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Abstract: The Lyapunov exponent is the most-well-known measure for quantifying chaos in a
dynamical system. However, its computation for any time series without information regarding a
dynamical system is challenging because the Jacobian matrix of the map generating the dynamical
system is required. The entropic chaos degree measures the chaos of a dynamical system as an
information quantity in the framework of Information Dynamics and can be directly computed for
any time series even if the dynamical system is unknown. A recent study introduced the extended
entropic chaos degree, which attained the same value as the total sum of the Lyapunov exponents
under typical chaotic conditions. Moreover, an improved calculation formula for the extended
entropic chaos degree was recently proposed to obtain appropriate numerical computation results
for multidimensional chaotic maps. This study shows that all Lyapunov exponents of a chaotic map
can be estimated to calculate the extended entropic chaos degree and proposes a computational
algorithm for the extended entropic chaos degree; furthermore, this computational algorithm was
applied to one and two-dimensional chaotic maps. The results indicate that the extended entropic
chaos degree may be a viable alternative to the Lyapunov exponent for both one and two-dimensional
chaotic dynamics.

Keywords: chaos; Lyapunov exponent; extended entropic chaos degree

1. Introduction

The Lyapunov exponent (LE) is the most commonly used measure for quantifying
the chaos of non-linear dynamical systems. The LE measures the average exponential
separation rate of orbits with infinitesimally close initial points. The orbit produced by a
smooth map f on Rd is referred to as chaotic if the largest LE among all d LEs is positive.
In principle, the Jacobian matrix: Jn(x) = D f n(x) is necessary to compute LEs. However,
in general, obtaining an explicit formula for Jn(x) for a large n is challenging. In actual
numerical computations, the LEs of a map f are obtained by approximating the image
ellipsoid JnU of the unit sphere U. This approach involves the chain rule and the Gram–
Schmidt orthogonalization procedure to compute the LEs of the map f [1]. Subsequently, all
the LEs of the map f on Rd can be computed, provided the Jacobian matrix J1(x) = D f (x)
can be obtained.

Thus, LEs for a time series are generally incomputable in the absence of any informa-
tion regarding the Jacobian matrix, J1(x). Therefore, researchers have suggested various
estimation methods of LEs for a time series [2–7]. The largest LE for a time series may be
estimated using these methods. However, estimating all the LEs and their total sum for the
time series is not always possible.

The chaos degree quantifies the chaos of a dynamical system as follows: C(Λ∗ϕ)−
T(ϕ; Λ∗) in Information Dynamics [8]. Here, ϕ is referred to as the state and Λ∗ as a chan-
nel associated with the state change ϕ → Λ∗ϕ. C(ϕ) is the complexity of the state ϕ and
T(ϕ; Λ∗) is the transmitted complexity associated with the state change ϕ→ Λ∗ϕ. A chan-
nel Λ∗ is referred to as chaotic in the definition of Information Dynamics, provided chaos
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degree is positive. In a classical dynamical system, state ϕ and channel Λ∗ are provided as
a probability distribution p(n) at time n and a transition probability matrix from p(n) at time
n to p(n+1) at time n + 1. By substituting the Shannon entropy S(Λ∗p(n)) and the mutual
entropy I(p(n); Λ∗) for C(Λ∗ϕ) and T(ϕ; Λ∗) respectively, the entropic chaos degree (ECD)
is obtained from S(Λ∗p(n))− I(p(n); Λ∗) in classical dynamical systems [9]. Thus, the ECD
becomes an information quantity equivalent to conditional entropy: S

(
p(n+1)

∣∣∣p(n) ) in
classical dynamical systems. The ECD offers the advantage of being directly computable for
time-series data, even if the dynamical equation generating the time-series data is unknown.
Using the ECD, an attempt to characterize chaotic behaviors has been made [9–11].

There exists a relationship between the LE and ECD [12]. Unfortunately, the ECD is
not always sufficient to be used as an alternative to the LE because it always attains a higher
value than the LE for any chaotic map [13]. Therefore, based on the interpretation of the
difference between the ECD and LE, an improved ECD was proposed for a one-dimensional
chaotic map, and it was shown that the improved ECD is equivalent to the LE under typical
chaotic conditions [13,14]. Furthermore, the extended entropic chaos degree (EECD) was
introduced as an extended improved ECD to a multidimensional chaotic map. Further, it
has also been shown that the EECD coincides with the sum of all LEs in typical chaotic
conditions [15].

However, the above relationship between the EECD and LEs assumes several condi-
tions, such that the numbers of mapping points and all components of the equipartition of
I in the map from I to I must take the limit of infinity. However, these numbers must be set
as finite numbers in actual numerical computations. Therefore, an improved calculation
formula for the EECD was proposed, such that the EECD is almost computable as the sum
of all LEs of a typical multidimensional chaotic map in actual numerical computations [16].

This study shows that all LEs of a multidimensional chaotic map can be estimated
using an improved calculation formula for the EECD and proposes a computational algo-
rithm for the EECD. Moreover, the computational algorithm of the EECD was applied to
specific typical chaotic maps.

2. Entropic Chaos Degree

This section briefly reviews the definition of the ECD for a difference equation system.
Let f be a map, such that f : I → I (≡ [a, b]d). Consider the following difference

equation:
xn+1 = f (xn), n = 0, 1, . . . .

Let x0 be an initial value and let {Ai} be a finite partition of I such that:

I =
⋃
k

Ak, Ai ∩ Aj = ∅ (i 6= j),

where Ai is a Borel measurable subset of I.
Then, the probability distribution

(
p(n)i,A (M)

)
at time n is expressed as

p(n)i,A (M) =
1
M

n+M−1

∑
k=n

1Ai (xk)

=
|{xk ∈ Ai; n ≤ k ≤ n + M− 1}|

M
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and the joint distribution
(

p(n,n+1)
i,j,A (M)

)
at times n and n+ 1, associated with the difference

equation, is expressed as:

p(n,n+1)
i,j,A (M) =

1
M

n+M−1

∑
k=n

1Ai (xk)1Aj(xk+1)

=

∣∣{(xk, xk+1) ∈ Ai × Aj; n ≤ k ≤ n + M− 1
}∣∣

M
,

where 1A is the characteristic function of the set A.
Subsequently, the ECD D of an orbit {xn} is defined as in [8] as:

D(M,n)(A, f ) = ∑
i

∑
j

p(n)i,j,A(M) log
p(n)i,A (M)

p(n,n+1)
i,j,A (M)

= ∑
i

∑
j

p(n)i,A (M)

(
−

N

∑
j=1

p(n)A (j|i)(M) log p(n)A (j|i)(M)

)
, (1)

where

p(n)A (j|i)(M) =
p(n,n+1)

i,j,A (M)

p(n)i,A (M)

is the conditional probability from one component Ai to another Aj for the finite partition
{Ai} of I.

Further, using the ECD, the orbit {xn} associated with the map f is uniquely deter-
mined in the definition of Information Dynamics (ID) in [8] as follows:

D(M,n)(A, f ) > 0 ⇐⇒ The orbit {xn} is chaotic in ID,

D(M,n)(A, f ) = 0 ⇐⇒ The orbit {xn} is stable in ID.

Here, the ECD is denoted as D(M)(A, f ) without n, provided the orbit {xn} does not depend
on time n. In a similar manner, the ECD is denoted as D(M,n)(A) without f , provided the
orbit {xn} is not generated by the map f .

However, the unique definitions of the orbit in ID may not be consistent with the
original properties of the orbit. The basic properties of the ECD in [12] are briefly reviewed.

Let M be a sufficiently large natural number and let f be a one-dimensional map from
I to I where I = [a, b]. Let {Ai} be the L-equipartition of I, such that

I =
L−1⋃
i=0

Ai, (2)

where

Ai =



[
a+

b− a
L

i, a +
b− a

L
(i + 1)

)
(i = 0, 1, . . . , L− 2),

[
a +

b− a
L

(L− 1), b
]

(i = L− 1)

Subsequently, the following theorems are proved in [12]:

Theorem 1. If the map f creates a stable periodic orbit, then the following equality holds:

D(M,n)(A, f ) = 0 (3)

for the L-equipartition {Ai} of I = [a, b].
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Theorem 2. Further, if the LE of f is positive, the following inequality holds:

D(M,n)(A, f ) > 0 (4)

for the L-equipartition {Ai} of I = [a, b].

Theorem 3. Let λ( f ), λ(g) be the LEs of f , g such that f , g are differentiable almost everywhere
in I. Assume that the absolute values

∣∣∣ d f
dx (x)

∣∣∣, ∣∣∣ dg
dx (x)

∣∣∣ are constants for all x ∈ I.
If λ( f ) ≥ λ(g) > 0, the following inequality holds for sufficiently large M:

D(M,n)(A, f ) > D(M,n)(A, g) (5)

for the L-equipartition {Ai} of I = [a, b].

However, in Theorem 2, not vice versa because D(M,n)(A, f ) > 0 for a quasi-periodic
orbit [12]. In Theorem 3, it is assumed that the maps f , g are piecewise linear functions,
such as the Bernoulli shift map and the tent map.

Next, the relationship between the ECD and the metric entropy is focused on. Let T
be a measurable transformation from I to I, preserving a probability measure µ on I, and ξ
provides a measurable partition of I. Then, the metric entropy of T with respect to µ and ξ
of I is defined by in [17],

hµ(T, ξ) = lim
n→∞

1
n

Hµ(ξn), ξn =
n−1∨
i=0

T−iξ. (6)

Then, for sufficiently large M, ECD D(M)(ξ, T) is equal to or larger than the metric entropy
hµ(T, ξ): see [16].

Using the ECD, the characterization of certain chaotic behaviors has been attempted
by the authors of papers such as [9–11]. Unfortunately, the ECD is not always sufficient for
use as an alternative to the LE because the ECD always attains a higher value than the LE
for chaotic maps [13].

3. Extended Entropic Chaos Degree

This section briefly reviews the definition of the EECD for a difference equation system.

Let {Ai} be the Ld-equipartition of I =
d

∏
l=1

[al , bl ], such that

I =
Ld−1⋃
i=0

Ai, Ai =
d

∏
k=1

A(k)
ik

, ik = 0, 1, . . . , L− 1, (7)

where

A(k)
ik

=



[
ak +

bk − ak
L

ik, ak +
bk − ak

L
(ik + 1)

)
(ik = 0, 1, . . . , L− 2),

[
ak +

bk − ak
L

(L− 1), bk

]
(ik = L− 1)

for k = 1, . . . , d.
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Further, for any component Ai of {Ai}, another component Aj is divided into the

equipartition
{

B(i,j)
l

}
0≤l≤(Si,j)d−1

of smaller components, such that

Aj = A(j1···jd)L
=

(Si,j)
d−1⋃

l=0

B(i,j)
l , B(i,j)

l = B(i,j)
(l1···ld)Si,j

=
d

∏
k=1

B(i,j,k)
lk

where

B(i,j,k)
lk

=



[
âk +

b̂k − âk
Si,j

lk +
b̂k − âk

Si,j
(lk + 1)

)
(lk = 0, 1, . . . , Si,j − 2, Si,j ≥ 2)

[
âk +

b̂k − âk
Si,j

(Si,j − 1), b̂k

]
(lk = Si,j − 1)

and

âk = ak +
bk − ak

L
ik,

b̂k =

 ak +
bk − ak

L
(ik + 1) (ik = 0, 1, . . . , L− 2)

bk (ik = L− 1)

for k = 1, . . . , d.
Using the function gi,j for any two components Ai, Aj (i 6= j) of {Ai}, function R(Si,j)

is introduced by

R(Si,j) =

(Si,j)
d−1

∑
l=0

gi,j

(
B(i,j)

l

)
(
Si,j
)d .

here, the numerator of R(Si,j) is the number of B(i,j)
l in Aj ∩ f (Ai) for any Ai and Aj and

the denominator of R(Si,j) is the number of B(i,j)
l in Aj for any Ai and Aj. Thus, R(Si,j)

represents the volume rate of Aj ∩ f (Ai) to Aj at the 1/Si,j scale. Moreover, it was directly
obtained from [15]

lim
Si,j→∞

R(Si,j) =
m(Aj ∩ f (Ai)

m(Aj)
, (8)

where m denotes the Lebesgue measure of Rd.
Then, the EECD DS is defined in [15] as

D(M,n)
S (A, f ) =

Ld−1

∑
i=0

p(n)i,A (M)
Ld−1

∑
j=0

p(n)A (j|i)(M) log
R(Si,j)

p(n)A (j|i)(M)
,

where S = (Si,j)0≤i,j≤Ld−1,
Clearly, the EECD becomes the ECD only if R(Si,j) = 1 for any Ai and Aj. In other

words, from Equation (8), the ECD always regards m(Aj ∩ f (Ai)) as m(Aj) in the infinite
limit of Si,j. This results in a difference between the ECD and LE for chaotic maps [15].

First, the following theorem holds with respect to a periodic orbit [15]:

Theorem 4. Let L, M be sufficiently large natural numbers. If map f creates a stable periodic orbit
with period T, then the following equality holds:

D(M,n)
S (A, f ) = − d

T

T

∑
k=1

log Sik ,jk . (9)
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where p(n)ik ,A(M) =
1
T

, f (Aik ) = Ajk (ik 6= jk), k = 1, 2, . . . , T.

Second, the relationship between the EECD and LE in a chaotic dynamical system is
briefly reviewed. Let map f be a (piecewise) C1 function on Rd. For any x = (x1, x2, . . . , xd)

t,
y = (y1, y2, . . . , yd)

t ∈ Ai, let Ĵ be an approximate Jacobian matrix, such that

Ĵ(x, y) =

(
fi(x1, . . . , yj, . . . , xd)− fi(x1, . . . , xj, . . . , xd)

yj − xj

)
1≤i,j≤d

.

Let rk(x, y) (k = 1, 2, . . . , d) be the eigenvalues of
√

Ĵt(x, y) Ĵ(x, y).

Now, let us consider a piecewise linear function f̂ for a (piecewise) C1 function f
such that:

f̂ (x; L) ≡
L−1

∑
i1,...,id=0

f̂ (x; i1, . . . , id)1Ai (x), i =
d−1

∑
k=0

ikLk, ik ∈ {0, 1, . . . , L− 1}, (10)

where
f̂ (x; i1, . . . , id) ≡ Ĵ(x̂, x̂ + h)(x− x̂) + f (x̂) (11)

Here, x̂ = (x̂1, x̂2, . . . , x̂d)
t is randomly sampled from Ai and h = (h1, h2, . . . , hd)

t such that
‖h‖ � ‖x̂‖ where ‖h‖2 = h2

1 + h2
2 · · ·+ h2

d.
In order to consider the piecewise linear function f̂ as an approximate formula of the

(piecewise) C1 function f , the following assumption is introduced.

Assumption 1. Assume that for sufficiently large natural numbers L and M, the points x in Ai
are uniformly distributed over Ai, such that, for any subset Bi of Ai

lim
n→∞

1
n

C(x, Bi, n) =
m(Bi)

m(Ai)
(12)

where m is the Lebesgue measure on Rd and C(x, Bi, n) is the number of points included in Bi
among n points, which are randomly sampled from Ai.

Then, the following theorem is proven with respect to an aperiodic orbit.

Theorem 5. Let f be a (piecewise) C1 function. Then the following equality is valid.

lim
L→∞

lim
S→∞

lim
M→∞

D(M,n)
S (A, f ) =

d

∑
k=1

λk( f ),

where
S→ ∞⇔ Si,j → ∞ (i, j = 0, 1, . . . , Ld − 1)

and {λ1( f ), . . . , λd( f )} represent the Lyapunov spectrum of the map f .

Proof. Let f̂ be a (piecewise) linear function given as Equation (10) for a (piecewise) C1

function f under Assumption 1.
As shown in Section 4, for a large natural number L,

lim
S→∞

lim
M→∞

D(M,n)
S (A, f̂ ) =

d

∑
k=1

λk( f̂ ). (13)
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From Equation (13),

lim
L→∞

lim
S→∞

lim
M→∞

D(M,n)
S (A, f ) = lim

L→∞

(
lim

S→∞
lim

M→∞
D(M,n)

S (A, f̂ )
)

= lim
L→∞

d

∑
k=1

λk( f̂ )

=
d

∑
k=1

λk( f ). (14)

According to Theorem 5, the EECD becomes the sum of all the LEs of a (piecewise) C1

function f as L, M, and Si,j reach infinity.
At the end of this section, the relationship between the EECD and metric entropy

is explained. Let T be a measurable transformation from I to I, preserving a probability
measure µ on I, and ξ provides a measurable partition of I. Let hµ(T, ξ) denote the metric

entropy for the pair (µ, T) [17]. Subsequently, the EECD D(M,n)
S (ξ, T) is equal to 0 for

sufficiently large M and Si,j without depending on n [16]. Hence, the EECD D(M)
S (ξ, T) is

equal to or less than the metric entropy hµ(T, ξ) for sufficiently large M and Si,j.

4. Computational Algorithm of the EECD

In this section, by reviewing the derivation processes of the improved calculation
formula of the EECD in [16], it is shown that all the LEs for an aperiodic orbit can be
estimated by calculating the EECD.

To satisfy the relation in Theorem 5, the infinite values of L, M, and Si,j must be used.
However, in the actual numerical computations of the EECD, these numbers must be set
as finite values. Therefore, an improved calculation formula for the EECD was proposed
in [16].

First, the derivation of the improved EECD calculation formula is reviewed for a stable
periodic orbit. It is assumed that the map f creates a stable periodic orbit. Then, for any
component Ai 6= ∅, there exists a component Aji such that:

|Aji ∩ f (Ai)| = | f (Ai)| = |Aji |, (15)

where |A| is the number of elements of the set A.
From Equation (15),

D(M,n)
S (A, f ) = ∑

|Ai |>0
p(n)i,A (M) log R(Si,ji ),

because the conditional probability p(n)A (j|i)(M) is expressed as

p(n)A (j|i)(M) =

{
1 (j = ji)
0 (j 6= ji)

. (16)

Setting

(Si,ji ) =

⌊
d
√
|Ai|

⌋
,

then the following is obtained:

R(Si,ji ) '
|{Ai : |Ai| > 0}|

M
. (17)
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From Equation (17), it is evident that R(Si,ji ) does not depend on Ai: Thus, the following
improved calculation formula for the EECD for a stable orbit is obtained:

D̃(M,n)
S,1 (A, f ) = log

|{Ai : |Ai| > 0}|
M

. (18)

Second, the derivation process of the improved EECD calculation formula was re-
viewed for an aperiodic orbit. It is assumed that the map f does not create stable periodic
orbits.

Let L and M be any sufficiently large natural numbers and let m be the Lebesgue
measure on Rd. Let f be a piecewise linear function f̂ given as Equation (10) under
Assmption 1. Let us assume that f has the unique invariant measure µ.

Then, the following is obtained:

D(M,n)
S (A, f ) =

Ld−1

∑
i=0

p(n)i,A (M)

(
Ld−1

∑
j=0

p(n)A (j|i)(M) log
R(Si,j)

p(n)A (j|i)(M)

)

'
Ld−1

∑
i=0

µ( f (Ai))

Ld−1

∑
j=0

µ(Aj ∩ f (Ai))

µ( f (Ai))
log

m(Aj ∩ f (Ai))

m(Aj)

µ(Aj ∩ f (Ai))

µ( f (Ai))


'

Ld−1

∑
i=0

Ld−1

∑
j=0

µ(Aj ∩ f (Ai)) log
m( f (Ai))

m(Aj)

=
Ld−1

∑
i=0

p(n)i,A (M) log
m( f (Ai))

m(Ai)
. (19)

Here, the following relationship is used in the second approximation (Equation (19)).

µ
(

Aj ∩ f (Ai)
)

µ( f (Ai))
'

m
(

Aj ∩ f (Ai)
)

m( f (Ai))
.

For any set X ( 6= ∅) ⊂ I =
d

∏
k=1

[ak, bk],

X = {(x1, x2, . . . , xd) : xk ∈ [ak, bk], k = 1, 2, . . . , d}
=

{(
(x1)j, (x2)j, . . . , (xd)j

)
: (xk)j ∈ [ak, bk], k = 1, 2, . . . , d, j = 0, 1, . . . , |X| − 1

}
.

The variance–covariance matrix ∑X for all points x on X, is expressed as

∑X =


(σ2

1 )X (σ1,2)X . . . (σ1,d)X
(σ2,1)X (σ2

2 )X . . . (σ2,d)X
...

...
. . .

...
(σd,1)X (σd,2)X . . . (σ2

d )X

,
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where

(σl,m)X =
1
|X|

|X|−1

∑
j=0

((xl)j − xl)((xm)j − xm),

(σ2
l )X =

1
|X|

|X|−1

∑
j=0

((xl)j − xl)
2,

(xl)X =
1
|X|

|X|−1

∑
j=0

(xl)j.

Let (λk)X (k = 1, 2, . . . , d) be the eigenvalues of ∑X such that (λi)X ≥ (λj)X (i ≥ j).
Thus, an improved calculation formula of the EECD for an aperiodic orbit is ob-

tained as:

D̃(M,n)
S,2 (A, f ) = ∑

|Ai |>0
p(n)i,A (M) log

d

∏
k=1

√
(λk) f (Ai)

d

∏
k=1

√
(λk)Ai

. (20)

Thus, the improved calculation formula for the EECD is expressed as

D̃(M,n)
S (A, f ) ≡

{
D̃(M,n)

S,1 (A, f ) (when the map f generates a stable periodic orbit)

D̃(M,n)
S,2 (A, f ) (otherwise)

(21)
It is shown that all the LEs for an aperiodic orbit can be estimated for calculating the

EECD as follows. Now, it is assumed that all the points x on Ai, f (Ai) are almost uniformly
distributed over Ci, Di: see Equation (12)

Consider a random variable ξ that follows a uniform distribution on
d

∏
k=1

[ck, dk]. Subse-

quently, the standard deviation σk of ξ is expressed as

σk =
1

2
√

3
(dk − ck), k = 1, 2, . . . , d. (22)

From Equation (22), the following is obtained:

dk = xk + (dk˘xk) = xk +
1
2
(dk˘ck) = xk +

√
3σk, (23)

ck = xk˘(xk˘ck) = xk −
1
2
(dk − ck) = xk −

√
3σk. (24)

Let (uk)X be the eigenvector corresponding to the eigenvalue (λk)X , and

〈x〉X ≡ (x1, x2, . . . , xd)X .

From Equations (23) and (24), Ci and Di are expressed as:

Ci =

{
〈x〉Ai

+
d

∑
k=1

αk

√
(λk)Ai

(uk)Ai∥∥(uk)Ai

∥∥ : −
√

3 ≤ αk ≤
√

3

}
, (25)

Di =

〈x〉 f (Ai)
+

d

∑
k=1

βk

√
(λk) f (Ai)

(uk) f (Ai)∥∥∥(uk) f (Ai)

∥∥∥ : −
√

3 ≤ βk ≤
√

3

.

(26)
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Using Equations (25) and (26) yields:

m(Ai) = m(Ci) =
d

∏
k=1

2
√

3
√
(λk)Ai

, (27)

m( f (Ai)) = m(Di) =
d

∏
k=1

2
√

3
√
(λk) f (Ai)

. (28)

Furthermore, using Equations (27) and (28) the following is obtained:

m( f (Ai))

m(Ai)
=

d
∏

k=1
2
√

3
√
(λk) f (Ai)

d
∏

k=1
2
√

3
√
(λk)Ai

=
d

∏
k=1

√
(λk) f (Ai)√
(λk)Ai

. (29)

From Equation (29),

∑
|Ai |>0

p(n)i,A (M) log
m( f (Ai))

m(Ai)
= ∑

|Ai |>0
p(n)i,A (M) log

d

∏
k=1

√
(λk) f (Ai)√
(λk)Ai

= ∑
|Ai |>0

p(n)i,A (M)

 d

∑
k=1

log

√
(λk) f (Ai)√
(λk)Ai


=

d

∑
k=1

 ∑
|Ai |>0

p(n)i,A (M) log

√
(λk) f (Ai)√
(λk)Ai

. (30)

Now, let rk(x) (k = 1, 2, . . . , d) be the eigenvalues of
√

D f t(x)D f (x) such that ri(x) ≥ rj(x)
(i ≥ j) by rk(x) (k = 1, 2, . . . , d) and let p(x) be the density function of x. Further, let
{λ1( f ), λ2( f ), . . . , λd( f )} be the Lyapunov spectrum of f . Then,

∑
|Ai |>0

p(n)i,A (M) log
m( f (Ai))

m(Ai)
= ∑

|Ai |>0

∫
Ai

log

(
d

∏
k=1

rk(x)

)
p(x)

d

∏
l=1

dxl

=

b1∫
a1

b2∫
a2

· · ·
bd∫

ad

log

(
d

∏
k=1

rk(x)

)
p(x)

d

∏
l=1

dxl

=
d

∑
k=1

b1∫
a1

b2∫
a2

· · ·
bd∫

ad

log(rk(x))p(x)
d

∏
l=1

dxl

=
d

∑
k=1

λk( f ). (31)

Here the kth item (EECDk) of the EECD in Equation (30) is defined such that:

D̃(M,n)
S,2 (A, f , k) ≡ ∑

|Ai |>0
p(n)i,A (M) log

√
(λk) f (Ai)√
(λk)Ai

, (32)

where D̃(M,n)
S,2 (A, f , k) ≥ D̃(M,n)

S,2 (A, f , l) (k ≥ l) and k, l ∈ {1, . . . , d}.
Further, using Equations (30) and (31), the following is obtained:

D̃(M,n)
S,2 (A, f , k) = λk( f ). (33)
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Thus, the computational of the EECD for the map f is proposed as follows Algorithm 1:

Algorithm 1: Computational algorithm of the EECD

Step 0. Consider a map f and create a partition {Ai} in the following way:

I =
d

∏
k=1

[ak, bk] =
Ld−1⋃
i=0

Ai, Ai =
d

∏
k=1

A(k)
ik

, ik = 0, 1, . . . , L− 1,

where

A(k)
ik

=



[
ak +

bk − ak
L

ik, ak +
bk − ak

L
(ik + 1)

)
(ik = 0, 1, . . . , L− 2),

[
ak +

bk − ak
L

(L− 1), bk

]
(ik = L− 1)

for any k = 1, . . . , d.
Step 1. Check whether the map f creates a stable periodic orbit.
Step 2. If it does, then compute the EECD such that:

D̃(M,n)
S,1 (A, f ) = log

|{Ai : |Ai| > 0}|
M

.

Step 3. If not, then compute the EECDk such that:

D̃(M,n)
S,2 (A, f , k) = ∑

|Ai |>0
p(n)i,A (M) log

√
(λk) f (Ai)√
(λk)Ai

for k = 1, 2, . . . , d, the process proceeds to Step 4.
Step 4. Moreover, compute the EECD such that:

D̃(M,n)
S,2 (A, f ) =

d

∑
k=1

D̃(M,n)
S,2 (A, f , k).

5. Application of the Computational Algorithm of the EECD to Chaotic Dynamics

In this section, the computational algorithm of the EECD is applied to typical chaotic maps.
The essential basic elements for producing chaotic behavior are operations: “stretching”

and “folding,” which are explained using a baker’s map as an example of a chaotic map.
The baker’s map f is defined as:

f (x) =


(

2x1,
1
2

x2

) (
0 ≤ x1 ≤

1
2

)
(

2x1 − 1,
1
2
(x2 + 1)

) (
1
2
< x1 ≤ 1

) , (34)

where x = (x1, x2)
t ∈ [0, 1]× [0, 1],

The baker’s map f comprises two operations. In the first operation (stretching), the
unit square was stretched twice in the x1 direction and is compressed by half in the x2
direction. Whereas, during the second operation (folding), the right part sticking out from
the unit square was cut vertically and stacked on top of the left part.
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Using the unit interval instead of the unit square, the Bernoulli shift map f is ex-
pressed as:

f (x) =


2x

(
0 ≤ x ≤ 1

2

)
2x− 1

(
1
2
< x ≤ 1

) , (35)

where x ∈ [0, 1].
Thus, several typical one-dimensional chaotic maps exist with both the stretching and

folding operations. In the next section, the computational algorithm of the EECD is applied
for typical one and two-dimensional chaotic maps.

In general, the double type in the C language has been used for numerical compu-
tations. However, to ensure calculation accuracy, the floating-point type with a 1024-bit
mantissa was used in the numerical computations of the eigenvalues of the variance-
covariance matrix using GNU Multiprecision Library (GMP).

5.1. Application of the Computational Algorithm of the EECD to a One-Dimensional Chaotic Map

Consider a one-dimensional chaotic map f : I → I, where I = [a, b]. Let {Ai} be
the L-equipartition of I given as Equation (2) The improved formula of the EECD for a
one-dimensional aperiodic map f is then expressed as:

D̃(M,n)
S,2 (A, f ) = D̃(M,n)

S,2 (A, f , 1),

where

D̃(M,n)
S,2 (A, f , 1) = ∑

|Ai |>0
p(n)i,A (M) log

√(
σ2

1
)

f (Ai)√(
σ2

1
)

Ai

. (36)

Here
(
σ2

1
)

X is the variance of all points x on X.
In the following, M = 100, 000 and L = 1000 are set.

5.1.1. Numerical Computation Results for a Generalized Bernoulli Shift Map

In this section, the computational algorithm of the EECD is applied to a generalized
Bernoulli shift map fa as the most straightforward one-dimensional chaotic map. The
generalized Bernoulli shift map fa has derivative d fa

dx1
(x1) that depends only on parameter a.

The generalized Bernoulli shift map fa is defined as:

fa(x) =


2ax

(
0 ≤ x ≤ 1

2

)
a(2x− 1)

(
1
2
< x ≤ 1

) , (37)

where x ∈ [0, 1] and 0 ≤ a ≤ 1. Then, the derivative d fa
dx (x) of the generalized Bernoulli

shift map fa is calculated as constant 2a. Thus, the LE of the generalized Bernoulli shift
map fa was log 2a.

Now, consider the orbit {xn} associated with the generalized Bernoulli shift map fa
such that:

xn+1 = fa(xn), n = 0, 1, . . . , x0 = 0.3333333.

Figure 1 shows the bifurcation diagram of the generalized Bernoulli shift map fa in
0.5 ≤ a ≤ 1.0. With an increase in parameter a, the points continue to spread over the entire
unit interval.
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Figure 1. Bifurcation diagram of generalized Bernoulli shift map fa.

Figure 2 shows the numerical computation results for the LE λ( fa) and the EECD
D̃(M,n)

S (A, fa) for the generalized Bernoulli shift map fa. Comparisons of the EECD with
the LE indicates that the EECD is approximately the same as the LE for the generalized
Bernoulli shift map fa.

-1

-0.5

 0

 0.5

 1

 0.5  0.6  0.7  0.8  0.9  1

a

LE

EECD

Figure 2. Lyapunov exponent (LE) and extended entropic chaos degree (EECD) versus a for general-
ized Bernoulli shift map fa.

5.1.2. Numerical Computation Results for a Logistic Map

In this section, the computational algorithm of the EECD is applied to a logistic map
fa as a typical one-dimensional chaotic map. The logistic map fa contains the derivative
d fa
dx (x) depending on x as well as parameter a.

The logistic map fa is defined as:

fa(x) = ax(1− x) (38)

where x ∈ [0, 1] and 3.5 ≤ a ≤ 4.0. Then, the derivative d fa
dx (x) of the logistic map fa was

calculated as a(1− 2x). Thus, d fa
dx1

(x) depends on both parameters a and x.
Now, consider the orbit {xn} associated with logistic map fa such that

xn+1 = fa(xn), n = 0, 1, . . . , x0 = 0.3333333.

Figure 3 shows the bifurcation diagram of the logistic map fa in 3.5 ≤ a ≤ 4.0.



Entropy 2022, 24, 827 14 of 25

0.0

0.2

0.4

0.6

0.8

1.0

3.5 3.6 3.7 3.8 3.9 4.0

x
n

a

Figure 3. Bifurcation diagram of logistic map fa.

Figure 4 shows the numerical computation results for the LE λ( fa) and EECD D̃(M,n)
S

(A, fa) for the logistic map fa. Comparing the EECD with the LE, the EECD is approximately
the same as the LE for the logistic map fa, except for several as, where the orbit of fa
is periodic.
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Figure 4. LE and EECD versus a for logistic map fa.

5.2. Application of the Computational Algorithm of the EECD to a Two-Dimensional Chaotic Map

Consider a two-dimensional chaotic map f : I → I, where I = [a1, b1]× [a2, b2]. Let
{Ai} be the L2-equipartition of Igiven as Equation (7) at d = 2. Then, the improved formula
of the EECD for a two-dimensional aperiodic map f is expressed as:

D̃(M,n)
S,2 (A, f ) =

2

∑
k=1

D̃(M,n)
S,2 (A, f , k),

where

D̃(M,n)
S,2 (A, f , k) = ∑

|Ai |>0
p(n)i,A (M) log

√
(λk) f (Ai)√
(λk)Ai

. (39)

Here, (λk)X (k = 1, 2) are the eigenvalues of ∑X such that: (λ1)X ≥ (λ2)X . The variance–
covariance matrix ∑X for all points x on X, is expressed as:

∑X =

(
(σ2

1 )X (σ1,2)X
(σ2,1)X (σ2

2 )X

)
. (40)
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The eigenvalues of ∑X can be expressed as those numbers λ such that: |λI −∑X | = 0.
Using Equation (40), the following is obtained:

λ =
(σ2

1 )X + (σ2
2 )X ±

√(
σ2

1
)2

X +
(
σ2

2
)2

X − 2
(
σ2

1
)2

X

(
σ2

2
)2

X + 4(σ1,2)
2
X

2
. (41)

Because (λ1)X ≥ (λ2)X , the following is true:

(λ1)X =
(σ2

1 )X + (σ2
2 )X +

√(
σ2

1
)2

X +
(
σ2

2
)2

X − 2
(
σ2

1
)2

X

(
σ2

2
)2

X + 4(σ1,2)
2
X

2
,

(42)

(λ2)X =
(σ2

1 )X + (σ2
2 )X −

√(
σ2

1
)2

X +
(
σ2

2
)2

X − 2
(
σ2

1
)2

X

(
σ2

2
)2

X + 4(σ1,2)
2
X

2
.

(43)

In the following, M = 1,000,000 and L2 = 10002 are set.

5.2.1. Numerical Computation Results for a Generalized Baker’s Map

In this section, the computational algorithm of the EECD is applied to a generalized
baker’s map fa as one of the simplest two-dimensional chaotic maps. The generalized
baker’s map fa has Jacobian matrices D fa(x) that depend only on parameter a. In addition,
its determinant detD fa(x) is also only dependent on parameter a.

The generalized baker’s map fa is defined as follows:

fa(x) =


(

2ax1,
1
2

ax2

) (
0 ≤ x1 ≤

1
2

)
(

a(2x1 − 1),
1
2

a(x2 + 1)
) (

1
2
< x1 ≤ 1

) , (44)

where x = (x1, x2)
t ∈ [0, 1]× [0, 1] and 0 ≤ a ≤ 1. Then, the Jacobian matrix of the baker’s

map fa is calculated as:

D fa(x) =

(
2a 0

0
1
2

a

)
. (45)

Thus, D fa(x) depends only on parameter a. The dynamics associated with the gener-
alized baker’s map fa are dissipative for 0 ≤ a < 1, because |detD fa(x)| = a2 [18].

Now, consider the orbit {xn} associated with the generalized baker map fa such that:

xn+1 = fa(xn), n = 0, 1, 2, . . . , x0 = (0.3333, 0.3333)t.

Let f m
a be the transformation from dv0 to dvm on R2. This directly yields:

dvm = detD f m
a (v0)dv0 = a2mdv0. (46)

Thus,

λ1( fa) + λ2( fa) = lim
m→∞

1
m

log
∣∣∣∣dvm

dv0

∣∣∣∣ = lim
m→∞

log a2m

m
= 2 log a (47)

Figure 5 shows the typical orbits of the generalized baker’s map fa. With an increase
in parameter a, points spread from certain lines over to the entire unit square.
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Figure 5. (x2)n versus (x1)n for generalized baker’s map fa.

Figure 6 shows the numerical computation results for the k-th LE (LEk) λk( fa), EECDk

D̃(M,n)
S,2 (A, fa, k) (k = 1, 2) of the EECD, and total sum (LE1 +LE2) λ1( fa)+λ2( fa) of the LEs

and EECD for the generalized baker’s map fa. Comparisons of the EECD with LE1 + LE2
indicate that the EECD is approximately the same as LE1 + LE2 for the generalized baker
map fa. The same is true for the EECDk and LEk for k = 1, 2 in 0.5 ≤ a ≤ 0.8. However, as
parameter a increases in 0.8 < a ≤ 1.0, the difference between EECDk and LEk for k = 1, 2,
increases.
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Figure 6. LEk, EECDk (k = 1, 2), LE1 + LE2, and EECD versus a for generalized baker’s map fa.

With an increase in parameter a in 0.8 ≤ a ≤ 1.0, the shape of the domain of the points
included in Ai changes from multiple lines over the entire plane. Considering this feature,
increasing the number M of points was considered because the number M of points may
not be sufficient to cover the entire region at M = 1,000,000.

Figure 7 shows the numerical computation results for LEk, EECDk (k = 1, 2), LE1 +
LE2, and EECD at M = 10,000,000 instead of M = 1,000,000. By increasing the number of
points M, the difference between EECDk and LEk for k = 1, 2, was reduced to 0.8 ≤ a ≤ 1.0.
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Figure 7. LEk, EECDk (k = 1, 2), LE1 + LE2, and EECD versus a for generalized baker’s map fa

(M = 10,000,000).

For any two-dimensional chaotic map f , the average expansion rate in the stretching
of f and the average contraction rate during the folding of f correspond to exp(λ1( f )) and
exp(λ2( f )), respectively.

5.2.2. Numerical Computation Results for a Tinkerbell Map

In this section, the computational algorithm of the EECD is applied to a Tinkerbell map
fa as a two-dimensional dissipative chaotic map [18]. The Jacobian matrix D fa(x) of the
Tinkerbell mapping fa depends on x and parameter a. The same is true for its determinant
detD fa(x).

The Tinkerbell map fa is defined as:

fa(x) =
(

x2
1 − x2

2 + ax1 − 0.6013x2, 2x1x2 + 2x1 + 0.5x2

)t
, (48)

where x = (x1, x2)
t ∈ [−1.3, 0.5]× [−1.6, 0.6] for 0.7 ≤ a ≤ 0.9.

The Jacobian matrix of the Tinkerbell map fa is calculated as:

D fa(x) =
(

2x1 + a −2x2 − 0.6013
2x2 + 2 2x1 + 0.5

)
. (49)

Thus, D fa(x) depends on x and parameter a.
Now, consider the orbit {xn} associated with the Tinkerbell map fa, such that:

xn+1 = fa(xn), n = 0, 1, 2, . . . , x0 = (0.1, 0.1)t.

Figure 8 shows typical orbits of the Tinkerbell map fa. The trajectory of the Tinkerbell
map fa draws an unusual attractor at a = 0.9. The origin of the name of the Tinkerbell map
fa is based on the shape of a strange attractor that appears similar to the movement of a
fairy named Tinker Bell, who appeared in a Disney film.
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Figure 8. (x2)n versus (x1)n for Tinkerbell map fa.

Figure 9 shows the numerical computation results for LEk, EECDk (k = 1, 2), LE1 +
LE2, and the EECD for the Tinkerbell map fa. Comparisons of the EECD with LE1 + LE2
indicate that EECD is approximately the same as LE1 + LE2 for the Tinkerbell map fa in
0.7 ≤ a ≤ 0.9, except for several as, where the orbit of fa is periodic. The same is true for
the EECDk and LEk for k = 1, 2.
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Figure 9. LEk, EECDk (k = 1, 2), LE1 + LE2, and EECD versus a for Tinkerbell map fa.

5.2.3. Numerical Computation Results for an Ikeda Map

In this section, the computational algorithm of the EECD is applied to an Ikeda map fa
as a two-dimensional dissipative chaotic map [18]. The Ikeda map fa contains the Jacobian
matrix D fa(x) that depends on x and parameter a. However, its determinant detD fa(x)
depends only on parameter a.

The modified Ikeda map is expressed as a complex map in [19,20]:

f (z) = A + BzeiK/(|z|2+1)+C, z ∈ C, A, B, K, C ∈ R. (50)

The Ikeda map fa is defined as a real two-dimensional example of Equation (50) as:

fa(x) = (1 + a(x1 cos t− x2 sin t), a(x1 sin t + x2 cos t))t, (51)
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where
t = 0.4− 6

1 + x2
1 + x2

2

and x = (x1, x2)
t ∈ [−0.4, 1.8]× [−2.3, 0.9] for 0.7 ≤ a ≤ 0.9.

The Jacobian matrix of the Ikeda map fa is calculated as:

D fa(x) = a
(

u1 cos t− u2 sin t −u3 sin t− u4 cos t
u1 sin t + u2 cos t u3 cos t− u4 sin t

)
, (52)

where

u1 = 1− 12x1x2(
1 + x2

1 + x2
2
)2 , u2 =

12x2
1(

1 + x2
1 + x2

2
)2

u3 = 1 +
12x1x2(

1 + x2
1 + x2

2
)2 , u4 =

12x2
2(

1 + x2
1 + x2

2
)2 .

Thus, D fa(x) depends on x and parameter a. Further, the dynamics associated with the
Ikeda map fa are dissipative for 0 ≤ a < 1, because |detD fa(x)| = a2.

Now, consider the orbit {xn} associated with the Ikeda map fa such that:

xn+1 = fa(xn), n = 0, 1, 2, . . . , x0 = (0.1, 0.0)t.

Let f m
a be the transformation from dv0 to dvm on R2. By using the chain rule and detD fa(x) =

a2 for the Ikeda map fa, the following equation is obtained:

dvm = detD f m
a (v0)dv0 = a2mdv0. (53)

Thus,

λ1( fa) + λ2( fa) = lim
m→∞

1
m

log
∣∣∣∣dvm

dv0

∣∣∣∣ = lim
m→∞

log a2m

m
= 2 log a. (54)

Figure 10 shows typical orbits of the Ikeda map fa. With an increase in parameter a,
the attractor generated by the Ikeda map fa grows in size. Moreover, regarding the fa plots,
the Ikeda map might be conjugate to a Hénon map [21].
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Figure 10. (x2)n versus (x1)n for Ikeda map fa.
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Figure 11 shows the numerical computation results for LEk, EECDk (k = 1, 2), LE1 +
LE2, and the EECD for the Ikeda map fa. Comparisons of the EECD with the LE1 + LE2
indicate that the EECD is approximately the same as LE1 +LE2 for the Ikeda map fa, except
for several values of a, where the orbit of fa is periodic. However, there is a small difference
between EECDk and LEk for k = 1, 2, in 0.7 ≤ a ≤ 0.9. These differences cannot necessarily
decrease, even if the number M of points and the number L2 of all the components of the
equipartition of I are increased.
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Figure 11. LEk, EECDk (k = 1, 2), LE1 + LE2, and EECD versus a for Ikeda map fa.

This problem may be related to the shape of the trajectory generated by the Ikeda
map fa. The shape of the minimum region, including all the points in Ai of I for the
Ikeda map fa, is a partial spiral. However, the region above is regarded as a rectangle Ci
(Equation (25)), as evident in the computational algorithm of the EECD. This region above
the EECD may cause the difference between EECDk and LEk for k = 1, 2.

5.2.4. Numerical Computation Results for a Hénon Map

In this section, the computational algorithm of the EECD is applied to a Hénon map
fa,b as a two-dimensional dissipative chaotic map. The Hénon map fa,b has the Jacobian
matrix D fa,b(x), which is dependent on x and parameter b. However, its determinant
detD fa,b(x) depends only on parameter b.

The Hénon map fa,b is defined as:

fa,b(x) =
(

a− x2
1 + bx2, x1

)t
, (55)

where x = (x1, x2)
t ∈ [−1.8, 1.8]2 for a = 1.4, 0 < b ≤ 0.3.

In the following section, f1.4,b = fb is rewritten.
The Jacobian matrix of the Hénon map fa,b is calculated as follows:

D fa,b(x) =
(

2x1 b
1 0

)
. (56)

Thus, D fa,b(x) depends on x1 and parameter b. Further, dynamics associated with the
Hénon map fa,b are dissipative at 0 ≤ b < 1, because |detD fa,b(x)| = b.

Now, consider the orbit {xn} associated with the Hénon map fb such that:

xn+1 = fb(xn), n = 0, 1, 2, . . . , x0 = (0.1, 0.1)t.

Let f m
b be the transformation from dv0 to dvm on R2. By using the chain rule and detD fb(x) =

−b for the Hénon map fb, the following is obtained:

dvm = detD f m
b (v0)dv0 = (−b)mdv0. (57)
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Thus,

λ1( fb) + λ2( fb) = lim
m→∞

1
m

log
∣∣∣∣dvm

dv0

∣∣∣∣ = lim
m→∞

log bm

m
= log b. (58)

Figure 12 shows typical orbits of the Hénon map fb. The trajectory of the Hénon
attractor exhibits a fractal structure such that upon expanding the strip region, innumerable
parallel curves reappear in the strip.
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Figure 12. (x2)n versus (x1)n for Hėnon map fb.

Figure 13 shows the numerical computation results for LEk, EECDk (k = 1, 2), LE1 +
LE2, and EECD for the Hénon map fb. Comparisons of the EECD1 and LE1 indicate that
EECD1 is approximately the same as LE1 for the Hénon map fb, except for several bs, where
the orbit of the Hénon map fb is periodic. The same is true for the EECD2 and LE2, as well as
for the EECD and LE1 + LE2 in 0.1 ≤ b ≤ 0.3. However, there was a remarkable difference
between EECD2 and LE2 in 0 ≤ b < 0.1, the EECD attained noticeably different values
from LE1 + LE2 for 0 ≤ b < 0.1. The orbit of the map fb is not periodic at 0.0 ≤ b < 0.1.
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Figure 13. LEk, EECDk (k = 1, 2), LE1 + LE2, and EECD versus b for Hėnon map fb.
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Now, consider another expression for the smaller eigenvalue (λ2)X among the eigen-
values of the variance-covariance matrix ∑X such that:

(λ2)X =
(σ2

1 )X + (σ2
2 )X −

√{
(σ2

1 )X + (σ2
2 )X

}2 − 4(σ2
1 )X(σ

2
2 )X{1− (ρX)2}

2
,

(59)

where ρX is the autocorrelation function for all points x on component X.
From Equation (59), if the absolute value of ρX is equal to 1, then

(λ2)X = 0.

The ratio of (λ2) f (Ai)
to (λ2)Ai is included in the formula: EECD2 (Equation (39)). Thus,

if the absolute value of ρAi is almost equal to 1, then accurately computing EECD2 is
challenging because (λ2) f (Ai)

must be divided by (λ2)Ai , close to 0.
Let E(|ρ|) be the average of |ρAi |, such that:

E(|ρ|) = ∑
|Ai |>3

|Ai|
∑
|Ai |>3

|Ai|
∣∣ρAi

∣∣. (60)

Figure 14 shows the numerical computation results for |EECD2 − LE2|, and E(|ρ|) for
the Hénon map fb. E(|ρ|) is very close to 1 in 0 ≤ b < 0.1. Therefore, it can be concluded
that the remarkable difference between the EECD2 and LE2 is caused by |ρAi |

.
= 1, for

any Ai.
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Figure 14. |EECD2 − LE2| and E(|ρ|) versus b for Hėnon map fb.

5.2.5. Numerical Computation Results for a Standard Map

In this section, the computational algorithm of the EECD is applied to a standard map
fK as a two-dimensional conservative chaotic map. The standard map fK has the Jacobian
matrix D fK(y), which is dependent on y and parameter K. However, its determinant
detD fK(x) remains constant at 1.

The standard map fK is defined as:

fK(y) = (θ + p + K sin θ, p + K sin θ)t (61)

where y = (θ, p)t ∈ [−π, π]2.
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The Jacobian matrix of the standard map fK is calculated as follows:

D fK(y) =
(

1 + K cos θ 1
K cos θ 1

)
. (62)

Thus, D fK(y) depends on θ and the parameter K. Moreover, the dynamics associated with
standard map fK are conservative because |detD fK(y)| = 1.

Now, consider orbit {yn} associated with the standard map fK such that:

yn+1 = fK(yn), n = 0, 1, 2, . . . , y0 = (1.5, 2.0)t.

Let f m
K be the transformation from dv0 to dvm in R2. By using the chain rule and

detD fK(x) = 1 for the standard map fK, the following is obtained:

dvm = detD f m
K (v0)dv0 = dv0. (63)

Thus,

λ1( fK) + λ2( fK) = lim
m→∞

1
m

log
∣∣∣∣dvm

dvo

∣∣∣∣ = 0. (64)

As mentioned in [16], the standard map fk is reversible [22]. Thus, LEs λ1( fK) and
λ2( fK) of fK satisfy the condition such that λ1( fK) = −λ2( fK) > 0 according to Theorem
3.2 in [23].

Figure 15 shows typical orbits of the standard map fK with the initial point (θ0, p0) =
(1.5, 2.0). The standard map is composed of the Poincaré’s surface in the kicked rotator
section, and fK has a linear structure at approximately K = 0. However, with the increase in
K, the map generates a non-linear structure with chaos under appropriate initial conditions.
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Figure 15. (x2)n versus (x1)n for standard map fK .

Figure 16 shows the numerical computation results for LEk, EECDk (k = 1, 2), LE1 +
LE2, and EECD for the standard map fK. Comparisons of EECD1 and LE1 indicate that
EECD1 appears larger than the LE1 in 0 ≤ K ≤ 50 for a certain small value.
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Figure 16. LEk, EECDk (k = 1, 2), LE1 + LE2 and EECD versus K for standard map fK .

Now, consider increasing the number L2 of all components of the equipartition of I. In
principle, downsizing Ai by increasing L, is necessary to compute EECD1 more precisely
for any K, because the Jacobian matrix D fK(y) of the standard map fK depends on y as
well as K.

Figure 17 shows the numerical computation results for LEk, EECDk (k = 1, 2), LE1 +
LE2, and EECD for the standard map fK at L = 2000 instead of L = 1000. By increasing L,
it is possible to reduce the difference between the EECD1 and LE1 such that the EECD may
approach LE1 + LE2.
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Figure 17. LEk, EECDk (k = 1, 2), LE1 + LE2, and EECD versus K for standard map fK (L = 2000).

6. Conclusions

In this study, by reviewing the derivation process of the improved calculation formula
of the EECD, it is shown that all the LEs for an aperiodic orbit could be estimated when
calculating the EECD; furthermore, a computational algorithm for the EECD is proposed.
This computational algorithm is applied to typical one and two-dimensional chaotic maps.

First, the computational algorithm of the EECD is applied to typical one-dimensional
chaotic maps, such as the generalized Bernoulli shift and logistic maps. The numerical
computation results for these one-dimensional chaotic maps indicate that the EECD is
approximately the same as the LE in all chaotic cases.

Thereafter, the computational algorithm of the EECD is applied to two-dimensional
typical chaotic maps, such as the generalized baker’s, Tinkerbell, Ikeda, Hénon, and
standard maps. The numerical computation results for these typical two-dimensional
chaotic maps show that the EECD is approximately the same as the total sum of the LEs in
most chaotic cases; however, the kth item of the EECD is also approximately the kth LE for
k = 1, 2, which can be slightly larger or smaller.
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Therefore, it can be concluded that the EECD may be an alternative to the LE for both
one and two-dimensional chaotic dynamics. In future studies, attempts will be made to
characterize higher-dimensional chaotic dynamics and non-linear real-time series using
the EECD.

Funding: This study was supported by JSPS KAKENHI Grant Number 21K12063.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The author is very grateful to the referees for their helpful comments and
suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Aligood, K.T.; Sauer, T.D.; York, J.A. Chaos-An Introduction to Dynamical Systems; Springer: New York, NY, USA, 1997.
2. Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D.; Ciliberto, S. Lyapunov exponents from time series. Phys. Rev. A 1986, 34, 4971–4979.

[CrossRef] [PubMed]
3. Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets.

Phys. D 1993, 65, 117–134. [CrossRef]
4. Sato, S.; Sano, M.; Sawada, Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in

high dimensional chaotic systems. Prog. Theor. Phys. 1987, 77, 1–5. [CrossRef]
5. Sano, M.; Sawada, Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Let. A 1995, 209, 327–332.

[CrossRef]
6. Wright, J. Method for calculating a Lyapunov exponent. Phys. Rev. A 1984, 29, 2924–2927. [CrossRef]
7. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physica 1985, 16D, 285–317.

[CrossRef]
8. Ohya, M. Complexities and their applications to characterization of chaos. Int. J. Theo. Phys. 1998, 37, 495–505. [CrossRef]
9. Inoue, K.; Ohya, M.; Sato, K. Application of chaos degree to some dynamical systems. Chaos Solitons Fractals 2000, 11, 1377–1385.

[CrossRef]
10. Inoue, K.; Ohya, M.; Volovich, I. Semiclassical properties and chaos degree for the quantum baker’s map. J. Math. Phys. 2002, 43,

734–755. [CrossRef]
11. Inoue, K.; Ohya, M.; Volovich, I. On a combined quantum baker’s map and its characterization by entropic chaos degree. Open

Syst. Inf. Dyn. 2009, 16, 179–194. [CrossRef]
12. Inoue, K. Basic properties of entropic chaos degree in classical systems. Information 2013, 16, 8589–8596.
13. Mao, T.; Okutomi, H.; Umeno, K. Investigation of the difference between chaos degree and Lyapunov exponent for asymmetric

tent maps. JSIAM Lett. 2019, 11, 61–64. [CrossRef]
14. Mao, T.; Okutomi, H.; Umeno, K. Proposal of improved chaos degree based on interpretation of the difference between chaos

degree and Lyapunov exponent. Trans. JSIAM 2019, 29, 383–394. (In Japanese)
15. Inoue, K.; Mao, T.; Okutomi, H.; Umeno, K. An extension of the entropic chaos degree and its positive effect. Jpn. J. Indust. Appl.

Math. 2021, 38, 611–624. [CrossRef]
16. Inoue, K. An improved calculation formula of the extended entropic chaos degree and its application to two-dimensional chaotic

maps. Entropy 2021, 23, 1511. [CrossRef]
17. Barreira, L. Ergodic Theory, Hyperbolic Dynamics and Dimension Theory; Springer: Berlin/Heidelberg, Germany, 2012.
18. Willems, J.C. Dissipative dynamical systems part 1: General theory. Arch. Rational Mech. Anal. 1972, 45, 321–351. [CrossRef]
19. Ikeda, K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 1979,

30, 257–261. [CrossRef]
20. Ikeda, K.; Daido, H.; Akimoto, O. Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity. Phys. Rev. Lett.

1980, 45, 709–712. [CrossRef]
21. Wang, Q.; Oksasoglu, A. Rank one chaos: Theory and applications. Int. J. Bifurc. Chaos. 2008, 18, 1261–1319. [CrossRef]
22. Roberts, J.A.G.; Quispel, G.R.W. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep.

1992, 216, 63–177. [CrossRef]
23. Bessa, M.; Carvalho, M.; Rodrigues, A. Generic area-preserving reversible diffeomorphisms. Nonlinearity 2015, 28, 1695–1720.

[CrossRef]

http://doi.org/10.1103/PhysRevA.34.4971
http://www.ncbi.nlm.nih.gov/pubmed/9897880
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.1143/PTP.77.1
http://dx.doi.org/10.1103/PhysRevLett.55.1082
http://dx.doi.org/10.1103/PhysRevA.29.2924
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1023/A:1026620313483
http://dx.doi.org/10.1016/S0960-0779(99)00050-8
http://dx.doi.org/10.1063/1.1420743
http://dx.doi.org/10.1142/S123016120900013X
http://dx.doi.org/10.14495/jsiaml.11.61
http://dx.doi.org/10.1007/s13160-020-00453-9
http://dx.doi.org/10.3390/e23111511
http://dx.doi.org/10.1007/BF00276493
http://dx.doi.org/10.1016/0030-4018(79)90090-7
http://dx.doi.org/10.1103/PhysRevLett.45.709
http://dx.doi.org/10.1142/S0218127408021002
http://dx.doi.org/10.1016/0370-1573(92)90163-T
http://dx.doi.org/10.1088/0951-7715/28/6/1695

	Introduction
	Entropic Chaos Degree
	Extended Entropic Chaos Degree
	Computational Algorithm of the EECD
	Application of the Computational Algorithm of the EECD to Chaotic Dynamics
	Application of the Computational Algorithm of the EECD to a One-Dimensional Chaotic Map
	Numerical Computation Results for a Generalized Bernoulli Shift Map
	Numerical Computation Results for a Logistic Map

	Application of the Computational Algorithm of the EECD to a Two-Dimensional Chaotic Map
	Numerical Computation Results for a Generalized Baker's Map
	Numerical Computation Results for a Tinkerbell Map
	Numerical Computation Results for an Ikeda Map
	Numerical Computation Results for a Hénon Map
	Numerical Computation Results for a Standard Map


	Conclusions
	References

