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Abstract: Various mathematical frameworks play an essential role in understanding the economic
systems and the emergence of crises in them. Understanding the relation between the structure of
connections between the system’s constituents and the emergence of a crisis is of great importance.
In this paper, we propose a novel method for the inference of economic systems’ structures based
on complex networks theory utilizing the time series of prices. Our network is obtained from the
correlation matrix between the time series of companies’ prices by imposing a threshold on the values
of the correlation coefficients. The optimal value of the threshold is determined by comparing the
spectral properties of the threshold network and the correlation matrix. We analyze the community
structure of the obtained networks and the relation between communities’ inter and intra-connectivity
as indicators of systemic risk. Our results show how an economic system’s behavior is related to its
structure and how the crisis is reflected in changes in the structure. We show how regulation and
deregulation affect the structure of the system. We demonstrate that our method can identify high
systemic risks and measure the impact of the actions taken to increase the system’s stability.

Keywords: complex networks; time series; economic systems; evolution of community structure

1. Introduction

Economic crises negatively impact people’s lives. They influence every aspect of
individual and social development. Therefore, it is essential to prevent a crisis or alleviate
its impact by promptly taking appropriate action. Thus, it is necessary to understand the
economic system’s functioning and behavior before, after, and during the crisis. Different
approaches have been applied towards that end, including economic [1,2] and quantitative
approaches [3–9].

The economic system is a complex system consisting of many interacting units whose
collective behavior cannot be inferred from individual units’ behavior. The behavior of
the complex system is determined by its structure [10,11]. To understand the behavior and
function of a complex system, one needs to describe its structure and understand how
this structure evolves. Complex networks theory provides tools for the inference of the
structure of a wide range of systems, including biological [12], social [11], technological
[13], and economic systems [14]. The construction of economic networks is mostly achieved
by mapping the flow of funds between companies [15] or transforming time series into a
correlation matrix [14]. These two networks are complementary, although they overlap
to a certain extent. The former network requires more time-consuming data collection,
while the advantage of obtaining a network from time series is in its simplicity and the
availability of data. The appropriate method for efficiently extracting information from
time series is essential since it provides insights into the system’s structure at a relatively
low data collection cost.
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Existing methods for obtaining networks use as input data either the time series of
logarithmic returns [16] or methods based on detrended logarithmic returns [14]. Both are
derived from the time series of prices. The direct use of the prices is often avoided because
they are non-stationary and contain trends.

Current works obtain a network from a correlation matrix by applying filtering meth-
ods such as the minimum spanning tree (MST) [17], planar maximally filtered graph
(PMFG) [14], and threshold method [18]. Complex networks, including economic networks,
are characterized by the rich mesoscopic structure, known as communities [19]. MST and
PMFG techniques are not appropriate for analyzing communities in a network and their
interconnections as they focus on including all nodes in the network, disregarding stronger
intra-community connectivity [20]. Existing methods that use the threshold method do not
differentiate between relevant and less relevant edges, filtering out essential information
about the system.

The economic crisis is a common research topic [3–9]. These works contribute to
a better understanding of crisis by examining the system’s functioning using different
quantitative methodologies. This diverse approach is especially beneficial for a better
understanding of the crisis. Input data are the time series of market indices coming from
different countries [21] or time series of companies’ stock prices constituting, for example,
the S&P 500 index [6]. The former data do not include many constituents and are used
in works where the subject understands global interaction. The latter focuses on the USA
market, which can have up to 500 constituents, the largest USA companies, and all sectors.

In this work, we propose a new approach for obtaining the network from price time
series, which provides insight into the system’s structure. Our motivation is to obtain an
optimal network containing sufficient information and as few edges as possible, allowing
efficient analysis. Moreover, we want to gain insight into the change in the system’s
structure due to the economic crisis. We use a time series of prices and apply detrending
to those series. We demonstrate that the system’s structure can be inferred from these
data, thus broadening the dataset options for the empirical study of complex systems. We
applied this approach for obtaining a network from a correlation matrix that differentiates
between edges based on their relevance to network topology. Using this approach, we
studied the evolution of the USA financial sector’s network structure. The financial sector is
the heart of the economy since companies in this sector enable a flow of funds through the
economy. The 2008 economic crisis was catalyzed by subprime mortgage-backed securities
in the USA and spread to mutual funds, pensions, and other parts of the financial sector,
with national and global impacts. The USA financial sector occupied a central place in the
emergence and development of the 2008 crisis. For these reasons, we focus on studying the
evolution of company relations in this sector. Our input data present all companies from the
domestic financial sector, the source of the 2008 crisis. We identify the relationship between
the economic system’s structure and behavior before, during, and after the crisis. Our
analysis shows how an economic crisis affects a system’s structure on a mesoscopic level.
We examine the relationship between inter- and intra-community connectivity. We show
that, using this approach, we can detect crises and different interventions by governments
and policy-makers by examining the community structure and their connections. By adding
the different perspectives of observing the system’s behavior in crisis, we contribute to a
better understanding of connectivity and relations within the economic system.

The rest of the paper is organized as follows. In Section 2, we give an overview of
previous work on the following topics: time series processing, obtaining networks from
correlation matrix, and methods for studying economic crisis. In Section 3.2, we provide
a detailed description of our approach. We present our results in Section 3.1, and discuss
these results and conclude in Section 5.
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2. Related Work
2.1. Time Series Processing

The time series of prices are not suitable for calculating the correlation matrix since
they have strong trends and are non-stationary. Different methods were applied in order
to overcome these problems. One of the methods is based on the simple transformation
of prices into logarithmic returns [6,21–25], derived as rt = ln Pt

Pt−1
, where Pt presents the

price at time t. These series fluctuate around the mean, which is constant and close to zero.
The other methods apply detrending techniques on the time series of returns [14,26–28].

These detrending techniques differ according to trend calculation. Zhao et al. [14] make a
cumulative time series of returns and calculate the trend for each series separately based on
the detrending fluctuation analysis technique [29]. Random matrix theory is used to calcu-
late market component, representing the trend in [26,28]. Musmeci et al. [27] calculate the
market component based on average returns for all companies considered in the analysis.

Some works used the auto-correlation of time series of returns to derive residuals,
which are then used to calculate the correlation matrix [17,30]. Dynamic conditional
correlation multivariate generalized autoregressive conditionally heteroscedastic (GARCH)
model, DCC-MVGARCH, is used in these works.

2.2. Obtaining Network from Correlation Matrix

Obtaining a network from a correlation matrix suitable for gaining insights into the
system’s structure is a complex problem. It involves the usage of an appropriate filtering
method. The method should ensure that relevant information is present in the network
and that redundant edges are removed. Not satisfying any of the two requirements
can lead to false conclusions. Existing filtering methods include the minimum-spanning
tree (MST) [17,30–32], planar maximally filtered graph (PMFG) [6,14,33,34] and threshold
method [18,20–23,28].

The threshold method filters out information based on correlation strength, while
MST and PMFG combine correlation strength to include all graph nodes and planarity.
From the perspective of inter- and intra-connectivity between communities, inclusion and
planarity criteria result in a connected graph at the price of not including all relevant
edges. Onnela et al. [20] compared the threshold method with MST and showed that a
threshold network with the same number of edges as MST results in a disconnected graph.
These results imply that intra-community edges are more robust than edges between
the communities. Moreover, in [6], PMFG leads to the conclusion that in times of crisis,
communities are less connected than they out of crisis, which is in contrast to results
obtained using random matrix theory [3,7].

The threshold method is more suitable for analyzing community structure in the
network. However, the problem is finding the optimal threshold value. A lower threshold
is desirable to include as much information as possible. On the other hand, a higher
threshold is preferable since it provides a sparse network, which is easier for analysis.
The optimal threshold is the one that filters out noise from the network structure and
leaves the edges that carry relevant information about mutual relations between entities.
Onnela et al. [20] proposed clustering coefficient as the criteria for determining the threshold
value. However, there is no substantial evidence that the clustering coefficient is more
relevant than other network measures.

X. Cao et al. [28] calculated the optimal threshold by comparing clustering coefficients,
the average shortest path length, and the size of the giant component between random
graph and empirical network for different threshold values. They determine the optimal
threshold at which the structural difference between empirical and random networks is at
the highest level. While these network properties are one of the most investigated ones, they
are not inclusive of other topological properties [35]. The work from C. Orsini et al. [35]
indicates that the degree sequence, joint degree matrix, average clustering coefficient,
and its dependence on the node degree are sufficient to describe the topology of most of the
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networks. In contrast, the giant component’s average shortest path length and size depend
on these properties.

Xue Guo et al. [18] determine the threshold based on the community’s correlation
strength. This approach underestimates the inter-connectivity between communities as
higher importance is given to intra-community edges. Inter-community edges impact
the diffusion process in a network and should be recognized appropriately. Moreover,
according to the max-flow min-cut theorem, edges between communities are essential since
the information flow is maximal through them.

S. Kumar et al. [21] set different thresholds to show how network characteristics,
such as the component number and maximum clique size, change with the threshold.
Xia et al. [23] determine the threshold by using the probability distribution of corre-
lation coefficients and setting the threshold at the expected value plus multiples of
standard deviations.

The mentioned threshold methods do not provide quantitative insights into how
much information is filtered from the network. The complete correlation matrix carries
all information about the structure of the network. Once threshold filtering is applied,
a certain amount of information is lost. Therefore, it is essential to have quantitative insight
into how much information we included in the network. It is vital to see which edges carry
the relevant information about the systems’ topology and which are redundant. Here, we
propose a quantitative measure based on the network’s spectral properties to determine
the optimal value of the threshold.

2.3. Crisis Examined Using Quantitative Methodologies

Different quantitative methods have been applied to better understand the impact
of the crisis on the economic system. V. Filimonov et al. [5] used the Poisson Hawkes
model and developed a measure to determine whether price fluctuations are due to an
endogenous feedback process as opposed to exogenous news. A. M. Petersen et al. [4]
studied cascading dynamics and related the Omori, productivity, and Bath laws with
financial shocks. G. Oh et al. [36] used entropy density function in return time series, while
K. Yim et al. [37] used the Hurst exponent.

Complex networks theory is also used for the analysis of crisis impact. X. Cao et al. [28]
have shown that the crisis impacts the average degree, size of the giant component, and clus-
tering coefficient. S. Kumar et al. [21] presented how the crisis affects the formation of
clusters and the structure of minimum spanning trees. A. Nobi [24] showed the impact of
the crisis on degree distribution and cluster formation. M. Wilinski [38] showed that MST
changes structure from a hierarchical scale-free MST to a superstar-like MST decorated by
a scale-free hierarchy of trees. L. Zhao et al. [6] examined how the crisis affects the number
of communities and inter-sector edges.

Existing methods that use complex networks to analyze the impact of a crisis primarily
consider either mapping country indices [21] or the constituents of leading indices S&P
500 [6]. The former network comprises nodes representing different countries, while
the latter network nodes represent companies from different sectors. These companies
are, for example, for index S&P 500, the largest 500 companies in the USA. This work
demonstrates our approach to studying the evolution of relations between companies in
the USA financial sector. We show that laws and policies strongly influence the system’s
structure. The network’s community structure reflects the pre-crisis, crisis, and post-
crisis periods.

3. Materials and Methods
3.1. Data

Innovative solutions such as derivatives and securitization in the financial sector that
were not followed by developing the system’s regulatory framework created a bubble in
the housing and credit supply markets. The bubble burst in 2008 due to the subprime
mortgage crisis, which led to a worldwide economic crisis. This work studies the long-term
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relations between companies in the USA’s financial sector and its evolution from 2002
until 2017. This period includes the time before the 2008 crisis, the period during the
crisis, and the economic recovery period. The financial sector includes companies whose
main economic activity is asset management, real estate investment trusts (REITs), banks,
insurance, and municipal funds.

We obtained data from the publicly available Finance Yahoo database https://finance.
yahoo.com/ accessed on 27 September 2018 which contains various information data about
the company’s values and how they have changed with time. The database comprises differ-
ent data types, for instance, opening, closing, intraday, adjusted closing prices, and trading
volume. The information is given for different aggregation intervals: day, week, and month.
For this study, we used adjusted daily closing prices. The closing price means that the price
is taken at the end of the business day after trading is closed. The price fluctuates between
the opening and closing of a business day. Adjusted means that the price is corrected to
exclude the effect of dividend pay-out and stock split. The impact of dividend pay-out
and splits of stock would provide misleading information. A split or dividend pay-out can
significantly change the price, although the company’s real value did not change.

For each year T ∈ {2002, . . . , 2017}, we collected the time series xT
i (t) of the adjusted

closing price at the end of each trading day t for each company i. Each time series’ length
equals the one-year or 252 trading days. The number of companies in each year Nc(T)
varies since some companies were founded after 2002, and some of them were closed before
2017. Table 1 shows the number of companies active in year T in the USA financial sector
according to the Yahoo Finance database.

Table 1. The number of USA financial sector companies in each year T according to the Ya-
hoo database.

T Nc(T) T Nc(T)

2002 518 2010 762
2003 558 2011 786
2004 609 2012 804
2005 653 2013 825
2006 695 2014 855
2007 711 2015 884
2008 740 2016 892
2009 748 2017 888

Table 1 shows that the number of companies in the USA financial sector grew by
7.5% per year on average before 2007. The crisis and economic recovery period from 2007
until 2015 had much slower growth, with an average relative increase in the number of
companies of approximately 2.7%. There was a certain stagnation of this growth in 2016
and 2017.

3.2. Methodology

This work proposes a method for determining the network of relations between
companies based on their stock price time series. We use this method to study the evolution
of cohesion of financial sector companies whose stocks are publicly traded on the USA’s
stock exchange. With this method, we explore the evolution of mutual influences and
how this evolution is shaped by different critical events, such as the world economic crisis
in 2008.

Our method consists of three steps. In the first step, we perform a detrending time
series of stock prices for each considered company. In the second step, we calculate the
matrix of Pearson correlation coefficients using this detrended time series. In the final
step, we apply the threshold filtering of correlation coefficients to extract the companies’

https://finance.yahoo.com/
https://finance.yahoo.com/
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network of relations. We then analyze and compare the topology of the networks obtained
for different years.

3.2.1. Time Series of Prices for Obtaining Network

In our approach, the companies are represented by nodes, and edges represent com-
panies’ relationships. As input data, we use the time series of stock prices. We consider
the time series of each company’s adjusted daily closing prices. The considered time series
are non-stationary and have strong trends, as can be seen in Figure 1 (green line), which
are often the consequence of different external influences. The non-stationarity of the time
series and the trends can lead to false, highly positive, or negative correlations between
companies. To avoid this, we remove the trends by detrending the time series using the
method proposed in [29]. The detrended time series is the time series of the fluctuations.

Original time series xT
i (t) consists of 252 values of adjusted daily stock prices of the

company i during year T. In [29], the authors considered the differential time series of
fluctuations and then performed detrending on the cumulative time series. Our original
time series are already cumulative, thus omitting this step in our calculations. We divide the
time series on k non-overlapping segments of equal size l, so that k = n

l . We determine the

linear trend of time series xi by fitting the equation yj
i(t) = aj

i × t + bj
i and determining the

coefficients aj
i and bj

i for each segment j, as can be seen in Figure 1 (red line). The detrended

time series equals the original time series minus the trend on each segment, i.e., xT
i (t) =

xT
i (t)− yj

i(t). The resulting time series is stationary, and its average value is approximately
zero. By removing the trend typical for period l, we only consider fluctuations that result
from mutual influence between companies.

Figure 1. Example of a time series of prices for one company belonging to the USA financial sector.
The green line is the original time series, the red line shows the trend, and the blue line is a detrended
time series of prices.

We apply detrending to each company’s time series. The detrended time series are
used for the calculation of the Pearson correlation coefficient matrix for year T, where each
element of the matrix is calculated using the following formula:

ρ̂T
i,j =

∑n
t=1(xT

i (t)− µ̂
xT

i
)(xT

j (t)− µ̂
xT

j
)√

∑n
t=1(xT

i (t)− µ̂
xT

i
)2 ∑n

t=1(xT
j (t)− µ̂

xT
j
)2

, (1)



Entropy 2022, 24, 1005 7 of 17

where xT
i (t) and xT

j (t) are the detrended time series of companies i and j in year T, µ̂
xT

i
and µ̂

xT
j

are estimated average values over period n = 252 for the detrended time series of

companies i and j. The matrix with ρ̂T
i,j elements is symmetrical and takes values from −1

to 1.
In order to obtain the network of mutual influences between considered companies

for the year T, we only take into account the correlation coefficient with a value above a
certain threshold θ, i.e.,

wT
i,j =

{
ρ̂T

i,j if ρ̂T
i,j > θ

0 if ρ̂T
i,j ≤ θ

. (2)

Determining the threshold value θ is not a simple task. In their approach, Živković et al. [39]
assumed that the most optimal value of the threshold can be determined from the relation
between the threshold value and the size of the largest component in the network obtained
for that value. The giant component is the largest set of connected nodes in the network [10].
The dependence of the size of giant component S on the threshold value θ has a charac-
teristic steep decline in the giant component’s size for a particular value of the threshold
θc. The abrupt deterioration implies the detachment of a group of nodes forming separate
components. θc is the threshold value for which one can observe essential changes in the
network structure. The threshold value is determined as the one which is slightly smaller
than θc.

Figure 2 shows the dependence of the size of the giant component S on the value
of threshold θ for the financial sector in the year 2015. There are two steep drops in the
value of the giant component’s size, one for the values of the threshold starting from 0.54
and ending at 0.56, and one starting from 0.78 and ending at 0.82. This indicates that
observed networks elapse through a series of significant structural changes; thus, it is hard
to determine the optimal threshold value.

Figure 2. Dependence of size of giant component (S) on value of threshold (θ).

For these reasons, we adopted a different approach. We determine the optimal thresh-
old for filtering the correlation matrix based on the networks’ spectral properties. The prob-
ability distribution of the eigenvalues of the adjacency matrix fundamentally describes
a system and contains the complete information about its topology [40–42]. Different
networks, such as Erdos–Reniy and Barabasi–Albert graphs, have different probability
distributions of eigenvalues. The difference between the two networks is proportional to
their structural differences.

We compare the empirical economic network’s spectra with the spectra of different
random networks to demonstrate our claims. C. Orsini et al. [35] proposed a method to
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create a line of random networks, each topologically more similar to an empirical network.
We obtained a network from the correlation matrix by applying the threshold method
and using it as the empirical network. We generated three random networks (RNs) based
on the empirical network properties. RN1 has the same average degree as the empirical
network, while other topological properties are random. The RN2 has the same degree
sequence and consequently, the average degree as the original network. The RN3 has the
same joint degree matrix, degree sequence, average degree, and the most similar topology
to the empirical network.

Figure 3 shows the spectra of the empirical network obtained for 2005 and three
random networks. The RN1 has the most different spectral properties than the empirical
network, while the RN3 has the most similar spectra. Each random network only contains
a fraction of information about the relations between nodes in the empirical network.
The difference between spectra decreases as we increase the number of properties similar to
the empirical network. Our analysis demonstrates that we can use the comparison between
spectra to evaluate the optimal threshold.

Figure 3. The probability distribution of eigenvalues for empirical network for year 2005 and three
random networks.

We used the same approach to compare the full correlation matrix, represented as a
weighted and filtered network.

The correlation matrix contains complete information about the system and can be
represented as a weighted graph. Once the threshold is applied to the correlation matrix,
edges with weights less than the threshold are removed. A filtered network thus only
has a fraction of information about companies’ relations. By comparing the probability
distributions of eigenvalues for original and filtered matrices, we understand how much
information is lost due to filtering.

To quantify this difference, we use the Kolmogorov–Smirnov (KS) distance. We
calculate the KS distance between the probability distributions of eigenvalues for the
original and filtered correlation matrices for different threshold values. The lower value
of KS distance implies a better agreement between spectra and higher similarity between
networks’ topologies. Therefore, we want the KS distance to be as low as possible.

Figure 4 shows the KS dependence on the threshold for 2008, 2009, 2014, and 2015.
As we expect, the KS distance increases with the threshold value. At the threshold −0.5,
the KS distance is equal to zero as complete information is included in the network, while
the KS distance reaches its maximum for a threshold close to 1. The dependence of KS
on threshold has a local minimum at the value θm > 0 and is similar to the KS distance
at the threshold θ = 0. We keep the same information about the network structure by
fixing the threshold’s value at 0 or θm. However, a network at 0 is denser and thus more
complicated for the analysis. By setting the threshold value to θm for which we observe



Entropy 2022, 24, 1005 9 of 17

the local minimum for the KS distance, and we obtain the optimal network with enough
information about the relations between companies, which is not excessively dense.

Figure 4. Kolmogorov–Smirnov distance between the probability distributions of the eigenvalues of
correlation matrices obtained from original and filtered matrix for the years 2008 (a), 2009 (b), 2014
(c), and 2015 (d).

The probability distributions of correlation coefficients differ for each year, as can be
seen in Figure 5; thus, it is not surprising that the local minimum is different for each year.
We calculate the local minimum for each year separately and obtain the network based on
corresponding thresholds. Table 2 shows the local minima θ for different years.

Figure 5. Probability distribution of the correlation coefficients for the years 2015, (a,b), and 2009,
(c,d). (a,c) present distributions obtained from original time series, while (b,d) are the distributions
obtained from detrended series.
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Table 2. The threshold values obtained for different years.

Year θ Year θ

2002 0.35 2010 0.525
2003 0.325 2011 0.55
2004 0.425 2012 0.475
2005 0.35 2013 0.475
2006 0.35 2014 0.45
2007 0.475 2015 0.5
2008 0.55 2016 0.55
2009 0.475 2017 0.375

3.2.2. Measuring the Intra- and Inter-Community Connectivity

We are interested in the mesoscopic structure of the networks and how it changes
with time. A community is a group of nodes more densely connected than the rest of the
network [19]. Communities are an indicator of the system’s collective behavior, and the
network’s community structure provides essential information about its dynamics and
function [19]. In this work, we apply the Louvain algorithm [43] to find communities in
weighted networks. The results of the Louvain algorithm for a single run may differ due
to different initial conditions. We run a Louvain algorithm each year 100 times for these
reasons. For each community CMT,r

i , where T denotes a year and r denotes the run of
the Louvain algorithm, we calculate the ratio between edges inside the community and
all edges formed by nodes belonging to that community. We calculate the ratio using the
following equation

P
CMT,r

i
in =

L
CMT,r

i
in

L
CMT,r

i
Total

, i = 1, 2, ..., RT,r (3)

where L
CMT,r

i
in is the sum of weighted edges inside the community CMT,r

i , L
CMT,r

i
Total is the

total sum of weighted edges of nodes in the community CMT,r
i , and RT,r is the number

of communities for the network obtained for time period T and run r. First, the average

P
CMT,r

i
in over all communities obtained in the single run

〈PT,r
in 〉 =

∑i P
CMT,r

i
in

RT,r , (4)

and then we obtain the average over all runs

〈PT
in〉 =

∑r〈PT,r
in 〉

100
, (5)

and standard deviation

σPT
in
=

√
∑r (〈PT

in〉 − 〈P
T,r
in 〉)

2

99
(6)

4. Results

This work focuses on how the network structure changed when the system went
through the 2008 economic crisis. We selected the period between 2002 and 2017, which
covers the time before, during, and after the crisis. The number of companies varies
between 518 in 2002 and 888 in 2017, as can be seen in Table 2.

We detrended each segment separately and calculated the correlation matrix {ρ̂i,j}
between the companies for each year T ∈ {2002, ..., 2017}. We detrended the time series
for the interval l = 21 trading days, which equals one average trading month. We then
mapped the correlation matrix to the adjacency matrix using the threshold method and
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obtained an undirected weighted network for the year T. We use the approach described
in Section 3.2 to determine the threshold. We performed community structure analysis
and calculated the PT

in and σPT
in

for each year. The analysis of community structure and the
evolution of their cohesion shows how the network structure evolves.

4.1. Characteristics of the Correlation Matrix and Obtained Network

Detrending helps extract information about the economic system’s internal behavior
and relationships between companies. Figure 5 shows a probability distribution of correla-
tion coefficients p(ρ̂i,j) for the original time series and detrended time series for years 2009
and 2015. The pij(ρ̂i,j) shown in Figure 5a was calculated for the original time series for
the year 2015 and resembles a uniform distribution. Figure 5b shows the probability dis-
tribution obtained from the detrended series and is more similar to Gaussian distribution.
The center of Gaussian varies between years. The distribution of correlation coefficients
changes during the economic crisis period, as can be seen in Figure 5c,d. If we obtain
the correlation matrix from the original time series, most companies are highly correlated,
with correlation coefficients between 0.9 and 1, as can be seen in Figure 5c. The distribution
of correlation coefficients obtained from detrended time series during an economic crisis is
a convolution of two Gaussians, Figure 5d.

After detrending the time series and calculating the correlation matrix, we used a
method described in Section 3.2 to obtain an undirected weighted network. We ran Louvain
on the networks and found the community structure. Figure 6 shows the networks for
the years 2004, 2006, 2008, and 2015. Based on examining communities by comparing
their constituents’ characteristics, we concluded that their edges imply exposure to similar
factors. Namely, the nodes belonging to a community, i.e., companies in the same sector,
have different owners, operate in different states, and have different clients. Common to
these companies is their economic activity, i.e., their functioning is similar. Therefore, we
obtain a network where edges reflect exposure to similar factors.

Figure 6. Networks obtained from detrended time series in the years 2004 (a), 2006 (b), 2008 (c),
and 2015 (d). Networks are obtained by applying the threshold given in Table 1. The number of
nodes and edges, respectively, is equal to 554 and 23,340 (a), 652 and 43,167 (b), 677 and 47,590 (c),
and 793 and 58,291 (d). Nodes of the same color belong to the same community.
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Inter-community edges indicate that even companies belonging to different subsectors
may operate under similar conditions. For example, a bank and REIT company are exposed
to similar external factors if they are linked to the residential project, where a bank lends
money to home buyers while REIT invests in project development.

Robust intra-community connectivity indicates that companies in the same community
operate under similar conditions and are susceptible to the same factors. The low value
of correlation coefficients between companies belonging to different sub-sectors suggests
that specific factors typically affect them. Strong connectivity between network nodes
is an indicator of its high vulnerability. A system with a distinct community structure
and stronger connectivity within the communities than between the communities is more
robust than one with similar strengths of connections between and within the communities.

We are interested in the evolution of the ratio between intra- and inter-community
connectivity and how this ratio changes when the system is in different states, such as
during crisis and out-of-crisis periods.

4.2. Relation between Inter and Intra-Connectivity of Communities and Its Evolution

We analyze the community structure of networks for each year from 2002 to 2017
using the Louvain method. The results of applying the Louvain method, which includes
the number and structure of communities, depend on the initial conditions. As a result,
different runs of the Louvain algorithm on the same network may result in a different num-
ber of communities depending on how network nodes are assigned to these communities.
For these reasons, we ran the Louvain algorithm 100 times on each of the 16 networks
and calculated the average number of communities and the average connectivity of these
communities. Figure 7a shows the evolution of the number of communities between 2002
and 2017. The number of communities fluctuates with time and grows after the peak of the
crisis in 2008, with two distinctive local minima in 2010 and 2013. Furthermore, the number
of detected communities in 2004, 2008, and 2015 is equal for each of the 100 runs of the
Louvain algorithm, suggesting a stable community structure in these networks. We observe
the lowest number of communities for 2008, which indicates the lowest differentiation
between sectors within the financial industry during the financial crash.

Figure 7. The evolution of the average number of communities (a) and average intra-connectivity (b)
for networks from 2002 to 2017.

We analyze the intra- and inter-community connectivity for the networks obtained
for each year from 2002 to 2017. Figure 7b shows <PT

in> for the years from 2002 to 2017.
Higher values of <PT

in> imply higher community intra-connectivity, while lower values
indicate higher community inter-connectivity. The error bars shown in Figure 7b are
standard deviations calculated on the sample of 100 runs. Low standard deviation implies
similar intra-community connectivity among communities. The peak of intra-community
connectivity is observed in the year 2004. The interconnectivity then drops to its minimal
value in 2006, where the connectivity within the communities grows and has local maxima
in 2008, which slowly decreases until 2014. In 2015, we observed another smaller rise
in connectivity.
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The networks of the years 2004, 2008, and 2015 have two essential features. They
have a very stable number of communities, independent from the initial conditions of the
Louvain method. Furthermore, the intra-community connectivity for these networks has a
local maximum in these years with a very low standard deviation.

Figure 7a shows that the intra-community connectivity 〈PT
in〉 has the local minima in

the year 2006, indicating high connectivity between communities. In 2006, the system had
the highest potential for diffusion between communities, meaning that one community’s
disturbance could easily be transmitted to any other community. If this disturbance is a
failure, the system is at high risk of efficiently spreading failure and breaking down. Our
result matches what happened to the USA financial sector since 2006 was the year before
the crisis started in 2008. Other researchers have predicted the beginning of the crisis [1].
High and consistent inter-community connectivity in 2006 indicates that companies in
different sectors were susceptible to the influence of the same factor. This factor was real
estate lending, which pulled most of the financial industry. Many financial sectors were
directly or indirectly involved in real estate lending, leading to the relationship network’s
almost homogeneous structure. The local minima in 2006 preceded a peak in 2004, where
communities were well defined.

A crisis is followed by a period of recession, which is recognized by lower values of
economic indicators such as employment, gross domestic product, household net worth,
and federal surplus or deficit. Figure 8 shows the relative change of these four indicators for
the USA economy between 2002 and 2017. We see that the recession period lasted from 2009
and ended in 2014. Our results indicate that the standard deviation for intra-community
connectivity has higher values for the same period, while its values decrease between
2014 and 2017. We see from Figure 7b that standard deviation 〈PT

in〉 was higher during the
economic recovery compared to the post-crisis period.

Figure 8. Economic variables which indicate whether the system is in the state of crisis or out of crisis
such as (left top) employment, (right top) gross domestic product, (left bottom) household net worth,
and (right bottom) federal surplus or deficit.

We observe the increase in 〈PT
in〉, see Figure 7a in the years 2007 and 2008, after reaching

its minimum in 2006. In 2007, companies in the financial system understood that the
economy was in bad condition and that interconnection was high. Communities tried to
depart from each other, leading to a high 〈PT

in〉 and low σPT
in

in the year 2008. However,
the number of communities NC(T) decreased in 2008 because two communities merged
into one, regional banks and REITs. We observed the homogenizing of the system in a
different form where the number of different sectors decreased.
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Effect of Regulation on Structure and Behavior

The USA financial system has to be controlled to prevent the system break down
and decrease systemic risk [1]. Control is realized through appropriate regulations. High
restrictive regulation may prevent a crisis. However, it can jeopardize economic growth
since it limits companies’ profits [1]. Less stringent regulations enable higher yields but
increase systemic risk. Therefore, an optimal level of regulation has to be implemented,
allowing a thriving economy while decreasing systemic risk. The regulations impose
restrictions on companies’ behavior, while deregulation provides companies with a higher
degree of freedom. They both define the behavior of comprising elements of the system.
The effect of regulation and deregulation on the system results from the collective behavior
of incorporating elements. One needs tools to measure the impact of regulations on the
system to create optimal regulations. Our methodology provides insight into the influence
of regulation and deregulation on a system’s structure and behavior.

Deregulation took place in 2004 [44] and proposed a system of voluntary regulations
where investment banks can hold less capital in reserve. Having less money in reserve
means that companies become more dependent on other companies and more vulnerable.
Higher connectivity between companies leads to an increase in systemic risk. Deregulation
is considered one of the leading causes of crisis [45]. Our results show that 〈PT

in〉 sharply
decreased in 2005, indicating higher inter-dependence between communities and higher
systemic risk. 〈PT

in〉 and the standard deviation σPT
in

further decreased in 2006, implying
higher homogeneity within the system.

Regulations were implemented between 2011 and 2014 to respond to the crisis. The
Dodd–Frank Wall Street Reform and Consumer Protection Act of 2010 was designed to
increase financial stability and prevent future crises [46]. As this was the most comprehen-
sive overhaul of the financial system [47], it took time to be implemented. Implementation
started in 2011 and reached 50% of planned regulations in 2014 [48]. Our results show
a sharp increase in 〈PT

in〉 in 2014 when the economy recovered. Standard deviation σPT
in

is higher during the crisis period compared to the period of the recovering economy,
2014–2017.

5. Discussion and Conclusions

In this work, we used a novel method to infer network structure from time series to
study the cohesion between USA companies in the financial sector. Compared to exist-
ing methods, we used detrended prices instead of detrended returns. We introduced a
technique for obtaining an optimal network from a correlation matrix and used a mea-
sure based on community structure that allows us to examine the evolution of cohesion.
Our results show that the USA financial system’s network structure between 2002 and
2017 underwent several phases: deregulation, crisis, and post-crisis. Each of these peri-
ods is characterized by different intra-community connectivity and standard deviation.
The strength of connections between communities is directly related to the system’s level
of risk and stability.

Understanding the connections between the system’s components is crucial for pre-
venting crises. Our approach can identify the points of high systemic risk. This knowledge
enables timely actions to increase the system’s stability. Moreover, measuring the effect of
these actions, such as regulation and deregulation, can be performed using our method.
This is of great importance as inadequate efforts can further deteriorate financial stability.
In 2008, the government’s actions to increase financial stability and save the economy in the
form of capital injection into the financial system were inadequate, which further pushed
the economy into recession [1]. The price of wrong measures for recovering the economy is
high in times of crisis because resources are even more limited. Our results show that the
system’s structure did not change due to these measures.

The economic system has to be regulated to prevent crises while securing the un-
restrained behavior of individual companies to allow economic growth and prosperity.
The economic system is dynamic and should be constantly monitored by policymakers
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to secure an optimal trade-off between of the economic growth and limiting behavior of
composing elements. Policymakers must act on time since a delay of adequate actions can
have a negative impact. Our method allows policymakers to see whether their actions are
adequate and act promptly. As per our analysis, deregulation, which took place in 2004
to enable economic growth, had a strong impact on increasing systemic risk. This signal
can be seen in 2005, where 〈Pin〉 sharply decreased, while standard deviation implied that
connectivity between a certain number of communities increased. In addition, in 2006, all
communities were strongly interconnected, which presents a high systemic risk and can be
seen in low 〈Pin〉, standard deviation, and the number of communities. This led to the 2008
crisis, when some of the communities merged.

Existing techniques for constructing networks from the correlation matrix, MST and
PMFG, put strict constraints on the network structure. MST forbids cycles between nodes
and conditions the number of links to N − 1, where N is the number of nodes. PMFG only
allows short cycles and the maximal number of links 3(N− 2). There is no economic reason
behind these topological constraints for economic systems. Furthermore, the limit on the
number of connections is too strict and may filter out some critical information about the
network’s connectivity. The lack of this forbids the study of the cohesion of the network
and its dynamics.

Our method can be used by researchers interested in studying collective behavior
in real systems such as economic, social, biological, and technological systems. The pre-
requisite is the availability of data in the form of time series. Our method enables dis-
covering hidden relationships between the constituents of the system, leading to a better
understanding of the system, predicting its behavior and controlling it.
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