
Citation: Liu, X.; Li, W.; Wang, J.; Li,

Y. Robust Finite-Time Stability for

Uncertain Discrete-Time Stochastic

Nonlinear Systems with

Time-Varying Delay. Entropy 2022, 24,

828. https://doi.org/10.3390/

e24060828

Academic Editor: Philip Broadbridge

Received: 8 May 2022

Accepted: 11 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Robust Finite-Time Stability for Uncertain Discrete-Time
Stochastic Nonlinear Systems with Time-Varying Delay
Xikui Liu 1,† , Wencong Li 1,†, Jiqiu Wang 1,† and Yan Li 2,*

1 College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China; liuxikui@sdust.edu.cn (X.L.); lwccy2020@163.com (W.L.);
wangjiqiu0828@163.com (J.W.)

2 Department of Fundamental Courses, Shandong University of Science and Technology,
Jinan 250031, China

* Correspondence: liyan@sdkd.net.cn
† These authors contributed equally to this work.

Abstract: The main concern of this paper is finite-time stability (FTS) for uncertain discrete-time
stochastic nonlinear systems (DSNSs) with time-varying delay (TVD) and multiplicative noise.
First, a Lyapunov–Krasovskii function (LKF) is constructed, using the forward difference, and less
conservative stability criteria are obtained. By solving a series of linear matrix inequalities (LMIs),
some sufficient conditions for FTS of the stochastic system are found. Moreover, FTS is presented
for a stochastic nominal system. Lastly, the validity and improvement of the proposed methods are
shown with two simulation examples.

Keywords: discrete-time stochastic system; finite-time stability; nonlinear perturbations; uncertain
parameters; time-varying delay

1. Introduction

Time-delays are general in many actual systems, for instance, circuits, neural network
systems, biological medicine, building structure and multi-agent systems [1–4]. However,
a time-delay may reduce the performance of dynamic systems and even lead to system
instability. Therefore, how to eliminate the adverse effects caused by time-delay on the
system is an important consideration. A new Lyapunov method was proposed to study
the stability of the system [5]. In [6], Zhang et al. introduced a reciprocally convex matrix
inequality to analyze the stability of TVD systems. A FTS or stabilization criterion was given
for linear time-delay systems (TDSs) through bounded linear time-varying feedback [7].
The practical stability of TVD-positive systems was analyzed by designing a controller [8].
Long et al. considered the stability of linear TDS via the quadratic function negative
deterministic method [9].

In actual engineering, it is common for the system to be interfered with by some
nonlinear factors. The control analysis of nonlinear TDSs becomes more important. In order
to obtain a greater upper limit of TVD, a new less-conservative stability criterion for
nonlinear perturbed TDS was proposed in [10]. The authors of [11] developed robust
stability of switching systems with nonlinear disturbances and interval TVD. Finite-time
control problems for nonlinear systems with TVD and external interference were discussed
in [12]. In general, there is often uncertainty in the parameters of the system model.
Kang et al. [13] studied the FTS of discrete-time nonlinear systems with interval TVD.
On the basis of [13], Stojanovic proposed a less conservative FTS criterion for discrete-time
nonlinear systems with TVD and uncertain terms [14].

The most basic concepts of system stability include FTS [15–17] and Lyapunov asymp-
totic stability (LAS) [18,19]. FTS and LAS are different in two ways. First, FTS studies the
state behavior of a system within a limited time interval, and LAS studies the state behavior
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of a system in an infinite time interval. Secondly, the former research needs to give the
limit of the system state in advance, while the latter does not need to give a fixed value in
advance. In [20], Dorato introduced the concept of FTS. In a sense, if the state of the system
under the initial condition does not exceed the specified range, then the system is called
FTS within a certain time interval. In recent years, the research on FTS has attracted much
attention. Thus far, many new results on FTS have been published. Shi et al. extended the
discrete Jensen-based inequality by establishing a new weighted summation inequality
and proposed new criteria for the FTS of nonlinear TDS [21]. The concepts of FTS and
stabilization are extended to continuous additive TVD systems [22].

In the above-mentioned literature, the dynamic systems are definite; however, in the
actual industrial production process, random phenomena are widespread [23]. From the
perspective of theory or practical application, the control problem of stochastic systems
is always a difficult issue. In [24], Yu et al. studied the FTS and H∞ control problem for
stochastic nonlinear systems. Wang et al. discussed the FTS of stochastic nonlinear systems
by constructing Hamiltonian functions [25]. The stochastic FTS of linear semi-Markov jump
systems was developed by designing a class of state feedback controllers [26].

Yan et al. proposed a less conservative stability criterion through a model-dependent
method and gave the FTS and stabilization conditions of Markov jump Itô stochastic
systems [27]. The authors in [28] considered the FTS problem of stochastic linear discrete-
time TDS with multiplicative noise under state feedback control [29] discussed the finite-
time guaranteed performance control of random mean-field systems and gave the criterion
of FTS for the closed-loop system. However, there is no literature to discuss the FTS of
uncertain DSNS with multiplicative noise and time-delay.

The results of FTS are extended to uncertain DSNS with TVD in this paper. The follow-
ings are the major contributions: First, a new augmented time-varying LKF is proposed,
which contains a power function ζk−j−1. A special finite sum inequality (NFSI) is used
to process the forward difference of LKF with double summation terms. This NFSI is
equivalent to Jensen’s inequality but reduces conservatism to a certain extent. Secondly,
one-dimensional random processes, namely a sequence of one-dimensional independent
white noise processes defined in probability space (Ω,F, P,Fn), are considered as an exter-
nal disturbance of the system. An algorithm is presented to reduce the influence of external
interference on the stability of uncertain DSNS.

In addition, the uncertain parameters and nonlinear perturbations are transformed
into linearity through the inequality calculation. The remainder is arranged as follows:
some preparatory knowledge for the discrete-time stochastic system, the requisite lemmas
and definitions are given in Section 2. The FTS of discrete time-varying stochastic uncertain
system with nonlinear perturbations is studied, and then the FTS of a nominal system
is considered in Section 3. By constructing an LKF with a power function and a new
summation term, the criteria to guarantee the FTS of the discrete-time stochastic system
are given. Simulation examples are presented to demonstrate the validity of the results in
Section 4. Section 5 is the conclusion of this paper.

Notation: In this paper, Rn means the n-dimensional Euclidean space, Rn×m is all real
matrices with dimensions of n×m. N0 = {−hM,−hM + 1, · · · ,−1, 0}, N = {1, 2, 3, · · · , N}.
For matrix P ∈ Rn×m, λmax(P) represents the maximum eigenvalue, and λmin(P) denotes
the minimum eigenvalue of matrix P. P > 0 (P ≥ 0) means P is positive definite (positive
semi-definite) matrix. The ∗ sign in the matrix indicates the symmetry item.

2. Problem Statement and Preliminaries

Consider an uncertain DSNS with TVD as follows
x(k + 1) =(M + ∆M(k))x(k) + (Md + ∆Md(k))x(k− h(k))

+ e1(x(k), k) + e2(x(k− h(k)), k) + Dx(k)ω(k),

x(l) =ϕ(l), l ∈ N0,

(1)
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where x(k) ∈ Rn is the state vector, ω(k) is a one-dimensional random variable defined
on the probability space (Ω,F, P,Fn). M, Md, D ∈ Rn×n are constant matrices with
appropriate dimensions. It is supposed that E{ω(l)} = 0, E{ω(l)ω(k)} = δlk, when l 6= k,
δlk = 0; when l = k, δlk = 1, where E{·} represents mathematical expectation, and δlk is
a Kronecker function. h(k) is the interval TVD and satisfies 0 < hm ≤ h(k) ≤ hM. ϕ(l) is
a vector-valued initial sequence such that

sup
l∈N0

(ϕ(l + 1)− ϕ(l))T(ϕ(l + 1)− ϕ(l)) ≤ δ.

e1(x(k), k) and e2(x(k− h(k)), k) are nonlinear disturbances, and H and Hd are known
constant matrices satisfying

e1
T(x(k), k)e1(x(k), k) ≤ xT(k)HT Hx(k),

e2
T(x(k− h(k)), k)e2(x(k− h(k)), k) ≤ xT(k− h(k))Hd

T Hdx(k− h(k)).

∆M(k), ∆Md(k) and ∆(k) are unknown time-varying matrices that are uniformly
bounded in the norm. F, Fd and G are known matrices with[

∆M(k) ∆Md(k)
]
= G∆(k)

[
F Fd

]
, ∆T(k)∆(k) ≤ I.

Let z(k) represent an unknown variable, and the system (1) can be written as follows:
x(k + 1) =Mx(k) + Mdx(k− h(k)) + Gz(k) + e1(x(k), k)

+ e2(x(k− h(k)), k) + Dx(k)ω(k),

z(k) =∆(k)(Fx(k) + Fdx(k− h(k))),

x(l) =ϕ(l), l ∈ N0.

For system (1), if the perturbations and uncertainties are not considered, it can be
expressed as: {

x(k + 1) = Mx(k) + Mdx(k− h(k)) + Dx(k)ω(k),

x(l) = ϕ(l), l ∈ N0,
(2)

which is called a nominal system.
In order to analyze the FTS of system (1), the following definition and lemmas are

introduced.

Definition 1. For given scalars 0 ≤ α ≤ β, system (1) is FTS subject to (α, β, N), n ∈ N, if

sup
l∈N0

‖ϕ(l)‖2 ≤ α⇒ E{‖x(k)‖2} < β.

Remark 1. It is worth noting that α and β are all used to describe the state variables remain on the
given limits. β is influenced by α as a parameter adjustment in the simulation; however, that does
not mean that β only depends on α. In addition, different from the plain stability, the characteristics
of finite-time stability are as follows: First, the initial condition is confined to a prescribed limit.
Second, the state trajectory does not exceed the specified value over a finite-time interval instead of
an infinite-time interval.

Remark 2. Compared with the continuous-time system [30–32], the FTS of the discrete-time
stochastic systems [33–35] has received much less attention because the analysis can be simplified
to the robust stability of linear systems with uncertainties but no delay. That is to say, in the
discrete-time case, the presence of time-delay can be modeled by extending the system state with past
variables, i.e., X(k) = [x(k), x(k− 1), · · ·, x(k− hM)]T . However, the optimization algorithms
are easier to complete on the computer as well as the growing applications in certain engineering
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fields; therefore, the stability analysis of discrete-time stochastic systems is meaningful. In the next
sections, we extend the analysis of FTS to stochastic systems.

Lemma 1 ([36]). For any matrices with appropriate dimensions L > 0, LT > 0, L ∈ Rm×m,
S ∈ Rn×m, scalar ζ > 0 and h1, h2 ∈ N, h2 > h1, the following inequality holds

−
k−h1−1

∑
j=k−h2

ζk−jyT(j)Ly(j) ≤ ξT(k)εSL−1STξ(k) + 2ξT(k)S(x(k− h1)− x(k− h2)), (3)

where y(j) = x(j + 1)− x(j), ξ(k) ∈ Rn×1 is the state vector and ε > 0 is a constant defined
as follows

ε =

{
h2 − h1, ζ = 1,
(ζ−h1 − ζ−h2)/(ζ − 1), ζ 6= 1.

Lemma 2 ([37]). (Schur complement) For the given symmetric matrix T =

[
T11 T12
∗ T22

]
, where

T11 ∈ Rn×n, the following three conditions are equivalent:

(1) T < 0;

(2) T11 < 0, T22 − TT
12T−1

11 T12 < 0;

(3) T22 < 0, T11 − T12T−1
22 TT

12 < 0.

3. Main Results

In this section, the FTS and RAS problems for system (1) are discussed, and the FTS
criteria for the nominal system (2) are presented.

3.1. FTS for Stochastic Systems with Nonlinear Disturbances and Uncertain Parameters

In this section, stochastic system (1) is considered with uncertain parameters and
nonlinear disturbances, the sufficient conditions of FTS for system (1) are given first.

Theorem 1. Given constant ζ > 1 and positive constants ε, εd, µ, λ1, λ2, · · · , λ8, then the uncer-
tain DSNS (1) with TVD is FTS subject to {α, β, N} if there exist matrices A = [AT

1 AT
2 · · · AT

7 ]
T ,

B = [BT
1 BT

2 · · · BT
7 ]

T and C = [CT
1 CT

2 · · · CT
7 ]

T as well as positive definite matrices P, W1, W2,
Q1, Q2 ∈ Rn×n, such that all of the following conditions hold:

[Θij]i,j=1,2,··· ,7 ε1 A ε1B ε2C
∗ −ε1Q1 0 0
∗ ∗ −ε1Q1 0
∗ ∗ ∗ −ε2Q2

 < 0, (4)

λ1 I < P < λ2 I, λ3 I < W1 < λ4 I, λ5 I < W2 < λ6 I,

Q1 <λ7 I, Q2 < λ8 I,
(5)

ζN [α(λ2 + η1λ4 + η2λ6) + δ(η3λ7 + η4λ8)]− β[λ1 + η1λ3 + η2λ5] < 0, (6)

where
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Θ11 = MT PM− ζP + W1 + W2 + (M− I)TQ12(M− I) + εHT H + µFT F

+ C1 + CT
1 + DT PD + DTQ12D,

Θ12 = MT PMd + (M− I)TQ12Md + µFT Fd + A1 − B1 + CT
2 ,

Θ13 = B1 − C1 + CT
3 , Θ14 = −A1 + CT

4 ,

Θ15 = MT PG + (M− I)TQ12G + CT
5 , Θ16 = MT P + (M− I)TQ12 + CT

6 ,

Θ17 = MT P + (M− I)TQ12 + CT
7 ,

Θ22 = MT
d PMd + MT

d Q12Md + εdHT
d Hd + µFT

d Fd + A2 + AT
2 − B2 − BT

2 ,

Θ23 = AT
3 + B2 − BT

3 − C2, Θ24 = −A2 + AT
4 − BT

4 ,

Θ25 = MT
d PG + MT

d Q12G + AT
5 − BT

5 , Θ26 = MT
d P + MT

d Q12 + AT
6 − BT

6 ,

Θ27 = MT
d P + MT

d Q12 + AT
7 − BT

7 , Θ33 = −ζhm W2 + B3 + BT
3 − C3 − CT

3 ,

Θ34 = − A3 + BT
4 − CT

4 , Θ35 = BT
5 − CT

5 , Θ36 = BT
6 − CT

6 ,

Θ37 = BT
7 − CT

7 , Θ44 = −ζhM W1 − A4 − AT
4 , Θ45 = −AT

5 ,

Θ46 = − AT
6 , Θ47 = −AT

7 , Θ55 = GT PG + GTQ12G− µI,

Θ56 = GT P + GTQ12, Θ57 = GT P + GTQ12, Θ66 = P + Q12 − εI,

Θ67 = P + Q12, Θ77 = P + Q12 − εd I, Q12 = (hM − hm)Q1 + hmQ2,

ε1 =

{
hM − hm, ζ = 1,
(ζ−hm − ζ−hM )/(ζ − 1), ζ 6= 1,

ε2 =

{
hm, ζ = 1,
(1− ζ−hm)/(ζ − 1), ζ 6= 1.

(7)

η1 =

{
hM, ζ = 1,
(ζhM − 1)/(ζ − 1), ζ 6= 1,

η2 =

{
hm, ζ = 1,
(ζhm − 1)/(ζ − 1), ζ 6= 1,

η3 =

{
hM(hM+1)

2 − hm(hm+1)
2 , ζ = 1,

(ζhM+1 − ζhm+1 − (ζ − 1)(hM − hm))/(ζ − 1)2, ζ 6= 1,

η4 =

{
hm(hm+1)

2 , ζ = 1,
(ζ(ζhm − 1)− (ζ − 1)hm)/(ζ − 1)2, ζ 6= 1.

(8)

Proof. Consider the following LKF (k ∈ N),

V(k) =
3

∑
s=1

Vs(k), (9)

where

V1(k) = xT(k)Px(k),

V2(k) =
k−1

∑
j=k−hM

ζk−j−1xT(j)W1x(j) +
k−1

∑
j=k−hm

ζk−j−1xT(j)W2x(j),

V3(k) =
−hm−1

∑
i=−hM

k−1

∑
j=k+i

ζk−j−1yT(j)Q1y(j) +
−1

∑
i=−hm

k−1

∑
j=k+i

ζk−j−1yT(j)Q2y(j).

Along the trajectory of system (1), the forward differences of V1(k), V2(k) and V3(k)
are obtained as follows
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E{∆V1(k)} = E{V1(k + 1)−V1(k)}

= E
{

xT(k + 1)Px(k + 1) + (ζ − 1)V1(k)− ζV1(k)
}

= E
{

xT(k)(MT PM + DT PD− ζP)x(k) + (ζ − 1)V1(k)

+ 2xT(k)MT PMdx(k− h(k)) + 2xT(k)MT PGz(k)

+ 2xT(k)MT Pe1(x(k), k) + 2xT(k)MT Pe2(x(k− h(k)), k)

+ xT(k− h(k))MT
d PMdx(k− h(k)) + 2xT(k− h(k))MT

d PGz(k)

+ 2xT(k− h(k))MT
d Pe1(x(k), k) + zT(k)GT PGz(k)

+ 2xT(k− h(k))MT
d Pe2(x(k− h(k)), k)

+ 2zT(k)GT Pe1(x(k), k) + 2zT(k)GT Pe2(x(k− h(k)), k)

+ e1
T(x(k), k)Pe1(x(k), k) + 2e1

T(x(k), k)Pe2(x(k− h(k)), k)

+e2
T(x(k− h(k)), k)Pe2(x(k− h(k)), k)

}
, (10)

E{∆V2(k)} = E{V2(k + 1)−V2(k)}

= E

{
k

∑
j=k−hM+1

ζk−jxT(j)W1x(j) +
k

∑
j=k−hm+1

ζk−jxT(j)W2x(j)

−
k−1

∑
j=k−hM

ζk−j−1xT(j)W1x(j)−
k−1

∑
j=k−hm

ζk−j−1xT(j)W2x(j)

}

= E

{
ζ

k−1

∑
j=k−hM

ζk−j−1xT(j)W1x(j) + xT(k)W1x(k)

− ζhM xT(k− hM)W1x(k− hM)

+ ζ
k−1

∑
j=k−hm

ζk−j−1xT(j)W2x(j) + xT(k)W2x(k)

− ζhm xT(k− hm)W2x(k− hm)−V2(k)

}
= E

{
(ζ − 1)V2(k) + xT(k)(W1 + W2)x(k)

− ζhM xT(k− hM)W1x(k− hM)−ζhm xT(k− hm)W2x(k− hm)
}

, (11)

E{∆V3(k)} = E{V3(k + 1)−V3(k)}

= E

{
−hm−1

∑
i=−hM

k

∑
j=k+i+1

ζk−jyT(j)Q1y(j) +
−1

∑
i=−hm

k

∑
j=k+i+1

ζk−jyT(j)Q2y(j)

−
−hm−1

∑
i=−hM

k−1

∑
j=k+i

ζk−j−1yT(j)Q1y(j)−
−1

∑
i=−hm

k−1

∑
j=k+i

ζk−j−1yT(j)Q2y(j)

}

= E

{
−hm−1

∑
i=−hM

k−1

∑
j=k+i

ζk−jyT(j)Q1y(j) +
−hm−1

∑
i=−hM

yT(k)Q1y(k)

−
−hm−1

∑
i=−hM

ζ−iyT(k + i)Q1y(k + i) +
−1

∑
i=−hm

k−1

∑
j=k+i

ζk−jyT(j)Q2y(j)

+
−1

∑
i=−hm

yT(k)Q2y(k)−
−1

∑
i=−hm

ζ−iyT(k + i)Q2y(k + i)−V3(k)

}
, (12)
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then

E{∆V3(k)} = E

{
(hM − hm)yT(k)Q1y(k)−

k−hm−1

∑
j=k−hM

ζk−jyT(j)Q1y(j)

+ hmyT(k)Q2y(k)−
k−1

∑
j=k−hm

ζk−jyT(j)Q2y(j) + (ζ − 1)V3(k)

}

= E

{
(ζ − 1)V3(k) + yT(k)[(hM − hm)Q1 + hmQ2]y(k)

−
k−hm−1

∑
j=k−hM

ζk−jyT(j)Q1y(j)−
k−1

∑
j=k−hm

ζk−jyT(j)Q2y(j)

}
. (13)

From Lemma 1 and (13), we have

E

{
−

k−hm−1

∑
j=k−hM

ζk−jyT(j)Q1y(j)

}

= E

− k−h(k)−1

∑
j=k−hM

ζk−jyT(j)Q1y(j)−
k−hm−1

∑
j=k−h(k)

ζk−jyT(j)Q1y(j)


≤ E

{
ξT(k)ε

′
1 AQ−1

1 ATξ(k) + 2ξT(k)A(x(k− h(k))− x(k− hM))

+ξT(k)ε
′′
1BQ−1

1 BTξ(k) + 2ξT(k)B(x(k− hm)− x(k− h(k)))
}

≤ E
{

ξT(k)ε1 AQ−1
1 ATξ(k) + 2ξT(k)A

[
0 I 0 −I 0 0 0

]
ξ(k)

+ξT(k)ε1BQ−1
1 BTξ(k) + 2ξT(k)B

[
0 −I I 0 0 0 0

]
ξ(k)

}
= E

{
ξT(k)(Π1 + ε1 AQ−1

1 AT + ε1BQ−1
1 BT)ξ(k)

}
, (14)

E

{
−

k−1

∑
j=k−hm

ζk−jyT(j)Q2y(j)

}

≤ E
{

ξT(k)ε2CQ−1
2 CTξ(k) + 2ξT(k)C(x(k)− x(k− hm))

}
= E

{
ξT(k)ε2CQ−1

2 CTξ(k) + 2ξT(k)C
[
I 0 −I 0 0 0 0

]
ξ(k)

}
= E

{
ξT(k)(Π2 + ε2CQ−1

2 CT)ξ(k)
}

, (15)

where

ξ(n) = [xT(k) xT(k− h(k)) xT(k− hm) xT(k− hM)

zT(k) e1
T(x(k), k) e2

T(x(k− h(k)), k)]T ,

Π1 =



0 Π12 B1 −A1 0 0 0
∗ Π22 Π23 Π24 AT

5 − BT
5 AT

6 − BT
6 AT

7 − BT
7

∗ ∗ B3 + BT
3 −A3 + BT

4 BT
5 BT

6 BT
7

∗ ∗ ∗ −A4 − AT
4 −AT

5 −AT
6 −AT

7
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


,
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Π12 = A1 − B1, Π22 = A2 − B2 + AT
2 − BT

2 ,

Π23 = B2 + AT
3 − BT

3 , Π24 = −A2 + AT
4 − BT

4 ,

Π2 =



C1 + CT
1 CT

2 −C1 + CT
3 CT

4 CT
5 CT

6 CT
7

∗ 0 −C2 0 0 0 0
∗ ∗ −C3 − CT

3 −CT
4 −CT

5 −CT
6 −CT

7
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


,

ε
′
1 = (ζ−h(k) − ζ−hM )/(ζ − 1) ≤ (ζ−hm − ζ−hM )/(ζ − 1) = ε1,

ε
′′
1 = (ζ−hm − ζ−h(k))/(ζ − 1) ≤ (ζ−hm − ζ−hM )/(ζ − 1) = ε1.

From Equations (10)–(15) and condition (16)

εxT(k)HT Hx(k)−εe1
T(x(k), k)e1(x(k), k) ≥ 0,

εdxT(k− h(k))HT
d Hdx(k− h(k))− εde2

T(x(k− h(k)), k)e2(x(k− h(k)), k) ≥ 0,
(16)

we deduce that

E{∆V(k)}

≤E
{
(ζ − 1)V(k) + xT(k)[MT PM + DT PD− ζP

+ W1 + W2 + (M− I)TQ12(M− I) + DTQ12D]x(k)

+ 2xT(k)(MT PMd + (M− I)TQ12Md)x(k− h(k))

+ 2xT(k)(MT PG + (M− I)TQ12G)z(k)

+ 2xT(k)(MT P + (M− I)TQ12)e1(x(k), k)

+ 2xT(k)(MT P + (M− I)TQ12)e2(x(k− h(k)), k)

+ xT(k− h(k))(MT
d PMd + MT

d Q12Md)x(k− h(k))

+ 2xT(k− h(k))(MT
d PG + MT

d Q12G)z(k)

+ 2xT(k− h(k))(MT
d P + MT

d Q12)e1(x(k), k)

+ 2xT(k− h(k))(MT
d P + MT

d Q12)e2(x(k− h(k)), k)

+ zT(k)(GT PG + GTQ12G)z(k)

+ 2zT(k)(GT P + GTQ12)e1(x(k), k)

+ 2zT(k)(GT P + GTQ12)e2(x(k− h(k)), k)

+ e1
T(x(k), k)(P + Q12)e1(x(k), k)

+ 2e1
T(x(k), k)(P + Q12)e2(x(k− h(k)), k)

+ e2
T(x(k− h(k)), k)(P + Q12)e2(x(k− h(k)), k)

− ζhM xT(k− hM)W1x(k− hM)

− ζhm xT(k− hm)W2x(k− hm)

+ ξT(k)(Π1 + Π2 + ε1 AQ−1
1 AT

+ ε1BQ−1
1 BT + ε2CQ−1

2 CT)ξ(k)

+ εxT(k)HT Hx(k)− εe1
T(x(k), k)e1(x(k), k)

+ εdxT(k− h(k))HT
d Hdx(k− h(k))
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− εde2
T(x(k− h(k)), k)e2(x(k− h(k)), k)

+ µxT(k)FT Fx(k)− 2µxT(k)FT Fdx(k− h(k))

+µxT(k− h(k))FT
d Fdx(k− h(k))− µzT(k)z(k)

}
,

and it is rewritten that

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + ξT(k)(([Θij]i,j=1,2,··· ,7) + ε1 AQ−1

1 AT

+ε1BQ−1
1 BT + ε2CQ−1

2 CT)ξ(k)
}

.

From Schur’s complement, (4) is equivalent to inequality (17)

([Θij]i,j=1,2,··· ,7) + ε1 AQ−1
1 AT + ε1BQ−1

1 BT + ε2CQ−1
2 CT < 0. (17)

Then,

E{∆V(k)− (ζ − 1)V(k)} < 0,

by calculating, one further finds

E{V(k)} < ζkE{V(0)}, k ∈ N. (18)

According to the definition of E{V(k)},

E{V(0)} = E

{
xT(0)Px(0) +

−1

∑
j=−hM

ζ−j−1xT(j)W1x(j) +
−1

∑
j=−hm

ζ−j−1xT(j)W2x(j)

+
−hm−1

∑
i=−hM

−1

∑
j=i

ζ−j−1yT(j)Q1y(j) +
−1

∑
i=−hm

−1

∑
j=i

ζ−j−1yT(j)Q2y(j)

}

≤ E

{
αλmax(P) + αλmax(W1)

−1

∑
j=−hM

ζ−j−1 + αλmax(W2)
−1

∑
j=−hm

ζ−j−1

+δλmax(Q1)
−hm−1

∑
i=−hM

−1

∑
j=i

ζ−j−1 + δλmax(Q2)
−1

∑
i=−hm

−1

∑
j=i

ζ−j−1

}
= α(λmax(P) + η1λmax(W1) + η2λmax(W2)) + δ(η3λmax(Q1) + η4λmax(Q2)), (19)

E{V(k)} > E

{
λmin(P)‖x(k)‖2 + λmin(W1)

k−1

∑
j=k−hM

ζk−j−1‖x(j)‖2

+λmin(W2)
k−1

∑
j=k−hm

ζk−j−1‖x(j)‖2

}
. (20)

In addition,

ζN [α(λmax(P) + η1λmax(W1) + η2λmax(W2)) + δ(η3λmax(Q1) + η4λmax(Q2))]

< β[λmin(P) + η1λmin(W1) + η2λmin(W2)]. (21)

It follows from (21) that

E

{
λmin(P)‖x(k)‖2 + λmin(W1)

k−1

∑
j=k−hM

ζk−j−1‖x(j)‖2 + λmin(W2)
k−1

∑
j=k−hm

ζk−j−1‖x(j)‖2

}
< E{V(k)} < ζN [α(λmax(P) + η1λmax(W1) + η2λmax(W2)) + δ(η3λmax(Q1) + η4λmax(Q2))]

< β[λmin(P) + η1λmin(W1) + η2λmin(W2)]. (22)
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From (5), (6) and (22), E{‖x(k)‖2} < β, k ∈ N. Thus, the stochastic system (1) is FTS
from Definition 1. The proof is completed.

Remark 3. For stochastic system (1), the conservativeness of the FTS criterion is generally re-
stricted by inequalities (18)–(20). We consider the LKF with the power function ζk−j and find
E{V(k)} < ζE{V(k− 1)}, then E{V(k)} < ζkE{V(0)}, E{V(0)} < Γ1 and E{V(k)} > Γ2,
where Γ1 and Γ2 correspond to the estimates of the upper and lower bounds of E{V(0)} and
E{V(k)}, respectively. The estimates are related to α, β, N, δ, hm, hM and ζ.

Remark 4. The FTS criterion considered in this paper is less conservative than literature [13], which

dealt with summation terms
−1
∑

i=−hM

k−1
∑

j=k+i
ζk−j−1yT(j)Q1y(j) and

−hm−1
∑

i=−hM

k−1
∑

j=k+i
ζk−j−1yT(j)Q2y(j)

by Jensen inequality. In this paper, a new finite sum inequality with time-delay states (Lemma 1)

is used to term
−1
∑

i=−hM

k−1
∑

j=k+i
ζk−j−1yT(j)Q1y(j), instead of using the discrete Jensen inequal-

ity [38] or the Wirtinger-based inequality [39]. Inequality (3) is introduced to deal with term
−hm−1

∑
i=−hM

k−1
∑

j=k+i
ζk−j−1yT(j)Q2y(j) rather than the free weighting matrix method presented in [40].

Considering the influence of nonlinear factors, a new finite sum inequality is used to deal with the
forward difference of Lyapunov functional so that the finite sums−E

{
∑k−hm−1

j=k−hM
ζk−jyT(j)Q1y(j)

}
and −E

{
∑k−1

j=k−hm
ζk−jyT(j)Q2y(j)

}
are estimated accurately.

3.2. FTS for Nominal Systems

In this section, the criterion of the nominal system (2) FTS is given. In particular, we
consider the FTS of the nominal system when h(k) = h.

Corollary 1. Given constant ζ > 1 and the positive constants λi(i = 1, 2, · · · , 8), the nom-
inal system (2) is FTS subject to {α, β, N} if there exist matrices A = [AT

1 AT
2 AT

3 AT
4 ]

T ,
B = [BT

1 BT
2 BT

3 BT
4 ]

T and C = [CT
1 CT

2 CT
3 CT

4 ]
T as well as positive definite matrices P, W1, W2, Q1,

Q2 ∈ Rn×n, such that the following conditions hold:
[Θ̄ij]i,j=1,··· ,4 ε1 A ε1B ε2C

∗ −ε1Q1 0 0
∗ ∗ −ε1Q1 0
∗ ∗ ∗ −ε2Q2

 < 0, (23)

λ1 I < P < λ2 I, λ3 I < W1 < λ4 I, λ5 I < W2 < λ6 I,

Q1 <λ7 I, Q2 < λ8 I,

ζN [α(λ2 + η1λ4 + η2λ6) + δ(η3λ7 + η4λ8)]− β[λ1 + η1λ3 + η2λ5] < 0,

where

Θ̄11 = MT PM− ζP + W1 + W2 + (M− I)TQ12(M− I)

+ C1 + CT
1 + DT PD + DTQ12D,

Θ̄12 = MT PMd + (M− I)TQ12Md + A1 − B1 + CT
2 ,

Θ̄13 = B1 − C1 + CT
3 , Θ̄14 = −A1 + CT

4 ,

Θ̄22 = MT
d PMd + MT

d Q12Md + A2 + AT
2 − B2 − BT

2 ,

Θ̄23 = AT
3 + B2 − BT

3 − C2, Θ̄24 = −A2 + AT
4 − BT

4 ,

Θ̄33 = − ζhm W2 + B3 + BT
3 − C3 − CT

3 , Θ̄34 = −A3 + BT
4 − CT

4 ,

Θ̄44 = − ζhM W1 − A4 − AT
4 ,
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constants ε1, ε2, η1, η2, η3 and η4 satisfy (7) and (8).

Proof. Let us select the LKF (9). Then, along the trajectory of the nominal system (2),
the forward difference of E{∆V(k)} is obtained as follows

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + xT(k)[MT PM + DT PD + DTQ12D− ζP

+ (M− I)TQ12(M− I) + W1 + W2]x(k)

+ 2xT(k)(MT PMd + (M− I)TQ12Md)x(k− h(k))

+ xT(k− h(k))(MT
d PMd + MT

d Q12Md)x(k− h(k))

−
k−hm−1

∑
j=k−hM

ζk−jyT(j)Q1y(j)−
k−1

∑
j=k−hm

ζk−jyT(j)Q2y(j)

− ζhM xT(k− hM)W1x(k− hM)−ζhm xT(k− hm)W2x(k− hm)
}

. (24)

From Lemma 1, we find

−
k−hm−1

∑
j=k−hM

ζk−jyT(j)Q1y(j) ≤ ξ̄T(Π̄1 + ε1 AQ−1
1 AT + ε1BQ−1

1 BT)ξ̄, (25)

−
k−1

∑
j=k−hm

ζk−jyT(j)Q2y(j) ≤ ξ̄T(Π̄2 + ε2CQ−1
2 CT)ξ̄, (26)

where ξ̄ =
[
xT(k) xT(k− h(k)) xT(k− hm) xT(k− hM)

]T ,

Π̄1 =


0 A1 − B1 B1 −A1
∗ A2 + AT

2 − B2 − BT
2 B2 + AT

3 − BT
3 −A2 + AT

4 − BT
4

∗ ∗ B3 + BT
3 −A3 + BT

4
∗ ∗ ∗ −A4 − AT

4

,

Π̄2 =


C1 + CT

1 CT
2 −C1 + CT

3 CT
4

∗ 0 −C2 0
∗ ∗ −C3 − CT

3 −CT
4

∗ ∗ ∗ 0

.

Combining inequalities (24)–(26), it is inferred that

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + ξ̄T(k)(([Θ̄ij]i,j=1,··· ,4) + ε1 AQ−1

1 AT

+ε1BQ−1
1 BT + ε2CQ−1

2 CT)ξ̄(k)
}

.

By using the Schur complement and condition (23), inequality (27) holds

([Θ̄ij]i,j=1,··· ,4) + ε1 AQ−1
1 AT + ε1BQ−1

1 BT + ε2CQ−1
2 CT < 0, (27)

and then E{V(k)} < ζkE{V(0)}, k ∈ N. Furthermore, the proof of the latter part is similar
to Theorem 1 and is here omitted.

We take the constant time-delay (h(k) = h) as a special case, and the following
corollary is obtained.
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Corollary 2. Given constant ζ > 1 and positive constants λi(i = 1, 2, · · · , 5), then the nominal
system (2) with h(k) = h is FTS subject to {α, β, N} if there exist matrices A = [AT

1 AT
2 ]

T as
well as positive definite symmetric matrices P, W, Q ∈ Rn×n, such that[

Θ εA
∗ −εQ

]
< 0,

λ1 I < P < λ2 I, λ3 I < W < λ4 I, Q < λ5 I,

ζN [α(λ2 + η1λ4) + δη2λ5]− β(λ1 + η1λ3) < 0,

where

Θ11 = MT PM− ζP + W + h(M− I)TQ(M− I)

+ A1 + AT
1 + DT PD + DTQD,

Θ12 = MT PMd + h(M− I)TQMd − A1 + AT
2 ,

Θ22 = MT
d PMd − ζhW + hMT

d QMd − A2 − AT
2 ,

ξ(k) =
[
xT(k) xT(k− h)

]T ,

ε =

{
h, ζ = 1,
(1− ζ−h)/(ζ − 1), ζ 6= 1,

η1 =

{
h, ζ = 1,
(ζh − 1)/(ζ − 1), ζ 6= 1,

η2 =

{
h(h + 1)/2, ζ = 1,
(ζ(ζh − 1)− (ζ − 1)h)/(ζ − 1)2, ζ 6= 1.

(28)

3.3. FTS for Stochastic Systems with Nonlinear Disturbances

In this section, the sufficient conditions for FTS and RAS of stochastic nonlinear
systems (1) (∆M(k) = ∆Md(k) = 0) are presented.

Theorem 2. Given constant ζ > 1 and positive constants ε, εd, λi(i = 1, 2, · · · , 8), then the
stochastic nonlinear system (1) with ∆M(k) = ∆Md(k) = 0 is FTS subject to {α, β, N} if there
exist matrices A = [AT

1 AT
2 · · · AT

6 ]
T , B = [BT

1 BT
2 · · · BT

6 ]
T and C = [CT

1 CT
2 · · · CT

6 ]
T as well

as positive definite matrices P, W1, W2, Q1, Q2 ∈ Rn×n satisfying
[Θ̂ij]i,j=1,2,··· ,6 ε1 A ε1B ε2C

∗ −ε1Q1 0 0
∗ ∗ −ε1Q1 0
∗ ∗ ∗ −ε2Q2

 < 0,

λ1 I < P < λ2 I, λ3 I < W1 < λ4 I, λ5 I < W2 < λ6 I,

Q1 <λ7 I, Q2 < λ8 I,

ζN [α(λ2 + η1λ4 + η2λ6) + δ(η3λ7 + η4λ8)]− β[λ1 + η1λ3 + η2λ5] < 0,

where
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Θ̂11 = MT PM− ζP + W1 + W2 + (M− I)TQ12(M− I) + εHT H

+ C1 + CT
1 + DT PD + DTQ12D,

Θ̂12 = MT PMd + (M− I)TQ12Md + A1 − B1 + CT
2 ,

Θ̂13 = B1 − C1 + CT
3 , Θ̂14 = −A1 + CT

4 ,

Θ̂15 = MT P + (M− I)TQ12 + CT
5 , Θ̂16 = MT P + (M− I)TQ12 + CT

6 ,

Θ̂22 = MT
d PMd + MT

d Q12Md + εdHT
d Hd + A2 + AT

2 − B2 − BT
2 ,

Θ̂23 = AT
3 + B2 − BT

3 − C2, Θ̂24 = −A2 + AT
4 − BT

4 ,

Θ̂25 = MT
d P + MT

d Q12 + AT
5 − BT

5 , Θ̂26 = MT
d P + MT

d Q12 + AT
6 − BT

6 ,

Θ̂33 = − ζhmW2 + B3 + BT
3 − C3 − CT

3 , Θ̂34 = −A3 + BT
4 − CT

4 ,

Θ̂35 = BT
5 − CT

5 , Θ̂36 = BT
6 − CT

6 , Θ̂44 = −ζhM W1 − A4 − AT
4 ,

Θ̂45 = − AT
5 , Θ̂46 = −AT

6 , Θ̂55 = P + Q12 − εI,

Θ̂56 = P + Q12, Θ̂66 = P + Q12 − εd I,

ξ̂(k) = [xT(k) xT(k− h(k)) xT(k− hm) xT(k− hM)

e1
T(x(k), k) e2

T(x(k− h(k)), k)]T .

When ζ = 1 in Theorem 2, the RAS condition of the stochastic system (1) is obtained
in the following corollary.

Corollary 3. For the given constants ε and εd, then the discrete time-varying stochastic nonlinear
system (1) with ∆M(k) = ∆Md(k) = 0 is RAS if there exist matrices A = [AT

1 AT
2 · · · AT

6 ]
T ,

B = [BT
1 BT

2 · · · BT
6 ]

T and C = [CT
1 CT

2 · · · CT
6 ]

T , as well as positive definite symmetric matrices
P, W1, W2, Q1, and Q2 ∈ Rn×n, such that the following inequalities hold:

[Θ̌ij]i,j=1,2,··· ,6 (hM − hm)A (hM − hm)B hmC
∗ −(hM − hm)Q1 0 0
∗ ∗ −(hM − hm)Q1 0
∗ ∗ ∗ −hmQ2

 < 0,

where

Θ̌11 = MT PM− P + W1 + W2 + (M− I)TQ12(M− I) + εHT H

+ C1 + CT
1 + DT PD + DTQ12D,

Θ̌12 = MT PMd + (M− I)TQ12Md + A1 − B1 + CT
2 , Θ̌13 = B1 − C1 + CT

3 ,

Θ̌14 = − A1 + CT
4 , Θ̌15 = MT P + (M− I)TQ12 + CT

5 ,

Θ̌16 = MT P + (M− I)TQ12 + CT
6 ,

Θ̌22 = MT
d PMd + MT

d Q12Md + εdHT
d Hd + A2 + AT

2 − B2 − BT
2 ,

Θ̌23 = AT
3 + B2 − BT

3 − C2, Θ̌24 = −A2 + AT
4 − BT

4 ,

Θ̌25 = MT
d P + MT

d Q12 + AT
5 − BT

5 , Θ̌26 = MT
d P + MT

d Q12 + AT
6 − BT

6 ,

Θ̌33 = −W2 + B3 + BT
3 − C3 − CT

3 , Θ̌34 = −A3 + BT
4 − CT

4 ,

Θ̌35 = BT
5 − CT

5 , Θ̌36 = BT
6 − CT

6 , Θ̌44 = −W1 − A4 − AT
4 ,

Θ̌45 = − AT
5 , Θ̌46 = −AT

6 , Θ̌55 = P + Q12 − εI,

Θ̌56 = P + Q12, Θ̌66 = P + Q12 − εd I.

In particular, when h(k) = h, the following corollary is drawn.
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Corollary 4. Given constant ζ > 1 and positive constants ε, εd, λi(i = 1, 2, · · · , 5), then the
discrete stochastic nonlinear system (1) with ∆M(k) = 0, ∆Md(k) = 0 and h(k) = h is FTS
subject to {α, β, N} if there exist matrix A = [AT

1 AT
2 AT

3 AT
4 ]

T as well as positive definite
matrices P, W, Q ∈ Rn×n, such that all of the following conditions hold:[

[Θ̆ij]i,j=1,··· ,4 εA
∗ −εQ

]
< 0, (29)

λ1 I < P < λ2 I, λ3 I < W < λ4 I, Q < λ5 I, (30)

ζN [α(λ2 + η1λ4) + δη2λ5]− β(λ1 + η1λ3) < 0, (31)

where

Θ̆11 = MT PM− ζP + W + h(M− I)TQ(M− I) + A1 + AT
1

+ εHT H + DT PD + hDTQD,

Θ̆12 = MT PMd + h(M− I)TQMd − A1 + AT
2 ,

Θ̆13 = MT P + h(M− I)TQ + AT
3 ,

Θ̆14 = MT P + h(M− I)TQ + AT
4 ,

Θ̆22 = MT
d PMd − ζhW + hMT

d QMd − A2 − AT
2 + εd HT

d Hd,

Θ̆23 = MT
d P + hMT

d Q− AT
3 , Θ̆24 = MT

d P + hMT
d Q− AT

4 ,

Θ̆33 = P + hQ− εI, Θ̆34 = P + hQ, Θ̆44 = P + hQ− εd I,

and the constants ε, η1 and η2 are defined by (28).

Proof. First, choose the following LKF:

V(k) =
3

∑
s=1

Vs(k), (32)

where

V1(k) = xT(k)Px(k),

V2(k) =
k−1

∑
j=k−h

ζk−j−1xT(j)Wx(j),

V3(k) =
−1

∑
i=−h

k−1

∑
j=k+i

ζk−j−1yT(j)Qy(j).

Along the trajectory of system (1) with ∆M(k) = ∆Md(k) = 0, the forward difference
of E{∆V(k)} is obtained
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E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + xT(k)[MT PM + DT PD + hDTQD

− ζP + h(M− I)TQ(M− I) + W]x(k)

+ 2xT(k)(MT PMd + h(M− I)QMd)x(k− h)

+ 2xT(k)(MT P + h(M− I)Q)e1(x(k), k)

+ 2xT(k)(MT P + h(M− I)Q)e2(x(k− h), k)

+ xT(k− h)(MT
d PMd + hMT

d QMd)x(k− h)

+ 2xT(k− h)(MT
d P + hMT

d Q)e1(x(k), k)

+ 2xT(k− h)(MT
d P + hMT

d Q)e2(x(k− h), k)

+ e1
T(x(k), k)(P + hQ)e1(x(k), k)

+ 2e1
T(x(k), k)(P + hQ)e2(x(k− h), k)

+ e2
T(x(k− h), k)(P + hQ)e2(x(k− h), k)

−
k−1

∑
j=k−h

ζk−jyT(j)Qy(j)− ζhxT(k− h)Wx(k− h)

}
. (33)

From Lemma 1, we find

−
k−1

∑
j=k−h

ζk−jyT(j)Qy(j) ≤ ξ̆T(Π̆ + εAQ−1 AT)ξ̆, (34)

where ξ̆ =
[
xT(k) xT(k− h) e1

T(x(k), k) e2
T(x(k− h), k)

]T ,

Π̆ =


A1 + AT

1 −A1 + AT
2 AT

3 AT
4

∗ −A2 − AT
2 −AT

3 −AT
4

∗ ∗ 0 0
∗ ∗ ∗ 0

.

By inequalities (33) and (34), we have

εxT(k)HT Hx(k)− εe1
T(x(k), k)e1(x(k), k) ≥ 0,

εdxT(k− h)HT
d Hdx(k− h)− εde2

T(x(k− h), k)e2(x(k− h), k) ≥ 0.

We conclude that

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + ξ̆T(k)(([Θ̆ij]i,j=1,··· ,4) + εAQ−1

1 AT)ξ̆(k)
}

.

By the Schur complement and (29), (35) is found as

([Θ̆ij]i,j=1,··· ,4) + εAQ−1
1 AT < 0. (35)

Then, E{V(k)} < ζkE{V(0)}, k ∈ N.
Furthermore, according to the definition of E{V(k)}, we can find

E{V(0)} = E

{
xT(0)Px(0) +

−1

∑
j=−h

ζ−j−1xT(j)Wx(j) +
−1

∑
i=−h

−1

∑
j=i

ζ−j−1yT(j)Qy(j)

}

≤ E

{
αλmax(P) + αλmax(W)

−1

∑
j=−h

ζ−j−1 +δλmax(Q)
−1

∑
i=−h

−1

∑
j=i

ζ−j−1

}
= α(λmax(P) + η1λmax(W)) + δη2λmax(Q),
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E{V(k)} > E

{
λmin(P)xT(k)x(k) + λmin(W)

k−1

∑
j=k−h

ζk−j−1xT(j)x(j)

}
.

From (30) and (31),

ζN [α(λmax(P) + η1λmax(W)) + δη2λmax(Q)] < β[λmin(P) + η1λmin(W)].

Then,

E

{
λmin(P)xT(k)x(k) + λmin(W)

k−1

∑
j=k−h

ζk−j−1xT(j)x(j)

}

< E
{

ζNV(0)
}
< ζN [α(λmax(P) + η1λmax(W)) + δη2λmax(Q)] < β[λmin(P) + η1λmin(W)].

It is easy to see that E{xT(k)x(k)} < β, k ∈ N. Thus, the stochastic system (1) with
h(k) = h is FTS. The proof is completed.

3.4. FTS for Stochastic Systems with Uncertain Parameters

In this section, e1(x(k), k) = e2(x(k− h(k)), k) = 0, and the sufficient conditions of
FTS and RAS for stochastic uncertain systems (1) are presented. At the same time, the FTS
of the stochastic system (1) with h(k) = h is considered.

Theorem 3. Given constant ζ > 1 and positive constants µ, λi(i = 1, 2, · · · , 8), then the
stochastic system (1) with e1(x(k), k) = e2(x(k− h(k)), k) = 0 is FTS subject to {α, β, N} if
there exist matrices A = [AT

1 AT
2 · · · AT

5 ]
T , B = [BT

1 BT
2 · · · BT

5 ]
T and C = [CT

1 CT
2 · · · CT

5 ]
T

as well as positive definite matrices P, W1, W2, Q1, Q2 ∈ Rn×n satisfying the following conditions
[Θ̃ij]i,j=1,2,··· ,5 ε1 A ε1B ε2C

∗ −ε1Q1 0 0
∗ ∗ −ε1Q1 0
∗ ∗ ∗ −ε2Q2

 < 0, (36)

λ1 I < P < λ2 I, λ3 I < W1 < λ4 I, λ5 I < W2 < λ6 I,

Q1 <λ7 I, Q2 < λ8 I,

ζN [α(λ2 + η1λ4 + η2λ6) + δ(η3λ7 + η4λ8)]− β[λ1 + η1λ3 + η2λ5] < 0,

where

Θ̃11 = MT PM− ζP + W1 + W2 + (M− I)TQ12(M− I) + µFT F

+ C1 + CT
1 + DT PD + DTQ12D,

Θ̃12 = MT PMd + (M− I)TQ12Md + µFT Fd + A1 − B1 + CT
2 ,

Θ̃13 = B1 − C1 + CT
3 , Θ̃14 = −A1 + CT

4 ,

Θ̃15 = MT PG + (M− I)TQ12G + CT
5 ,

Θ̃22 = MT
d PMd + MT

d Q12Md + µFT
d Fd + A2 + AT

2 − B2 − BT
2 ,

Θ̃23 = AT
3 + B2 − BT

3 − C2, Θ̃24 = −A2 + AT
4 − BT

4 ,

Θ̃25 = MT
d PG + MT

d Q12G + AT
5 − BT

5 ,

Θ̃33 = − ζhmW2 + B3 + BT
3 − C3 − CT

3 ,

Θ̃34 = − A3 + BT
4 − CT

4 , Θ̃35 = BT
5 − CT

5 ,

Θ̃44 = − ζhM W1 − A4 − AT
4 , Θ̃45 = −AT

5 , Θ̃55 = GT PG + GTQ12G− µI,

and the constants ε1, ε2, η1, η2, η3 and η4 are introduced in (7) and (8).
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Proof. Let us select the LKF (9). Next, along the trajectory of system (1) with e1(x(k), k) =
e2(x(k− h(k)), k) = 0, the forward difference of E{∆V(k)} is obtained as follows:

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + xT(k)[MT PM + DT PD + DTQ12D

− ζP + (M− I)TQ12(M− I) + W1 + W2]x(k)

+ 2xT(k)(MT PMd + (M− I)TQ12Md)x(k− h(k))

+ 2xT(k)(MT PG + (M− I)TQ12G)z(k)

+ xT(k− h(k))(MT
d PMd + MT

d Q12 Ad)x(k− h(k))

+ 2xT(k− h(k))(MT
d PG + MT

d Q12G)z(k) + zT(k)(GT PG + GTQ12G)z(k)

− ζhM xT(k− hM)W1x(k− hM)− ζhm xT(k− hm)W2x(k− hm)

+ξ̃T(k)(Π̃ + ε1 AQ−1
1 AT + ε1BQ−1

1 BT + ε2CQ−1
2 CT)ξ̃(k)

}
, (37)

where ξ̃ =
[
xT(k) xT(k− h(k)) xT(k− hm) xT(k− hM) zT(k)

]T ,

Π̃ =


C1 + CT

1 Π̃12 Π̃13 −A1 + CT
4 CT

5
∗ Π̃22 Π̃23 −A2 + AT

4 − BT
4 AT

5 − BT
5

∗ ∗ Π̃33 −A3 + BT
4 − CT

4 BT
5 − CT

5
∗ ∗ ∗ −A4 − AT

4 −AT
5

∗ ∗ ∗ ∗ 0

,

Π̃12 = A1 − B1 + CT
2 , Π̃13 = B1 − C1 + CT

3 , Π̃22 = A2 + AT
2 − B2 − BT

2 ,

Π̃23 = AT
3 + B2 − BT

3 − C2, Π̃33 = B3 + BT
3 − C3 − CT

3 .

By inequality (37) and the following condition

µxT(k)HT Hx(k) + 2µxT(k)FT Fdx(k− h(k))

+µxT(k− h(k))FT
d Fdx(k− h(k))− µzT(k)z(k) ≥ 0,

(38)

it is inferred that

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + ξ̃T(k)(([Θ̃ij]i,j=1,2,··· ,5) + ε1 AQ−1

1 AT

+ε1BQ−1
1 BT + ε2CQ−1

2 CT)ξ̃(k)
}

. (39)

Using the Schur complement property and condition (36), inequality (40) holds

([Θ̃ij]i,j=1,2,··· ,5) + ε1 AQ−1
1 AT + ε1BQ−1

1 BT + ε2CQ−1
2 CT < 0. (40)

From (39), E{V(k)} < ζkE{V(0)}, k ∈ N holds.

For Theorem 3, if ζ = 1, the following RAS conditions for the uncertain stochastic
system (1) with TVD are obtained.

Corollary 5. Given constant µ, the stochastic system (1) with e1(x(k), k) = e2(x(k− h(k)), k) = 0
is RAS if there exist matrices A = [AT

1 AT
2 · · · AT

5 ]
T , B = [BT

1 BT
2 · · · BT

5 ]
T and

C = [CT
1 CT

2 · · · CT
5 ]

T as well as positive definite matrices P, W1, W2, Q1, Q2 ∈ Rn×n, such
that all of the following conditions hold:
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
[Θ
∼ ij

]i,j=1,2,··· ,5 (hM − hm)A (hM − hm)B hmC

∗ −(hM − hm)Q1 0 0
∗ ∗ −(hM − hm)Q1 0
∗ ∗ ∗ −hmQ2

 < 0,

where

Θ
∼11

= MT PM− P + W1 + W2 + (M− I)TQ12(M− I) + µFT F

+ C1 + CT
1 + DT PD + DTQ12D,

Θ
∼12

= MT PMd + (M− I)TQ12Md + µFT Fd + A1 − B1 + CT
2 ,

Θ
∼13

= B1 − C1 + CT
3 , Θ

∼14
= −A1 + CT

4 ,

Θ
∼15

= MT PG + (M− I)TQ12G + CT
5 ,

Θ
∼22

= MT
d PMd + MT

d Q12Md + µFT
d Fd + A2 + AT

2 − B2 − BT
2 ,

Θ
∼23

= AT
3 + B2 − BT

3 − C2, Θ
∼24

= −A2 + AT
4 − BT

4 ,

Θ
∼25

= MT
d PG + MT

d Q12G + AT
5 − BT

5 , Θ
∼33

= −W2 + B3 + BT
3 − C3 − CT

3 ,

Θ
∼34

= − A3 + BT
4 − CT

4 , Θ
∼35

= BT
5 − CT

5 , Θ
∼44

= −W1 − A4 − AT
4 ,

Θ
∼45

= − AT
5 , Θ

∼55
= GT PG + GTQ12G− µI.

If h(k) = h, the following corollary is drawn.

Corollary 6. Given constant ζ > 1 and positive constants µ, λi(i = 1, 2, · · · , 5), then the
stochastic system (1) with e1(x(k), k) = e2(x(k− h(k)), k) = 0 and h(k) = h is FTS subject to
{α, β, N} if there exist matrices A = [AT

1 AT
2 AT

3 ]
T as well as positive definite symmetric matrices

P, W, Q ∈ Rn×n, such that all of the following conditions hold:[
[Θ
≈ ij

]i,j=1,2,3 εA

∗ −εQ

]
< 0, (41)

λ1 I < P < λ2 I, λ3 I < W < λ4 I, Q < λ5 I,

ζN [α(λ2 + η1λ4) + δη2λ5]− β(λ1 + η1λ3) < 0,

where

Θ
≈11

= MT PM− ζP + W + h(M− I)TQ(M− I) + µFT F

+ A1 + AT
1 + DT PD + hDTQD,

Θ
≈12

= MT PMd + h(M− I)TQMd + µFT Fd − A1 + AT
2 ,

Θ
≈13

= MT PG + h(M− I)TQG + AT
3 ,

Θ
≈22

= MT
d PMd − ζhW + hMT

d QMd + µFT
d Fd − A2 − AT

2 ,

Θ
≈23

= MT
d PG + hMT

d QG− AT
3 , Θ

≈33
= GT PG + hGTQG− µI,

and the constants ε, η1 and η2 are introduced in (28).
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Proof. Consider LKF (32). Along the trajectory of system (1), the forward difference of
E{∆V(x(k))} is obtained as follows

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + xT(k)[MT PM + DT PD + hDTQD

− ζP + h(M− I)TQ(M− I) + W]x(k)

+ 2xT(k)(MT PMd + h(M− I)TQMd)x(k− h)

+ 2xT(k)(MT PG + h(M− I)TQG)z(k)

+ xT(k− h)(MT
d PMd + hMT

d QMd)x(k− h)

+ 2xT(k− h)(MT
d PG + hMT

d QG)z(k)

+ zT(k)(GT PG + GTQG)z(k)−
k−1

∑
j=k−h

ζk−jyT(j)Qy(j)

−ζhxT(k− h)Wx(k− h)
}

.

From Lemma 1 and the condition (38), we have

E{∆V(k)} ≤ E
{
(ζ − 1)V(k) + ξ

≈
T(k)(([Θ

≈ ij
]i,j=1,2,3) + εAQ−1

1 AT)ξ
≈
(k)
}

,

where ξ
≈
=
[
xT(k) xT(k− h) zT(k)

]T .

By the Schur complement and (41), the following condition is satisfied

([Θ
≈ ij

]i,j=1,2,3) + εAQ−1
1 AT < 0.

Then, E{V(k)} < ζkE{V(0)}, k ∈ N holds.

4. Numerical Examples

This section will provide two simulation examples to demonstrate the validity of the
proposed methods.

Example 1. Given the coefficient matrices of the discrete-time stochastic system (1)

M =

[
0.01 0.30
0.20 0.00

]
, Md =

[
0.12 0.25
0.25 0.15

]
, H =

[
0.01 0.00
0.00 0.01

]
, Hd =

[
0.01 0.00
0.00 0.01

]
,

F =

[
0.01 0.00
0.00 0.01

]
, Fd =

[
0.01 0.00
0.00 0.01

]
, D =

[
0.05 0.06
0.05 0.01

]
, G =

[
0.01 0.00
0.00 0.01

]
,

hm = 2, hM = 5, δ = 0.2.

The LMIs in Theorem 1 have a feasible solution, the corresponding parameters:
µ = 0.68, ε = 6, εd = 0.83, λ1 = 0.4123, λ2 = 0.4124, λ3 = 0.111, λ4 = 0.124, λ5 = 0.09,
λ6 = 0.12, λ7 = 0.20, λ8 = 0.30.

Set ϕ(l) =
[
0.1l + 0.2 0.1l + 0.2

]
, l ∈ {−5,−4, · · · , 0}, ϕ(0) = [0.2 0.2]. h(k) =

b3|sin(k/15)|c, 2 ≤ h(k) ≤ 5, k ∈ N, where b·c represents the floor function—that is,
adding one after rounding. We observe that the initial value satisfies

supl∈{−5,−4,··· ,−1}‖ϕ(l)‖2 ≤ α = 3,

supl∈{−5,−4,··· ,−1}‖(ϕ(l + 1)− ϕ(l))‖2 ≤ δ = 0.2.

The response of x(k) is plotted in Figure 1, and the evolution of E{‖x(k)‖2} is plotted
in Figure 2. It is not difficult to see that E{‖x(k)‖2} ≤ 72.3245, k ∈ N. This implies that
system (1) is FTS subject to (3, 72.3245, 5).
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Figure 1. The state response of system (1) (2 ≤ h(k) ≤ 5).

Figure 2. The evolution of E{‖x(k)‖2} for (1).

In Table 1, we analyze the uncertain DSNS (1) with TVD. By Theorem 1, the minimum
upper bound of β is obtained for α = 3 and N ∈ (10, 20, 40).

Table 1. The minimum upper bound of the parameter β for system (1).

N 10 20 40

Theorem 3 [14] 412 2.11× 104 4.79× 107

Theorem 1 200.4854 2.7723× 103 7.0750× 105

Example 2. Consider the uncertain DSNS (1)

M =

[
0.80 0.20
0.07 0.10

]
, Md =

[
−0.01 0.01
−0.02 −0.01

]
, H =

[
0.01 −0.05
−0.02 0.01

]
,

Hd =

[
−0.02 0.01
0.02 −0.03

]
, F =

[
0.14 −0.05
−0.04 0.05

]
, Fd =

[
−0.02 0.20
0.10 −0.05

]
,
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D =

[
0.01 −0.07
−0.01 0.01

]
, G =

[
0.01 0.00
−0.01 0.05

]
,

hm = 5, hM = 20, δ = 0.12,
and the following parameters µ = 0.68, ε = 6, εd = 0.84, λ1 = 0.4123, λ2 = 0.4124, λ3 = 0.111,
λ4 = 0.112, λ5 = 0.09, λ6 = 0.12, λ7 = 0.19 and λ8 = 0.31.

The response of x(k) is plotted in Figure 3, and the evolution of E{‖x(k)‖2} is plotted
in Figure 4.

Figure 3. The state response of the system (1) (5 ≤ h(k) ≤ 20).

Figure 4. The evolution of E{‖x(k)‖2} for system (1).

Moreover, let h(k) = b16|sin(k/15)|c, k ∈ N, 5 ≤ h(k) ≤ 20,

ϕ(l) =
[
0.1l + 0.2 0.1l + 0.2

]
, l ∈ {−20,−19, · · · , 0},

satisfy the following conditions

supl∈{−20,−19,··· ,−1}E{‖ϕ(l)‖2} ≤ α = 2,
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supl∈{−20,−19,··· ,−1}E{‖(ϕ(l + 1)− ϕ(l))‖2} ≤ δ = 0.12.

Figures 3 and 4 depict the response of x(k) and the evolution of E{‖x(k)‖2}, respec-
tively, for system (1). One has E{‖x(k)‖2} ≤ 41.7307, k ∈ N. Thus, system (1) is FTS subject
to (2, 41.7307, 5).

The minimum upper bound of the parameter β for system (2) is shown in Table 2,
and the following conclusions are obtained:

(a) The upper bound of the parameter β in this paper is smaller than that in the liter-
ature [41], which infers that the result in this paper is less conservative than that
in [41].

(b) The authors in [41] employed a novel approximation for a delayed state, which
had a smaller approximation error compared with existing approaches. It is worth
noting that the system in [41] did not consider the influence of external interference,
uncertainty and nonlinear factors.

(c) The authors in [13] adopted a new summation inequality called a discrete Wirtinger-
based inequality. Although the results of [13] were better than that of this paper,
the method adopted in [13] did not reflect random variables and uncertainty. Our
results are more general.

Table 2. The minimum upper bound of the parameter β for system (2).

N 5 10 20

Corollary 1 [13] 8 17 19
Theorem 1 [41] 56 125 518
Corollary 1 28.1309 73.9878 424.0102

The above two examples show that as the TVD increases, the longer it takes for the
state response to reach stability. Therefore, the smaller the TVD is, the less conservative the
FTS criterion is. It can also be seen that the stability of the state response is independent of
the uncertain parameters and is related to nonlinear disturbances and TVD.

5. Conclusions

In this paper, we discussed the problem of FTS for uncertain DSNS with TVD. By con-
structing a new LKF with a power function ζk−j−1 and new summation inequalities,
sufficient conditions to ensure the FTS and RAS of stochastic system were given. By using
LMIs, less conservative stability criteria were established. For an uncertain DSNS with
h(k) = h, this paper also provided the FTS criteria of the system. Finally, two simulation
examples proved the validity of the method. It is noteworthy that the research method
proposed can be applied to other systems, for instance, Markov jump systems, singular
systems and discrete autonomous systems.
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uncertain transition rates. Appl. Math. Comput. 2018, 321, 512–525. [CrossRef]
28. Zhang, T.; Deng, F.; Zhang, W. Finite-time stability and stabilization of linear discrete time-varying stochastic systems. J. Frankl.

Inst. 2019, 356, 1247–1267. [CrossRef]
29. Liu, X.; Liu, Q.; Li, Y. Finite-time guaranteed cost control for uncertain mean-field stochastic systems. J. Frankl. Inst. 2020, 357,

2813–2829. [CrossRef]
30. Niamsup, P.; Phat, V. Robust finite-time H∞ control of linear time-varying delay systems with bounded control via Riccati

equations. Int. J. Autom. Comput. 2018, 15, 355–363. [CrossRef]
31. Wang, G.; Li, Z.; Zhang, Q.; Yang, C. Robust finite-time stability and stabilization of uncertain Markovian jump systems with

time-varying delay. Appl. Math. Comput. 2017, 293, 377–393. [CrossRef]

http://dx.doi.org/10.1016/j.automatica.2020.109444
http://dx.doi.org/10.1186/s13014-020-01611-6
http://www.ncbi.nlm.nih.gov/pubmed/32650819
http://dx.doi.org/10.1016/j.automatica.2019.01.031
http://dx.doi.org/10.1016/j.automatica.2017.07.056
http://dx.doi.org/10.1016/j.automatica.2020.109191
http://dx.doi.org/10.1049/cth2.12105
http://dx.doi.org/10.1049/iet-cta.2019.0471
http://dx.doi.org/10.1007/s12555-018-0266-8
http://dx.doi.org/10.1002/mma.5493
http://dx.doi.org/10.3390/sym12030447
http://dx.doi.org/10.1016/j.isatra.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26619938
http://dx.doi.org/10.1016/j.jfranklin.2017.05.009
http://dx.doi.org/10.1016/j.jfranklin.2017.12.018
http://dx.doi.org/10.1016/j.automatica.2020.109282
http://dx.doi.org/10.1016/j.apm.2020.10.002
http://dx.doi.org/10.3390/sym13030473
http://dx.doi.org/10.1016/j.nonrwa.2021.103324
http://dx.doi.org/10.1016/j.jfranklin.2019.09.028
http://dx.doi.org/10.1007/s00034-016-0443-z
http://dx.doi.org/10.1007/s11432-018-9807-7
http://dx.doi.org/10.1080/00207179.2019.1662948
http://dx.doi.org/10.1002/rnc.5182
http://dx.doi.org/10.1080/00207721.2020.1823518
http://dx.doi.org/10.1016/j.amc.2017.10.049
http://dx.doi.org/10.1016/j.jfranklin.2018.10.026
http://dx.doi.org/10.1016/j.jfranklin.2019.12.012
http://dx.doi.org/10.1007/s11633-016-1018-y
http://dx.doi.org/10.1016/j.amc.2016.08.044


Entropy 2022, 24, 828 24 of 24

32. Liu, H.; Lin, X. Finite-time H∞ control for a class of nonlinear system with time-varying delay. Neurocomputing 2015, 149,
1481–1489. [CrossRef]

33. Zhou, M.; Fu, Y. Stability and stabilization for discrete-time Markovian jump stochastic systems with piecewise homogeneous
transition probabilities. Int. J. Control. Autom. Syst. 2019, 17, 2165–2173. [CrossRef]

34. Gao, M.; Zhao, J.; Sun, W. Stochastic H2/H∞ control for discrete-time mean-field systems with Poisson jump. J. Frankl. Inst. 2021,
358, 2933–2947. [CrossRef]

35. Rui, H.; Liu, J.; Qu, Y.; Cong, S.; Song, H. Global asymptotic stability analysis of discrete-time stochastic coupled systems with
time-varying delay. Int. J. Control 2021, 94, 757–766. [CrossRef]

36. Stojanovic, S. New results for finite-time stability of discrete-time linear systems with interval time-varying delay. Discret. Dyn.
Nat. Soc. 2015, 2015, 480816. [CrossRef]

37. Ouellette, D. Schur complements and statistics. Linear Algebra Its Appl. 1981, 36, 187–295. [CrossRef]
38. Zuo, Z.; Li, H.; Wang, Y. New criterion for finite-time stability of linear discrete-time systems with time-varying delay. J. Frankl.

Inst. 2013, 350, 2745–2756. [CrossRef]
39. Seuret, A.; Gouaisbaut, F.; Fridman, E. Stability of discrete-time systems with time-varying delays via a novel summation

inequality. IEEE Trans. Autom. Control 2015, 60, 2740–2745. [CrossRef]
40. He, Y.; Wang, Q.; Xie, L.; Lin, C. Further improvement of free-weighting matrices technique for systems with time-varying delay.

IEEE Trans. Autom. Control 2007, 52, 293–299. [CrossRef]
41. Zhang, Z.; Zhang, Z.; Zhang, H.; Zheng, B.; Karimi, H.R. Finite-time stability analysis and stabilization for linear discrete-time

system with time-varying delay. J. Frankl. Inst. 2014, 351, 3457–3476. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2014.08.044
http://dx.doi.org/10.1007/s12555-018-0490-2
http://dx.doi.org/10.1016/j.jfranklin.2021.02.005
http://dx.doi.org/10.1080/00207179.2019.1616823
http://dx.doi.org/10.1155/2015/480816
http://dx.doi.org/10.1016/0024-3795(81)90232-9
http://dx.doi.org/10.1016/j.jfranklin.2013.06.017
http://dx.doi.org/10.1109/TAC.2015.2398885
http://dx.doi.org/10.1109/TAC.2006.887907
http://dx.doi.org/10.1016/j.jfranklin.2014.02.008

	Introduction
	Problem Statement and Preliminaries
	Main Results
	FTS for Stochastic Systems with Nonlinear Disturbances and Uncertain Parameters
	FTS for Nominal Systems
	FTS for Stochastic Systems with Nonlinear Disturbances
	FTS for Stochastic Systems with Uncertain Parameters

	Numerical Examples
	Conclusions
	References

