonlinear way. Cn was input to the two seed maps, and we add
their outputs. The cascade calculation connects Sine mapping with Tent and Logistic
mapping and finally obtains Cn+1.

Cn

Tent map

Logistic map

Sine map Cn+1

Figure 1. STL map structure.

The specific mathematical representation of the STL system[38] is shown in (6).

Cn+1 =

{
sin(π((1− 2|Cn − 0.5|) + (µCn(1− Cn))))− 1, Cn > 1
sin(π((1− 2|Cn − 0.5|) + (µCn(1− Cn)))) + 1, Cn < 0

µ > 0, (6)

Figure 2 for the bifurcation diagram of the STL chaos mapping shows that the STL
map produced by the chaos and chaotic sequence is highly uniform in distribution.

(a) (b)

(c) (d)
Figure 2. Bifurcation diagram: (a): Sine map. (b): Tent map. (c): Logistic map. (d): STL map.

The traditional three one-dimensional chaotic maps can only keep the chaotic proper-
ties within a very small range of control coefficients, while the STL map can stably remain
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pseudo random in the whole range. The comparison shows that STL maps have better
random performance than other maps. In this algorithm, the STL chaotic map is combined
with a ZUC stream cipher to enhance its security.

2.3. ZUC Stream Cipher

ZUC [39] is a stream cipher named after the Chinese mathematician ZU Chongzhi. It
has a series of advantages, such as fast generation of a key stream, a low propagation error
rate and easy realization of the hardware circuit. Research proved that the ZUC algorithm
has high security and can resist many typical attacks against sequence ciphers. The overall
structure of the ZUC algorithm consists of three parts as shown in Figure 3. The input of
the ZUC-256 algorithm is a 256-bit initial key(K) and 184-bit initial vector(IV). The 32-bit
key stream data are generated every cycle.

mod 231-1

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

215 217
221 220 1+28

16 16 16 16 16 16 16 16

R1 R1

<<<16

S.L1 S.L2

L

F

S

R

B

R

F

W Z

Figure 3. ZUC system structure.

The specific process is as follows:
(1) Initialization stage: it is necessary to enter the preparation stage before key abortion.

The process of sending IV and K into the system is called key loading. In this process, K
and IV are split according to certain rules and spliced together with a set of fixed arrays.
Then, start 32 rounds of initialization operations, which can be expressed as:

(X0, X1, X2, X3) = BR(S15, S14, · · · S0)
W = F(X0, X1, X2)

LFSR_Initialisation(W >> 1)
, (7)

where W >> 1 indicates that the high 31 bits of W are fed back into the register.
(2) Preparatory work stage: there is no external input in the system at this stage. The

difference between the working state and the initialization stage is that LFSR needs to enter
the working mode for one iteration; however, the output is abandoned.
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(3) Working stage: also called the key stream generation stage. In this stage, the output
W generated by the nonlinear function and the XOR of the Bit Recombination layer are
output as the key stream. The specific operation steps are shown in (8).

(X0, X1, X2, X3) = BR(S15, S14, · · · S0)
Z = F(X0, X1, X2)⊕ X3

LFSR_Work( )
, (8)

3. The Innovative Part of the Encryption Scheme
3.1. ZUC Sampling Method

In the process of chaotic image encryption, it is usually necessary to sample the chaotic
sequence to reduce the correlation of elements in the chaotic sequence. Equal interval
sampling is usually used in the sampling process. The sampling method in this paper is
random sampling controlled by the ZUC algorithm, which can further ensure the security.
All chaotic sequences in this paper are used after sampling by the ZUC stream cipher
system. The specific sampling method is shown in Figure 4.

0.6506 0.5844 0.6951 0.5099 0.8197 0.3015 0.7499 ...

0.6506 0.5099 0.8197 0.7499 ...

ZUC sequence

chaotic sequence

sampled sequence

1 0 0 1 1 0 1 ...

Figure 4. The sampling process diagram.

In the sampling process, the elements in the ZUC sequence and the chaotic sequence
are first, corresponded one-to-one, and then the chaotic element corresponding to the
0 element position in the ZUC sequence is discarded.

Logistic, Sine and STL chaotic sequences were sampled, and the Lyapunov exponents
of the sequences before and after sampling are shown in Figure 5. The sampling process
can improve the Lyapunov exponent of chaotic sequence and improve the randomness of
the sequence. The NIST test was also used to test the randomness of the sequence. Prepare
100 groups of original and sampled chaotic sequences, and the length of these sequences is
106. The test results are shown in Table 1.

(a)
Figure 5. Cont.
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(b)

(c)
Figure 5. Lyapunov exponents: (a): Logistic map. (b): Sine map. (c): STL map.

Table 1. NIST test results of the sequences before and after being sampled.

Test
Original Sequence Sampled Sequence

p-Value Passing Rate p-Value Passing Rate

Frequency test 0.4682 100 0.4767 100
Block-frequency test 0.4727 99 0.4579 100

Runs test 0.4497 98 0.4262 98
Longest Run test 0.5572 97 0.5357 98

Rank test 0.1129 95 0.1865 98
FFT test 0.5237 99 0.4829 99

Non-Overlapping Templates 0.6182 100 0.5240 99
Overlapping-templates 0.5011 98 0.4291 98

Universial 0.5020 96 0.4542 99
Linear Complexity 0.5499 100 0.4517 100

Serial Test 0.2773 98 0.2722 97
Approximate Entropy 0.5121 99 0.5083 100
Cumulative Sums Test 0.7721 98 0.7655 100

Random Excursions 0.5207 99.32 0.4873 99.57
Random Excursions Variant 0.4883 99.12 0.4998 99.57

It can be seen that the one-dimensional chaotic sequence used in this paper was
sampled, and the LE was improved. NIST tests also show that the randomness of the
chaotic system is good. The ZUC sequence used for sampling itself is a stream cipher
with strong randomness. The process of sampling improves the problem of the small key
space of a one-dimensional chaotic map, making the new chaotic map more suitable for
image encryption.
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3.2. Random Block Method

The image sub-blocks obtained by the ordinary uniform block method still retain the
visual information of the original image. The image block process in this algorithm adopts
a random block method. When it is necessary to divide an image of size M× N into K
sub-blocks, there are (K!)M∗N/K blocking methods for each image. Take the number of
sub-blocks K = 4 as an example. The specific steps are as follows:

First, the original image is transformed into a one-dimensional pixel matrix and then
divided into groups of every 4 pixels to obtain {I1, I2, · · · , IM×N/4}. A permutation rule
library rule is constructed from 24 different permutations of the numbers {1, 2, 3, 4}. The
sampled chaotic sequence S is mapped to the integers in the interval [1, 24] according to
the method shown in (9), corresponding to one line in the rule, respectively. Four pixels in
each group were assigned to different image blocks according to the corresponding rules.
As shown in (10).

q(p) = f loor(mod(S(p)× 108, 24)) + 1, p = 1, 2, · · · , M× N/4., (9)

{
tempBn(p) = Ip(rule(q(p), n))

Bn = reshape(tempBn)
n=1,2,3,4., (10)

where f loor is a downward integral function and reshape means to transform the one-
dimensional matrix to the desired size. This block method completely separates a group of
adjacent pixels. The correlation between adjacent pixels becomes weak, which makes the
subsequent encryption better. The Lena image is divided into four and eight sub-blocks as
shown in Figure 6.

(a) (b)
Figure 6. Random block rendering: (a): 4 sub-blocks. (b): 8 sub-blocks.

4. The Encryption and Decryption Scheme

As a whole, the algorithm in this chapter divides the image into blocks first and
then performs parallel compressed sensing. The chaotic sequences used are all sequences
sampled by the ZUC system, and the encryption process is shown in Figure 7.

Step 1: Set the initial vector and initial key of the ZUC stream cipher and run the ZUC
system to obtain the binary sequence Z.

Step 2: The discrete wavelet transform (DWT) is used to obtain the image sparse
coefficient matrix with a size of M× N. Then, set the initial chaotic value x0 and divide
the coefficient matrix into eight blocks Bi with a size of m × n using the random block
method proposed in Section 3.2. m = M, n = N/8. Eight initial chaotic values are obtained
according to (11).

xi = (sum(Bi)⊕ Zi/108) mod 1., (11)

where Zi is the ZUC sequence with 8-bit length. i = 1, 2, · · · 8.
Step 3: Set the compression ratio of compression sensing as r. According to the chaos

initial value calculated above, the chaotic sequence is iterated and sampled by ZUC flow
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cipher. Eight sequences of length m are obtained to construct the measurement matrix of
compressed sensing, which is normalized according to (12):

Ci(j) = 1− Ci
2(j) , j = 1, 2, · · ·mm×m. (12)

The measurement matrix is constituted as follows:

Φi =
√

2/mm reshape(Ci, mm, m), (13)

where mm = round(r×m) is the number of rows of the measurement matrix.

Plaintext 

image

B1 B2 ... B8

Φ1

Parallel compressed sensing

Block scrambling 

diffusion

Encrypted 

image

x1 x2 x8

Initial 

vector

Initial key

ZUC stream 

cipher

Sparse 

coefficient 

matrix

DWT

...

Φ2 ... Φ8

Initial 

value 

Measurement 

matrix

Block image

Random 

block

I1 I2 ... I8
Compressed 

image

P1 P2 ... P8
Block encrypted 

image

Sampling

 Initial 

value x0

x9 x10

Sampling

Global scrambling 

diffusion

mapping

Figure 7. Encryption flow chart.

Step 4: Perform compression sensing measurement on block images as shown in (14)
to obtain the compression matrix Y and map it to the interval [0, 255] in accordance with
(15) to facilitate subsequent diffusion operations and obtain the compressed image I.

Y i = ΦiBi. (14)

The measurement matrix is constituted as follows:

Ii(a, b) = round(
255× (Y i(a, b)−Ymin)

Ymax −Ymin
). (15)

Step 5: The compressed image blocks are, respectively, encrypted within the block and
encrypted as a whole. The initial values x9 and x10 are set, and the chaotic sequences are
iterated, respectively. Both sequences are sampled by ZUC to obtain C9 and C10. C9 is used
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to diffuse and scramble the block image. Then, the image blocks are reassembled, and C10
is used to carry out the whole diffusion and scrambling operation again in order to avoid
the block effect.

The decryption process of this algorithm is shown in Figure 8.
(1) The decryption process of this algorithm is the reverse process of encryption. The

receiver first performs inverse diffusion and scrambling on the encrypted image according
to the key to obtain the compressed image.

(2) Inverse mapping of the compressed image according to (16). Then, eight measure-
ment matrices are constructed according to the key, and each image block is reconstructed.
In this paper, the OMP algorithm is chosen as the reconstruction algorithm.

Y i(a, b) =
Ii(a, b)× (Ymax −Ymin)

255
+ Ymin, (16)

(3) Finally, the sparse coefficient matrix of the image is obtained by re-partitioning the
image. The original image can be obtained by inverse DWT.

Plaintext 

image

B1 B2 ... B8

Φ1

Encrypted image

x1 x2 x8

Initial vector

Initial key

...

Φ2 ... Φ8

Initial value 

Measurement matrix

Block 

image

Inverse block

I1 I2 I8
Compressed 

image

P1 P2 ... P8

Block 

encrypted 

image

 Initial 

value x0

x9 x10
Resever scrambling 

diffusion

Resver block scrambling 

diffusion

...

OMP

Inverse mapping

Sparse coefficient 

matrix

Sampling
ZUC stream 

cipher

Sampling

Figure 8. Decryption flow chart.

This algorithm is suitable for both grayscale and color images. When encrypting a
color image, it only needs to be decomposed into the three components of RGB. When
preparing the chaotic sequence required for encryption, the sequence length can be three
times the original.

5. Simulation Results and Performance Analysis

This section will simulate the performance of the proposed algorithm and analyze the
results. Experiments are conducted on MATLAB R2014a in a computer with Intel Core i5
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2.6 GHz and 8 GB RAM. In this algorithm, compressive sensing is used to realize image
compression, and the measurement matrix consists of STL chaotic sequences sampled by
the ZUC system. In the decryption process, the OMP algorithm is used to reconstruct
the image. The initial key and initial value vector of the ZUC system are all zero. Set the
control parameter of chaotic system µ = 4.1, initial value x0 = 0.5489 and compression
ratio r = 0.5.

Figure 9 shows the encryption and decryption results of color images and grayscale
images. It can be seen from the image in the second line that the size of the image processed
by the algorithm is compressed. The encrypted image is similar to the noise image, and
the information of the original image cannot be observed subjectively. It can be seen from
the decrypted image in the third row that the algorithm achieves good reconstruction of
the image.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 9. Simulation results of encryption and decryption: (a1)–(a3) are plain images Lena, Baboon
and Boat; (b1)–(b3) are the encryption images; and (c1)–(c3) are the decrypted images.

5.1. Histogram Analysis

As the original image contains certain information, the values of some pixels will be
close to or even the same. The gray histogram will be uneven and will contain certain
statistical information. For a good encryption algorithm to resist statistical analysis, the
image pixels should be evenly spread through the gray range [0, 255].

Figure 10 shows the histograms of the original, encrypted and decrypted images for
the R, G and B components of the color Lena image. Figure 11 shows the histograms of the
two grayscale images before and after encryption. It can be seen that the number of pixels
at each gray value in the encrypted image is basically the same in the interval [0,255], and
thus the stealer cannot obtain the original image through the statistical information of the
encrypted image.
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 10. Histogram of the RGB components of Lena image: (a1)–(a3) are the plaintext images;
(b1)–(b3) are the encryption images; and (c1)–(c3) are the decrypted images.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 11. Histogram of grayscale image before and after encryption: (a1)–(a3) Baboon and (b1)–
(b3) Boat.



Entropy 2022, 24, 742 13 of 21

As compressed sensing is a lossy compression technology; some details contained in
the original image are lost in the reconstruction process, and the reconstructed image is
not completely consistent with the original image histogram. It can be seen from the above
histogram that several peak values of the histogram reconstructed for Lena are reduced,
and the histogram becomes flat by comparing the first and third rows in the diagram.
However, it can be seen in Figure 9 that the reconstruction of the decrypted image is still
successfully achieved intuitively according to the analysis.

5.2. Pixel Correlation Analysis

The correlation distribution of the original adjacent pixels is shown in Figure 12a.
It can be seen that the values of adjacent pixels are very similar with strong correlations
no matter in which direction. The evenly distributed pixels of the encrypted image in
Figure 12b indicate that the pixels of the ciphertext image have been scrambled. The
encryption requirements are met from the perspective of pixel correlation.

We calculated the correlation coefficient of adjacent pixels of the encrypted image
and compared it with other algorithms that use compressed sensing technology to achieve
image encryption. The results are shown in Table 2. The correlation of adjacent pixels
in the image processed by the algorithm in this paper is lower than that of the other two
algorithms in the horizontal and vertical directions, and the pixel correlation is generally
lower than the other two algorithms. The pixel confusion effect of this algorithm is better,
the security is higher, and the ability to resist malicious analysis is stronger.

(a)

(b)
Figure 12. Pixel correlation distribution: (a): Original image. (b): Encryption image.
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Table 2. Correlation coefficient of adjacent pixels.

Image Method Horizontal Direction Vertical Direction Diagonal Direction

Peppers

Ours −0.0037 0.0021 −0.0018
[40] −0.0068 0.0091 −0.0061
[41] 0.0234 0.0121 0.0005
[42] 0.0037 −0.0014 0.0073

Cameraman

Ours 0.0032 0.0042 −0.0068
[40] −0.0035 0.0049 −0.0099
[41] 0.0062 −0.0054 −0.0014
[42] 0.0064 −0.0082 0.0091

Woman
Ours 0.0032 0.0052 −0.0068
[40] 0.0016 0.0081 −0.0016
[43] 0.0950 0.2432 0.0152

5.3. Information Entropy Analysis

Information entropy can calculate the uniformity of gray distribution by measuring
the probability of gray appearance. The calculation formula is:

H(m) = −
n

∑
i=1

p(mi)log2 p(mi), (17)

where m is the grayscale set of image pixels. p(mi) is the probability of mi occurring. n is
the total number of mi.

In order to explore the information entropy of the image encrypted by this algo-
rithm and the influence of the compression rate on the information entropy value, Table 3
shows the information entropy of three different encrypted images and calculates them by
changing the compression rates. It can be seen that the encrypted images with different
compression rates maintain high entropy, and the uniformity of the gray distribution is not
affected by the compression operation, indicating that the algorithm can resist information
entropy attacks.

Table 3. Information entropy of encrypted images.

Image
Compression Ratio

0.3 0.5 0.7 0.9

Lena 7.9960 7.9961 7.9965 7.9972
Peppers 7.9952 7.9953 7.9965 7.9961
Woman 7.9941 7.9960 7.9969 7.9976

5.4. Key Sensitivity Analysis

The key sensitivity in this section is analyzed from two aspects. On the one hand, the
encryption key is slightly changed, and the changes of the encrypted image before and
after the change are observed. On the other hand, in the decryption process, we make a
slight adjustment on the basis of the correct key, use the wrong key to decrypt and observe
whether the decryption can be correct. During the encryption process, the encryption key
x0 is slightly changed (order of magnitude 10−16). The encrypted images before and after
the key change and the difference images of the two images are shown in Figure 13.

In order to quantify the difference degree of the encrypted image before and after the
key change, the mean structural similarity (MSSIM) of the two images is calculated. The
smaller the MSSIM value is, the greater the influence of key changes on the encryption
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result is, and the higher the encryption key sensitivity of the algorithm is. The calculation
formula is shown in (18).

MSSIM =
1
N

N

∑
i=1

(2µxµy + c1)(2σxy + c2)

(µ22 + µy2 + c1)(σx2 + σy2 + c2)
, (18)

where µx, µy, σx
2 and σx

2 are the mean and variance of x and y, respectively. σxy is
the covariance of Windows x and y. N is the total number of Windows for the image.
c1 = (0.01× 255)2 and c1 = (0.03× 255)2. The MSSIM of Figure 13b,c was calculated as
−5.9023× 10−4. The Hamming distance is used in data transmission error control coding,
which indicates the number of different characters in the corresponding positions of two
strings of the same length. We converted the two images into binary vectors, and the
calculated Hamming distance was 0.4999. Different encryption results were obtained when
the key was infinitesimally changed. The algorithm has good encryption key sensitivity.

(a)

(b)

(c) (d)

Figure 13. Encryption key sensitivity: (a): The original image. (b): Encryption image. (c): The
encrypted image after changing the key. (d): The difference between two encrypted images.

The decryption key sensitivity of the algorithm is analyzed below. In the decryption
stage, a small disturbance is added on the basis of the correct decryption key to obtain a new
encrypted image. Figure 14 shows the wrong decrypted images after making some slight
changes in the decryption key. It can be seen that, even if there is such a small deviation of
the key used in encryption and decryption, the decryption result is still completely wrong.
The proposed algorithm is highly sensitive regarding the decryption key.
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(a) (b) (c)

Figure 14. Incorrectly decrypted image: (a): key changed 10−14, (b): key changed 10−15 and (c): key
changed 10−16.

5.5. Key Space Analysis

The contents of the key in this algorithm include 10 chaotic initial values, the initial
vector and the initial key of the ZUC system. The calculation accuracy is 2−52 according to
the IEEE745 standard. The key space is 252×10 × 2184+256 = 2960. This algorithm expands
the key space by introducing the ZUC stream cipher.

Table 4 shows that the key space of this algorithm is much larger than that of the
other five algorithms. The stronger the resistance of this scheme to exhaustive analysis, the
higher the security.

Table 4. Key space comparison.

Ours [40] [41] [43] [42] [44]

Key space 2960 2176 2399 1037 2626 2200

5.6. Differential Attack Analysis

Avalanche effect analysis studies the impact of changes in the input information of
encrypted images. There are two important indicators: the pixel number change rate
(NPCR) and the unified average intensity change (UACI). Inputting different plaintext
images and calculating the NPCR can quantify the number of pixels that have been changed,
and UACI is biased towards calculating the intensity of the changes in pixel values at
corresponding positions. The calculation formulas are as follows:

NPCR =
1

N ×M

N

∑
i=1

M

∑
i=1

E(i, j), (19)

UACI =
1

N ×M

N

∑
i=1

M

∑
j=1

|M1(i, j)−M2(i, j)|
255

, (20)

where M1 is a normal encrypted image, and M2 is an encrypted image after changing a
pixel in the original image. E(i, j) = 0 when the pixel values of the two images are the
same, otherwise E(i, j) = 1. A pixel value in the original image was randomly changed,
and the values of NPCR and UACI before and after the change were calculated as shown
in Table 5.

Table 5. NPCR and UACI.

Expected Value Ours [40] [41] [42] [44]

NPCR(%) 99.6094 99.6043 99.6155 99.4700 99.65 99.59
UACI(%) 33.4635 33.4603 33.5595 33.1800 33.64 33.51

Compared with[40–42,44], the values of NPCR and UACI are closer to the expected
values. Our algorithm is more sensitive to small changes in the original image. A random
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pixel change in the plaintext image makes the encrypted image a completely different
image when compared with the original one. The algorithm has good performance in
resisting differential attacks.

5.7. Analysis of the Reconstruction Effect

The compressed sensing operation loses image information to a certain extent. The
reconstruction effect of quantified images can be calculated by calculating the peak signal-to-
noise ratio (PSNR). The mean square error (MSE) of the original image and the reconstructed
image is regarded as a noise signal, and the PSNR is the ratio of the maximum possible
power to the mean square error of the two images. The formula is as follows:

PSNR = 10log10(
(28 − 1)2

MSE
). (21)

In order to verify the effect of the ZUC stream cipher on the image reconstruction
effect of the chaotic sequence sampling operation, the decrypted image obtained is directly
reconstructed without the mapping step of the compressed matrix. The original chaotic
sequence and the sampled chaotic sequence are used to construct the measurement matrix
of compressed sensing, and the PSNR and MSSIM of the reconstructed image and the
original image are compared.

In Table 6, using the chaotic sequence sampled by the ZUC stream cipher to construct
the measurement matrix can not only make the chaotic sequence more difficult to predict
but also improve the image reconstruction effect to a certain extent.

Table 6. Comparison of reconstruction effects before and after sampling.

Plain Image
PSNR (dB) MSSIM

Original Sampled Original Sampled

Lena 34.6021 34.9111 0.9279 0.9285
Pepper 37.8777 38.3088 0.9527 0.9561

Cameraman 31.3254 31.4581 0.8496 0.8518
Woman 42.5347 42.6238 0.9768 0.9775

The following image encryption is performed according to the algorithm proposed in
this paper. We used multiple images with a size of 512× 512 for encryption and decryption
to calculate the PSNR of the original image and the decrypted image. It can be seen in Table
7 that the PSNR of the image is above 27dB, and the MMSIM is above 0.84.

Table 7. Reconstruction effect of 512 × 512 images.

Peppers Woman Cameraman Lake Boat Lena

PSNR(dB) 30.7601 31.5932 28.6057 27.5064 28.3154 31.3899
MSSIM 0.9077 0.9220 0.8436 0.8536 0.8591 0.9209

Then, the original image is replaced with an image of size 256× 256, which is com-
pressed and reconstructed. Table 8 shows the PSNR of different decrypted images, which
are compared with [40,41,44]. It can be seen by comparison that the PSNR value of the
algorithm in this paper is relatively high. The reconstruction effect of this algorithm is
good, and the distortion caused by encryption and decryption is small.

In order to compare the effect of the compression ratio on the image reconstruction
effect, the PSNR under different compression ratios was obtained and compared with [43].
Figure 15 shows that the proposed algorithm has a better image reconstruction effect when
the compression ratio is less than 0.8. It shows that the algorithm can compress the image
into a smaller image and achieve good reconstruction.
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Table 8. PSNR comparison table for 256× 256 images.

Image Ours [40] [41] [44]

Peppers 29.6180 24.8485 - 23.0676
Woman 30.9270 30.8184 23.5210 -

Cameraman 26.2482 - 25.2684 23.8783

Figure 15. PSNR comparison (ours vs. Deng et al. 2017 [43]) under different compression ratios.

5.8. Analysis of Encryption and Decryption Efficiency

In the evaluation of encryption algorithms, security and efficiency are two important
indicators. The security of this algorithm has been explained in several aspects. For images
of different sizes, the encryption times required by this algorithm are shown Figure 16. The
encryption time required by this algorithm is largely less than that [40], which is very close
to the time required by [43]. When the image size is less than 256× 256, the encryption
time is less than 0.6 s. The comparison results of the encryption time and decryption
time are shown in Table 9. Compared with [41], this algorithm spends less time in the
decryption phase.

Figure 16. Encryption time comparison (ours vs. Gong et al. 2019 [40], Deng et al. 2017 [43]).
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Table 9. Encryption and decryption time of the proposed scheme (s).

Image Size Encryption Time Decryption Time

Ours [41] Ours [41]

256× 256 0.5028 0.9039 3.5124 9.992
512× 512 0.7727 1.2688 6.4579 35.280

1024× 1024 1.4497 2.5490 15.4262 159.500

It can be seen from the comparison that, since the algorithm adopts the block-parallel
compressed sensing method to process the image, the encryption and decryption time is
less. Even if the ZUC algorithm is introduced, some elements in the chaotic sequence need
to be lost in the sampling process; however, there is no obvious loss of efficiency.

6. Conclusions

In this study, we aimed to encrypt images while saving communication channel
resources, and we proposed an image block compression and encryption algorithm based
on the theory of chaotic compressed sensing. A ZUC stream cipher was used to improve
the deficiencies of a one-dimensional chaotic system. This algorithm randomly divides the
sparse coefficient matrix of the image into blocks and uses the chaotic sequence sampled
by the ZUC stream cipher to construct the measurement matrix.

Simulation experiments and comparison with other algorithms showed that the key
space of the proposed algorithm was large and that ZUC sampling improved the image
reconstruction effect. This paper also analyzed the security under different compression
ratios from different aspects and compared it with other algorithms, which proved that the
algorithm had high security.
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