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Abstract: The transmission of digital medical information is affected by data compression, noise,
scaling, labeling, and other factors. At the same time, medical data may be illegally copied and
maliciously tampered with without authorization. Therefore, the copyright protection and integrity
authentication of medical information are worthy of attention. In this paper, based on the wavelet
packet and energy entropy, a new method of medical image authentication is designed. The proposed
method uses the sliding window to measure the energy of the detail information. In the time–
frequency data distribution, the local details of the data are mined. The complexity of energy is
quantitatively described to highlight the valuable information. Based on the energy weight, the local
energy entropy is constructed and normalized. The adjusted entropy value is used as the feature
vector of the authentication information. A series of experiments show that the authentication method
has good robustness against shearing attacks, median filtering, contrast enhancement, brightness
enhancement, salt-and-pepper noise, Gaussian noise, multiplicative noise, image rotation, scaling
attacks, sharpening, JPEG compression, and other attacks.

Keywords: wavelet packet decomposition; energy entropy; authentication; robustness

1. Introduction

With the widespread application of digital diagnosis technology, hospitals are pro-
ducing a large amount of digital medical information every day. The digital medical infor-
mation includes all kinds of medical images, electronic medical records (EPRs), electronic
health records (EHRs), and diagnosis data. The rapid development of image analysis, signal
processing, and 5G network technology have provided technical support for telemedicine,
telemedicine consultation, and telemedicine teaching. Relying on efficient information
processing methods, medical experts in different places can discuss diseases in real time.
The application of new technology has further improved the diagnosis and treatment effect
for patients.

In the public network environment, the dissemination of digital medical information
not only provides convenience for patients but also brings new security risks. When
increasing amounts of medical data are transmitted to medical centers, the confusion of the
medical data of different patients may cause medical negligence. Therefore, the medical
data of different patients require extra care in the storage and distribution processes. At
the same time, during the process of network transmission, any minor changes in medical
information may create new medical disputes. Therefore, the security authentication
of medical information is particularly important. In recent years, experts and scholars
have studied a variety of medical image authentication schemes [1,2]. Some researchers
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have focused their efforts on detecting whether the medical images have been tampered.
Others focused their efforts on identifying the tampered areas and repairing the tampered
areas [3,4]. However, from the perspective of practical application, the authentication
process of medical images should focus on whether the medical images have been tampered.
The process should also focus on whether the authentication process impacts the medical
diagnosis. In order to avoid distortion, some researchers divided the medical images
into blocks; that is, the images were divided into regions of interest (ROIs) and regions
of noninterest (RONIs). Different authentication methods are used for the ROI region
and the RONI region. This kind of method is simple to implement, easy to operate,
and easy to recover. The disadvantage of this scheme is that the method has poor fault
tolerance and is easy for attackers to recover [1,5,6]. Some scholars have integrated different
kinds of transformation domain operations such as DWT, DCT, DFT, quantization index
modulation under dither modulation (QIM-DM), SVD, neural networks, and cryptography
to authenticate medical images [7–9]. Several classical authentication schemes integrate
various transform domain operations. For example, Anand integrated ECC encryption and
digital watermarking technology to protect the security of medical information [3]. Singh
used Hamming error correction code, a digital watermark, and cryptography to improve
the security of authentication methods and reduce the bandwidth redundancy [8]. Thakur
designed a double watermark model suitable for medical image security authentication
by comprehensively using DWT, SVD, Hamming code, and chaotic encryption [9]. Jinhua
designed a quantization-based image watermarking scheme by using the information
entropy of the wavelet domain [10]. Hu et al. used a key to control the logistic chaotic
map, and searched for the same binary sequence as the watermark information to realize
authentication [11]. Based on DWT and visual cryptography, Hsieh and Huang proposed
an authentication scheme, which is characterized by the mean and variance of the wavelet
coefficients [12]. Aiming at the security protection of telemedicine applications, scholars
such as Borra, Pirbhulal, and Farhan fully integrated FRT-SVD and cryptographic methods
to realize the authentication of medical information [13–16]. Scholars such as Hsu and
Hou have studied some security authentication methods by integrating cryptography
and zero watermark. The implementation of such methods requires the integration of
special transformation operations [17–20]. Compared with the spatial domain methods,
the transformation domain methods have strong reversibility, high security, good visual
quality, and resist attack. The disadvantages are that the calculation is complex and the
implementation of the algorithm needs a specially designed scheme.

The effectiveness of all of the authentication schemes has been confirmed, and the dif-
ferent authentication methods each have their own advantages and disadvantages. Under
the application background, the authentication model should ensure the uniqueness of data
sources. The authentication model should also ensure the one-to-one correspondence be-
tween the data information and the relevant patients. A good authentication model should
have good invisibility and robustness. Invisibility means that the authentication process
cannot affect the quality of medical information. At the same time, the authentication
process should not cause new medical disputes. Robustness means that the authentication
model is still available under various geometric attacks and noise attacks. On the basis of
previous work, we discussed the problem from the perspective of energy entropy. By using
energy entropy, a suitable method for medical image authentication was designed. The
innovations of this method are as follows:

(1) In the time–frequency data distribution, the energy of the detailed information is
described. Then, the complexity weight of the energy is measured. Based on this, the
local energy entropy is constructed.

(2) From the perspective of energy, the local details of the data are mined and then the
local energy entropy is normalized. The processed entropy is used as the feature of
the authentication information.
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(3) The proposed authentication method combines the advantages of multiresolution
analysis and the stability of local energy entropy. No noise is added in the authentica-
tion process. The integrity goal of the authentication is achieved.

A series of attack experiments verified that the proposed method is robust in image
compression, channel noise, as well as against intentional and unintentional attacks.

2. Basic Theory
2.1. Basic Theory of Wavelet Packet Transform

The wavelet packet transform is an extension of the wavelet transform, and its theory
and algorithm are based on the wavelet transform [21–23]. The wavelet transform adopts
a tower-type signal decomposition mode; that is, the signal is continuously decomposed
on the low-frequency channel. The wavelet transform only extracts the low-frequency
components and ignores the middle- and high-frequency features that may reflect the
important information in the signal. The wavelet packet transform can gather in all
frequency ranges, which not only retains the multiresolution characteristics but also makes
full use of the rich detail information.

In orthogonal wavelet decomposition, through multiresolution analysis, only the
subspace Vj is decomposed into mutually orthogonal subspaces Vj+1 and Wj+1, namely:

Vj = Vj+1 ⊕Wj+1 (1)

Different from the wavelet transform, the wavelet packet transform also further de-
composes Wj at any decomposition level. Assuming that the decomposition starts from
V0, let W0

0 = V0, ψ0
0(t) = φ(t), where φ(t) is the scaling function, then

{
ψ0

0(t− k)
}

k∈Z
is the orthonormal basis of W0

0 . First, W0
0 is decomposed into W0

1 and W1
1 , and there

are W0
1⊥W1

1 and W0
0 = W0

1 ⊕W1
1 . The subspace Wn

j is decomposed into W2n
j+1 and

W2n+1
j+1 , and there are W2n

j+1⊥W2n+1
j+1 and Wn

j = W2n
j+1 ⊕W2n+1

j+1 .Then, the orthonormal

bases of subspaces Wn
j , W2n

j+1, and W2n+1
j+1 are

{
ψn

j (t− 2jk)
}

k∈Z
,
{

ψ2n
j+1(t− 2j+1k)

}
k∈Z

, and{
ψ2n+1

j+1 (t− 2j+1k)
}

k∈Z
, respectively, and they satisfy the following two-scale equations:


ψ2n

j+1(t) = ∑
k∈z

hkψn
j (t− 2jk)

ψ2n+1
j+1 (t) = ∑

k∈z
gkψn

j (t− 2jk)
(2)

where hk and gk are a pair of conjugate mirror filters, and gk = (−1)kh1−k.
Let f (t) ∈ V0; according to the decomposition relationship of V0, for any specified

layer j, V0 = W0
j ⊕W1

j ⊕ · · · ⊕W2j−1
j .

Using the known filter {hk, gk} and the projection coefficient dn
j,k of f in subspace Wn

j

at scale j, the projection coefficients d2n
j+1,k, d2n+1

j+1,k of f in subspaces W2n
j+1 and W2n+1

j+1 at scale
j + 1 are calculated.

The decomposition and reconstruction algorithm of the wavelet packet are as follows:
Equation (3) gives the decomposition algorithm of the wavelet packet:

d2n
j+1,k = ∑

l
hl−2kdn

j,l

d2n+1
j+1,k = ∑

l
gl−2kdn

j,l
, k ∈ Z (3)

Equation (4) gives the reconstruction algorithm of the wavelet packet:

dn
j,k = ∑

m
(hk−2md2n

j+1,m+gk−2md2n+1
j+1,m), k ∈ Z (4)
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2.2. Wavelet Packet Decomposition of Images

The wavelet decomposition of the image can be transformed into the wavelet decom-
position of the one-dimensional signal (row and column). For the two-dimensional image
f of M× N, the following steps can be used for wavelet packet decomposition:

(1) Wavelet transform is performed on image f , then four subimages f ⊗ (Hr, Hc),
f ⊗ (Hr, Gc), f ⊗ (Gr, Hc), and f ⊗ (Gr, Gc) are obtained.

Among them, f ⊗ (Hr, Hc) is a low-frequency image. f ⊗ (Hr, Gc), f ⊗ (Gr, Hc), and
f ⊗ (Gr, Gc) are the vertical, horizontal, and diagonal subimages, respectively, which are
high-frequency images.

(2) Continue the operation in step (1) for the four subgraphs and then obtain the
four subgraphs of each subimage. The cycle is carried out until n-level wavelet packet
decomposition subgraphs are obtained.

Figure 1 shows the subgraphs of the image decomposed by the first- and second-level
wavelet packets.
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Figure 1. An example of two-level wavelet packet decomposition. (a) represents the original image,
(b) represents the 4 subimages of the first-level wavelet packet decomposition, and (c) represents the
16 subimages of the second-level wavelet packet decomposition.

2.3. Theory of Energy Entropy

Information entropy is a concept used to measure the amount of information in
information theory [10]. It was proposed by Shannon in 1948 and is defined as follows:

Suppose that the information source X is a discrete random variable and the value
of X is X = {x1, x2, · · · , xn}. If the probability of the occurrence of each message is

P = {p1, p2, · · · , pn} and
n
∑

i=1
pi = 1, then the information entropy of X can be expressed as

Formula (5):

H(X) = −
n

∑
i=1

pi log pi (5)

Suppose that a two-dimensional image f is decomposed by wavelet packet. The
energy corresponding to the ith sub-image fi, j of the jth layer is denoted as Ei, j, then

Ei,j =
M′

∑
k=1

N′

∑
l=1

∣∣ fi,j(k, l)
∣∣2, i = 0, 1, · · · , 4j − 1 (6)

where M′ and N′ are the size of the subimage fi, j, and fi, j(k, l) represents the gray value of

the subimage fi, j(k, l) at (k, l). Then, the total energy of the jth layer is Ej =
4j−1
∑

i=0
Ei,j.
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Let Pi,j =
Ei,j
Ej

=
Ei,j

4j−1
∑

i=0
Ei,j

, then
4j−1
∑

i=0
Pi,j = 1. According to information entropy theory,

the energy entropy of the ith subimage fi, j is defined as follows:

EWPEE = −
4j−1

∑
i=0

Pi,j log Pi,j (7)

3. Authentication Scheme
3.1. Ownership Construction Phase

Multiresolution decomposition of medical images is carried out by the wavelet packet
transform. In a time–frequency data distribution, a sliding window is used to measure the
energy of the detailed information. Based on the energy weight, the local energy entropy
is constructed. From the perspective of energy entropy, the local details of the data are
mined. The local energy entropy is normalized and stored in a third-party certification
center as authentication information. Figure 2 shows a schematic diagram of the copyright
construction process. The detailed implementation process is shown below.
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Step 1: Extraction of robust features.

When the robust areas of carrier information are fully used, the authentication method
can better resist various attacks. The medical image R is multiscale-decomposed by the
wavelet packet. After this operation, the low-frequency approximate wavelet coefficient f 11
can be obtained. The low-frequency data f 11 are decomposed into nonoverlapping blocks.
The energy entropy of the segmented data can be calculated by Formulas (6) and (7) in
Section 2.3.

[f 11,f 12,f 21,f 22] = DWT(R).

Step 2: Construct feature vector.

According to the energy entropy of each data block, the average energy entropy of
the segmented data can be calculated. By using Equation (8), the relationship between the
energy entropy of each segmented data and the mean energy entropy can be analyzed, and
then the binary feature vector can be constructed.

F =

{
0, i f Eni >= En
1, else

(8)

where i = 1, 2, · · · , n × n, Eni is the energy entropy of each block, and En is the mean
energy entropy of all information blocks. The feature vector F is the original feature
information extracted from the medical images by using wavelet packet energy entropy as
the analysis tool.
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Step 3: Form authentication information and store authentication results.

Perform the XOR operation between the copyright authentication information IM and
the extracted feature vector F. The results are stored in a third-party center for authentication.

DW = XOR(IM, F) (9)

where IM is the copyright logo data.

3.2. Ownership Verification Phase

Assuming that R’ is the image to be authenticated after a series of attacks, Figure 3
shows the schematic diagram of the authentication process. The detailed authentication
process is shown below.
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Step1: Extraction of robust features.

The suspected medical image R′ is multiscale-decomposed by the wavelet packet.
The low-frequency approximate wavelet coefficient f 11

′ can be obtained. Then, the low-
frequency data f 11

′ are decomposed into nonoverlapping blocks. The energy entropy of the
segmented data can be calculated by the Formulas (6) and (7) in Section 2.3.

[f 11
′,f 12

′,f 21
′,f 22

′] = DWT(R′).

Step 2: Construct feature vector.

According to the energy entropy of each data block, the average energy entropy of the
segmented data is calculated. By using Equation (10), the relationship between the energy
entropy of each segmented data and the mean energy entropy is analyzed. The binary
feature vector F′ can be constructed.

F′ =
{

0, i f E′ni >= E′n
1, else

, (10)

where i = 1, 2, · · · , n× n,E′ni is the energy entropy of each block, and E′n is the mean
energy entropy of all the information blocks. The feature vector F′ is the feature information
extracted from the suspected images.

Step3: Complete verification.
Perform the XOR operation between the feature information F′ and DW, which is

stored in a third-party authentication center. The results are stored in matrix IM′ and IM′ is
the recovered authentication information. The authentication is completed by judging the
difference between IM and IM′.

IM′ = XOR(DW, F′) (11)

where IM is the original logo data, and IM′ is the recovered logo data.
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4. Analysis of Experimental Results

In order to verify the feasibility of this method, six different types of medical images
were selected as the test images from the medical image platform at https://peir.path.uab.
edu/library/We, accessed the platform, (accessed on 10 August 2021). The six images
were from different parts of the human body, which better verified the robustness of the
proposed method. Figure 4 gives the test images and a 32 × 32 logo image. The proposed
method was tested in the six images. Due to the space limitations, we provide the test
results on breast images and presents the averaged results for all six test images.
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Figure 4. The test images and copyright logo.

The peak signal-to-noise ratio (PSNR) of the original image and the attacked image
is used to quantitatively describe the impact of various attacks on the original carrier
information. The greater the PSNR value, the higher the similarity of the two images. When
the PSNR value is less than 30 dB, the human eye can perceive the difference between the
original image and the attacked image. The evaluation index is more consistent with the
visual perception characteristics of the human eyes. The robustness of the authentication
method is evaluated by the normalized similarity value (NC). The NC value is between zero
and one. The larger the NC value, the higher the similarity between them. The robustness
of the authentication method can be verified when the PSNR is very low and the NC value
is very high.

PSNR = 10 log10
2552

MSE (dB),

MSE = 1
M×N

M
∑

i=1

N
∑

j=1
(Hij − H′ i j)

2,
(12)

where M and N are the width and height of the tested image; Hij, H′ ij are the pixel value of
the carrier image before and after the attack, respectively.

NC = 1−

B
∑

b=1
wb ⊕ w′b

B
(13)

where wb, w′b are the original authentication information and the extracted copyright
information, respectively; B is the size of the copyright information.

https://peir.path.uab.edu/library/We
https://peir.path.uab.edu/library/We
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4.1. Correlation Test between Different Features

The features used for authentication should have strong autocorrelation with the
carrier. The authentication features extracted from different images should have strong
independence. The authentication features extracted from different images should be
independent of each other. In order to verify the autocorrelation between the features,
Table 1 is used to show the correlation values of the different features. The correlation
between different features is evaluated by the normalized similarity value (NC). The NC
value is between zero and one. The larger the NC value, the higher the similarity between
them. It can be seen from Table 1 that most of the data are close to 0.7 and some are close to
0.3. The results indicate that the features extracted from different images were different.

Table 1. Similarity test of different features.

Abdomen (b) Breast
(c) Chest (d) Head Breast Adrenal Head Heart Lung

Abdomen 1 0.2793 0.7334 0.7490 0.6777 0.7188
Breast 0.2793 1 0.1533 0.2412 0.2891 0.0156

Adrenal 0.7334 0.1533 1 0.7578 0.7471 0.8467
Head 0.7490 0.2412 0.7578 1 0.6748 0.7432
Heart 0.6777 0.2891 0.7471 0.6748 1 0.7246
Lung 0.7188 0.0156 0.8467 0.7432 0.7246 1

4.2. Analysis of Experimental Results

Due to the interference of network noise and human factors, medical information may
change in the process of network transmission. In order to intuitively verify the effective-
ness of the proposed method, we use Figures 5–15, which show the robustness results of a
breast after a series of simulated attacks. The simulated attack types were image rotation
(rotation 10 degrees), scaling attack (zoom to 200%), sharpening attack, JPEG compression
attack (compression factor 10%), salt and pepper noise attack (parameter 0.001), Gaussian
noise attack (Gaussian parameter 0.005), multiplicative noise attack (noise parameter 0.01),
contrast enhancement attack, brightness enhancement attack, clipping attack (cutting out
1/5 of the original image), and median filtering attack (filtering parameter 5 × 5).
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Figures 5–15 show the robustness of the breast image after a series of simulated attacks.
Table 2 presents the averaged results of the six test images.
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Table 2. Averaged results of six test images.

Attack Breast Averaged Results of Six Test Images

JPEG (10) 1 0.9952
Salt-and-pepper noise (0.001) 0.9980 0.9749

Gaussian noise (0.005) 0.9824 0.9819
Rotation (10 degrees) 1.0000 0.9968
Scale scaling (200%) 1 0.9924

Sharpening 0.9990 0.9938
Multiplicative noise (0.01) 1 0.9918

Clipping (20%) 0.9688 0.9637
Median filtering 5 × 5 0.9990 0.9970
Contrast enhancement 0.9766 0.9852

Brightness enhancement 1 0.9853

Medical information is different from traditional data information. Even slight changes
in medical information may cause medical disputes. From Figures 5–15, it can be seen
that the proposed method has good robustness against conventional attacks, especially
against JPEG compression (compression factor 10%), rotation attack (rotation 10 degrees),
scaling attack (zoom in 200%), multiplicative noise (noise parameter 0.01), brightness
enhancement, etc. The NC value of the authentication image was one. The NC values of
the other attack tests were also close to one. Especially for the clipping attack, the visual
change was obvious after the attack (PSNR = 15.7723 after the attack). The NC value of
the authentication information extracted from the attacked image was still close to one
(NC = 0.9688). After Gaussian noise, contrast enhancement, and brightness enhancement
attacks, the visual change in the original medical image was also obvious (PSNR value was
less than 30). The NC value of the authentication information extracted from the attacked
image was also close to one. It can be seen that the proposed method has good robustness
against both conventional geometric and nongeometric attacks.

4.3. Algorithm Comparison Test

Figures 5–15 and Table 2 verify the effectiveness of the method from both visual effects
and numerical calculations. To further verify the robustness of the proposed method,
Tables 3–5 and Figures 16 and 17 show the comparison results between this method and
other authentication methods.

Table 3. Comparison tests (1).

Attacks
Hsieh and
Huang’s

Scheme [12]

Hsu and Hou’s
Scheme [17]

Tiankai’s
Scheme [20]

Proposed
Scheme

Sharpening 0.752 0.819 0.9561 0.9990
Median filtering 0.843 0.938 0.9775 0.9990

Resizing 0.733 0.887 0.9521 1
Noise addition 0.723 0.761 0.9854 0.9941

JPEG 0.845 0.956 0.9912 0.9990

Table 4. Comparison tests (2).

Attack Ref. [11] Ref. [18] Ref. [19] Ref. [20] Proposed
Scheme

Gaussian noise 0.9300 0.8594 0.9600 0.9854 0.9941
Median filtering 5 × 5 0.9900 0.9453 0.9800 0.9912 0.9990
Median filtering 7 × 7 0.9700 0.9063 0.9800 0.9775 0.9990

JPEG (70) 0.9700 1.0000 1.0000 0.9951 1
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Table 4. Cont.

Attack Ref. [11] Ref. [18] Ref. [19] Ref. [20] Proposed
Scheme

JPEG (50) 0.9600 - 0.9900 0.9912 0.9990
JPEG (20) 0.9400 0.9570 0.9700 0.9824 1

Cropping (10%) 0.9900 - - 0.9756 0.9463
Cropping (20%) 0.9700 - - 0.9463 0.9688

Rotation attack (1 degree) 0.9300 0.8164 - 0.9102 0.9990
Rotation attack (2.5 degrees) 0.9700 - - 0.9307 0.9746
Rotation attack (5 degrees) 0.9600 - 1.0000 0.9424 1

Rotation attack (10 degrees) 0.9500 - 0.9500 0.9580 1
Visibility No No No Yes Yes

Table 5. Comparison test (3).

Attack Noise Density Ref. [3] Ref. [8] Ref. [9] Proposed Scheme

Salt-and-pepper noise 0.0001 0.9995 0.9836 0.9975 1
Salt-and-pepper noise 0.0005 0.9977 0.9769 0.9630 0.9990
Salt-and-pepper noise 0.001 0.9949 0.9687 0.8761 0.9980

Gaussian noise 0.001 0.9917 0.9398 - 0.9941
Gaussian noise 0.005 0.9599 0.9315 - 0.9824

Rotation 1 degree 0.7806 0.9221 0.9308 0.9990
JPEG compression QF = 10 0.9835 0.8952 0.8994 1
JPEG compression QF = 50 0.9951 0.9510 0.9626 0.9990
JPEG compression QF = 90 0.9994 0.9809 - 1

Speckle noise 0.001 0.9913 0.9800 0.9947 1
Speckle noise 0.005 0.9766 0.9014 - 1
Image scaling 2 0.9614 - 0.8242 1
Median filter [11] 0.9760 0.9819 0.9973 1
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Figure 16. Comparisons of the robustness between different schemes: (1) attacks type 1–12 are
Gaussian noise, median filtering 5 × 5, median filtering 7 × 7, JPEG (70%), JPEG (50%), JPEG (20%),
cropping (10%), cropping (20%), rotation attack (1 degree), rotation attack (2.5 degree), rotation attack
(5 degrees), and rotation attack (10 degrees), respectively.
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Figure 17. Comparisons of the robustness between different schemes: (2) attacks type 1–13 are salt
and pepper noise (0.0001), salt and pepper noise (0.0005), salt and pepper noise (0.001), Gaussian
noise (0.001), Gaussian noise (0.005), rotation (1 degree), JPEG (10%), JPEG (50%), JPEG (90%), speckle
noise (0.001), speckle noise (0.005), image scaling (2×), and median filtering 1 × 1), respectively.

Table 4 and Figure 16 describe the comparison results with reference methods [11,18–20]
under various attacks such as brightness, median filtering, scaling change, noise, rotation, JPEG
compression, clipping, etc. The results show that the proposed method has good robustness
under various attacks. From Figure 16, compared with the reference methods [11,18–20], the
proposed method shows good robustness in resisting Gaussian noise, median filtering, JPEG
compression, rotation attack, etc. The robustness of the proposed method against cropping
attack is slightly weaker than that of the reference methods [11,18–20]. The proposed method
can meet security authentication requirements.

In comparison with reference methods [3,8,9], the proposed method shows good
robustness against salt-and-pepper noise, Gaussian noise, multiplicative noise, rotation
attack, JPEG compression, scaling, median filtering, etc. From Table 5 and Figure 17, the
NC value of seven attack tests is equal to 1 and the other NC values are also close to 1.

Through comparative analysis with previously reported methods [3,8,9,11,18–20], by
mining and analyzing the local features of wavelet packet energy entropy, the formed
authentication information shows good robustness in resisting Gaussian noise, median
filtering, JPEG compression, rotation attack, and so on. Limited by the aggregation of
energy, the robustness of the proposed method against cropping attack is slightly weaker.

5. Conclusions

Without adding any noise or making any change to the original medical image, based
on the wavelet packet energy entropy, the complexity of the information energy was
quantitatively described. From the perspective of local energy, the features of the data
were fully mined, and the local energy entropy was constructed. By using the energy
measurement the feature vector was formed. A series of attack tests showed that the
authentication method has good rotation invariance and scale invariance. The results
showed strong robustness against common geometric deformation and various kinds of
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noise attacks. At the same time, this method has good universality and is especially useful
for military images and medical images.
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