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Abstract: In this paper, a methodology for a non-linear system state estimation is demonstrated,
exploiting the input and parameter observability. For this purpose, the initial system is transformed
into the canonical observability form, and the function that aggregates the non-linear dynamics
of the system, which may be unknown or difficult to be computed, is approximated by a linear
combination of Laguerre polynomials. Hence, the system identification translates into the estimation
of the parameters involved in the linear combination in order for the system to be observable. For the
validation of the elaborated observer, we consider a biological model from the literature, investigating
whether it is practically possible to infer its states, taking into account the new coordinates to design
the appropriate observer of the system states. Through simulations, we investigate the parameter
settings under which the new observer can identify the state of the system. More specifically, as
the parameter θ increases, the system converges more quickly to the steady-state, decreasing the
respective distance from the system’s initial state. As for the first state, the estimation error is in
the order of 10−2 for θ = 15, and assuming c0 = {0, 1}, c1 = 1. Under the same conditions, the
estimation error of the system’s second state is in the order of 10−1, setting a performance difference
of 10−1 in relation to the first state. The outcomes show that the proposed observer’s performance can
be further improved by selecting even higher values of θ. Hence, the system is observable through
the measurement output.

Keywords: non-linear dynamics; identifiability; observability; Laguerre polynomial

1. Introduction

A common problem that many engineers have faced concerns the determination of
the appropriate input so that the output has the desired behavior. However, before the
control engineer starts designing the appropriate input, it should be investigated whether
it is possible to achieve the desired behavior. A partial reply to the question of whether
or not the appropriate control law exists is relevant to the investigation of whether the
system is controllable or not. At the same time, for the implementation of the control law, a
knowledge of state variables is essential. Therefore, an appropriate framework should be
designed to determine the values of the variables. The design of such a structure (i.e., the
controller) is feasible if the system is observable.

Moreover, in control theory, system identification constitutes a fundamental task for
researchers and industrial professionals, and refers to the identification of a high-fidelity
mathematical model that best describes the system. It is a solid way of describing the
knowledge of a process or a system, and is extremely useful for all areas of science and
technology, such as physics, chemistry, biology, engineering, economics, etc. [1]. The
usefulness of a mathematical model lies in the fact that it gives information regarding the
structure and properties of the system, while at the same time, it can help to predict and
simulate its behavior. The problem of identification is usually very difficult, especially in
those cases for which we do not have enough prior information regarding the system’s
behavior [2]. For example, if the prior information for the system being identified is that
it is linear, time-invariant (LTI), continuous-time, and with concentrated parameters, the
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model that describes the system is a differential equation with constant coefficients. On the
other hand, if the system is non-linear and time-variant, the task becomes very complicated
because the system model may be captured using ordinary differential equations (ODEs)
with parameters that change over time. The system identifiability in both cases lies in
determining the unknown parameters from the output measurements [2].

The analysis of identifiability can be made from a practical and structural perspective.
The structural aims to identify the uncertainty, in parameter estimates thinking, of the
deficiencies in the data used for model calibration. Additionally, structural identifiability is
essential for practical identifiability and seeks to find whether the model parameters can be
uniquely determined from observations of the input–output model [3]. Identifiability is
intertwined with observability, which was first studied in systems and control theory, and
describes the ability to infer the model states (namely, the dynamic variables described by
differential equations in the model) from its output. The concept of structural identifiability
(or, else, observability) was initially introduced in linear systems [4] and then extended
to the nonlinear ones [5]. Similarly, the concept of observability was studied in nonlinear
systems. Hence, the structural identifiability can be investigated with the aid of nonlinear
observability tools [6].

In addition, the observability and structural identifiability [7] of a model can be
simultaneously studied by including the unknown parameters in the state variables vector
and calculating the rank of the augmented observability matrix. This is similar to the
limitation of the differential algebra approach to the initial conditions. Hence, as the system
evolves from an initial state, it may be impossible to identify it (e.g., to determine some of
its parameters) if the observability matrix is rank-deficient [1].

In control theory, identification and identifiability are mostly related to observer design
and observability. For a dynamic system described in the state space, the estimation of the
state vector can be made on the basis of inputs and outputs, while, alternatively, it can be
made by designing a dynamic system called the observer. In order to be able to determine the
initial state, the observability matrix is enough to be invertible. This implies that it will be of
full rank, which constitutes the algebraic criterion for the observability [8].

In this research article, the structural properties of nonlinear systems and preliminar-
ies on observability are investigated, exploiting, from the differential geometry, the Lie
derivative to develop the Observability Rank Condition (ORC) [9]. Our aim is to study
the identifiability of a nonlinear system exploiting the “Canonical Observability” form
and the Laguerre polynomials to model the unknown non-linearities through a function
Φ(·) that occurs in this representation. The identification is equivalent to the estimate of
the unknown parameters, which subsequently leads to the estimation of the state vector.
The choice of polynomials lies in the fact they can form an orthonormal basis where each
representation of the state vector in this space can be expressed as a linear combination of
these base functions. The identification is executed through observation, and the observer
that is constructed evaluates the state vector, and at the same time, identifies the system.
Here, the unknown parameters are the coefficients that multiply the Laguerre polynomials.
The above procedure is useful if the state space equations that describe the dynamics of the
system, are unknown (partially or full), as long as the system is observable for each input,
and its output is measurable.

The paper is organized as follows. Section 2 presents the necessary background
around the concept of observability. Next, Section 3 shows the problem formulation of the
proposed approach for the identification of a non-linear system. Section 4 demonstrates the
evaluation of the elaborated approach, considering an application example from biology
and experimenting with the involved parameters. Finally, Section 5 summarizes the main
findings of the research study and sets future directions.

2. Materials and Methods

The observability of a system is an important concept in modern control theory, and
was introduced by Kalman [10]. Observability is a structural property of control systems,
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and is related to the ability to determine the initial state of the system from the input and
output measurements. Hence, this section introduces and defines the types of observability
for the state of the system and the system as a whole entity. Additionally, the given
definitions hold for both linear and non-linear systems. In the same section, we determine
the observability matrix and the related conditions that should be satisfied, such that a
system (either linear or nonlinear) is observable. In the following, a list of designations
is summarized in Table 1, and definitions will be given before the presentation of the
proposed approach.

Table 1. List of Designations.

Notation Description

M state space, an open set on Rn

U subset of M

x ∈ M system state

x̂ estimated state

u system input

h(x) system output ∈ R

x0 initial state at t0

ẋ derivative of x with respect to the time variable t

yx1 output at state x1

x1IMx2 x1, x2 M- indistinguishable

O observability matrix

‖x‖2 the vector 2-norm (the Euclidean norm)

Li
f (·) Lie derivative i-th order

Φ(x) a nonlinear function that is continuous with respect to x

2.1. Notations and Definitions

To define the observability, it is necessary to introduce the notion of distinguishable
states. In addition, we considered nonlinear systems of input u(t) and output y(t), which
may be written in the following form:{

ẋ(t) = g(x(t), u(t)) x(t0) = x0, x ∈ M := Rn

y(t) = h(x(t)) u(t) ∈ Ω, t ∈ [0, T]
(1)

Definition 1. Let a model with an internal state x and a measurable output y. Let yx0 denote
the time evolution of the model output when started from an initial state x0 at t0. x1 and x2 are
indistinguishable if yx1 = yx2 for all t ≥ t0. The set of states that are indistinguishable from x1 is
denoted by I(x1).

Definition 2. Observable State: A state x1 is observable if the set of states that are indistinguish-
able from x1 include only x1, e.g., I(x1) = {x1}, ∀u, y. A state is observable if there is at least one
input for which the corresponding output is distinguishable from every other state.

Definition 3. Observable System: A system is observable if each state of the system is observable,
e.g., ∀x ∈ M, I(x) = {x}.

Because observability is a more general concept, Hermann et al. [11] first defined the
so-called local and local weak observability. These definitions were also adopted by [5].
Here, we briefly remind the reader of the definitions and their practical meaning.
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Definition 4. Two states x1, x2 ∈ M are called M-indistinguishable in [0, T] if: x1IMx2 ↔ yx1 =
yx2 , ∀t ∈ [0, T], ∀u ∈ Ω, yx1 , yx2 ∈ M, denoted by x1IMx2. A state x1 is distinguishable from a
state x2 if ∀u the courses of x1, x2 ∈ M and yx1 , yx2 are indistinguishable.

Remark 1. The set of M-indistinguishable points is denoted as: I(x1)
∆
= {x1 ∈ M|x1IMx2}. The

M-observable state is I(x1)
∆
= {x1}.

Definition 5. Locally Observable State: A state x1 is locally observable if, for every open
neighborhood U of x1, the set of states that are indistinguishable from x1 include only x1, e.g.,
I(x1) = {x1}.

Definition 6. Weakly Observable System: A system is locally observable in [0, T] if each state
is locally observable.

Definition 7. Locally Weakly Observable State: A state x1 is locally weakly observable if
there is an open neighborhood U of x1 s.t. for each open neighborhood V of x1 with V ⊂ U
(included into M), the set of states of V that are indistinguishable from x1 include only x1, e.g.,
IV(x1) ∩M = {x1}, ∀V.

Definition 8. Locally Weakly Observable System: A system is locally weakly observable in
[0, T] if its state is locally and weakly observable.

Definition 9. The state x0 ∈ Rn of a system is observable in the time moment τ0 if there is a finite
τ∗ > τ0, such that x0 can be determined by y(τ0, τ∗) and u(τ0, τ∗).

Definition 10. The state x0 ∈ Rn of a system is observable if ∀τ0 there is a finite τ∗ > τ0 such
that x0 can be determined by y(τ0, τ∗) and u(τ0, τ∗).

Definition 11. The system is observable at τ0 if given τ0 there is a finite τ∗ > τ0 such that x0 can
be determined by y(τ0, τ∗) and u(τ0, τ∗).

2.2. Observability and Non-Linear Systems

The study of observability in nonlinear systems is a more difficult task, and for this
reason, we should exploit more advanced mathematical methods from differential geometry,
such as the Lie derivative (i.e., the derivative in the direction of a vector field). In non-linear
systems, the observability depends on the system input(s); thus, an observer would operate
rationally only if the system is observable for the specific input(s). Nonetheless, especially
for the non-linear systems, the existence of a canonical form is analogous to mentioning
that the system is observable for any input.

If we know the output derivative, we can use a direct method of calculating the state
vector for the study of observability in nonlinear systems. Assuming the vector field
f : Rn → Rn and h : Rn → Rn a smooth function (namely, differentiable), the first-order
Lie derivative of the output, with respect to the vector field, is defined as follows [12]:

L f (h(x)) =
∂h(x)

∂x
f =

n

∑
i=1

∂h(x)
∂xi

fi(x) = ∇h(x) f (x), (2)

where f (x) =
[

f1(x), f2(x), . . . fn(x)
]T

, ∇h(x) =
[

∂h(x)
∂x1

∂h(x)
∂x2

. . . ∂h(x)
∂xn

]
, and by defi-

nition, L0
f (h(x)) = h(x). The second-order derivative is L2

f ( f (x)) =
∂L f (h(x))

∂x h(x), and the
higher-order Lie derivatives are defined accordingly.
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The observability matrix O is defined as O(x) = ∂
∂x


L0

f (h(x))
L f (h(x))

...
Ln−1

f (h(x))

. To be the system

observable, its rank (O) should be equal to n.
If the input signal of a system is a time-constant function, then we can say that we

have an autonomous (or state-affine) system of the form:

ẋ = f (x), x = [x1, x2, . . . , xn]
T

y = h(x) ∈ R.
(3)

It is evident that for the study of observability, state-affine systems are equivalent to
linear time-varying systems.

For an LTI dynamic system represented as:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).
(4)

To infer the complete initial state x(t0) uniquely, a relationship between the outputs
y(t), the state vector x(t), and the inputs u(t) should be established. This relationship is
captured by the observability matrix, adopting a similar algebraic criterion as the one for
non-linear dynamical systems, stating that (3) is observable if the rank, namely, rank(O) =

rank
([

C CA CA2 . . . CAn
]T)

is equal to n.

3. Proposed Approach

Treating a system as a black box, the signals that are usually directly accessible are
the input and output. In many cases, to change the dynamics of the system or to access
its behavior, it is necessary to know the characteristics of the system; i.e., the state vector.
Hence, the need to design an observer system in order to obtain access to state variables is
raised. Here, we will study the problem of constructing a state observer for one autonomous
nonlinear system of the form:

(Σ) : ẋ = f (x),

y = h(x), x ∈ M ⊂ Rn (5)

where, in practical scenarios, Ω is an open, connected, and relatively compact set that
constitutes the state space of the system. In ideal conditions, it may be positive invariant
under the system dynamics.

The system (Σ) is observable in M if the output data in one finite period of time [t0, t1],
where t1 > t0, fully defines the initial state x(t0). (At least for trajectories x(t), such that
x(t) ∈ M for any t ∈ [t0, t1].) The fact that system (Σ) is observable is equivalent to the
requirement that the set of functions O(Σ) = {L0

f (h(x)), L f (h(x)), . . . , Li
f (h(x))}, i ≥ 0,

called its “observability space”, separates M points, i.e., such that ∀x1, x2 ∈ Ω exists i for
which Li

f (h(x1)) = Li
f (h(x2)).

3.1. Problem Formulation

Here, we will see how a nonlinear system can be written in the “Observable Canonical
Form” of the Gauthier-Hammouri-Othman [13,14]. The canonical form is the one in
which a nonlinear system can be transformed, ensuring that it is observable for any input.
Conversely, in a nonlinear system that is in canonical form, we can assume with certainty
that it is observable for each input. The canonical form is important, since we will rely on it
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to study the construction of a nonlinear state observer. When the system is observable the
differentiation is almost normal everywhere.

FΣ : Rn → Rn

x→


h(x)

L f (h(x))
...

Ln−1
f (h(x))

 (6)

Assuming the new variables zi = Li−1
f (h(x)), i = 1, 2, . . . , n, the output function of the

original system is y = h(x) = s = z1, and so, the new variables are related to the old ones
according to the following relationships:

ż =


ż1
ż2
...

żn−1
żn

 =


z2
z3
...

zn−2
Φ(z)

 = F(z) (7)

where F(·) is the function of the canonical form. So, the state observer of the system, which
is written in canonical observability form, will be a system that is described as:

˙̂z = F(ẑ)− S−1CT(Cy− ẑ) (8)

with S being the solution of the Riccati equation in the steady state:

0 = −θS−ATS− SA + CTC (9)

with A : Rn → Rn, Ai,j = δi,j−1, C = [1, 0, 0, . . . , 0, 0]. We find the observer equations
based on the canonical observability form, and based on these going backwards, we find
the observer equations for the initial state variables. So, we construct an observer for a
nonlinear system. The system observer will converge [15] according to the relation:

‖x(t)− x̂(t)‖ = Ke−θt/3‖x0 − x̂0‖. (10)

The parameter θ affects the speed convergence of the observer. The larger the θ, the
faster the observer will converge.

In order to identify the system, it is enough to identify Φ. This function is generally
nonlinear, and there is no other information that could help with its identification. The
proposed approach, which is the main contribution of this work, is to represent Φ by using
the Laguerre polynomials. This is essentially the way of identification that will be presented
in the current study. Laguerre polynomials have been utilized in identification tasks in
order to capture the dynamic behavior of real systems [16]. Here, these polynomials are
exploited to model the first-order derivative of the n-th variable zn which is involved in
the canonical observability form in (7). Because these polynomials meet the orthogonality
properties, they can constitute the basis of a space where every function in that space can be
expressed as a linear combination of Laguerre polynomials, hence, Φ(z) = ∑n

i=1 ci‖Li(z)‖2.
The system identification lies in the estimation of appropriate ci. The estimations of these
coefficients could be achieved using the Extended Kalman filter. The Kalman filter will
essentially be the nonlinear state observer of the system, which will estimate the state vector
and, at the same time, the unknown parameters. Here, exploiting the polynomial Laguerre,
we approximate the initial Φ(z) with a new function which is still a polynomial, and thus,
differentiable in terms of the system states.
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We consider the simple Laguerre polynomials, which are the special case a = 0 of the
generalized Laguerre polynomials, L(0)

n (z) = Ln(z). The Laguerre polynomials constitute
the solution of the second-order differential (Laguerre) equation: [17]

zL′′n(z) + (1− z)L′n(z) + nLn(z) = 0, (11)

which are defined, based on Rodrigues’ formula, as Ln(z) = ez ∂n(zne−z)
∂nz . Assuming n = 3,

L0(z) = 1, L1(z) = −z + 1, L2(z) = 0.5z2 − 2z + 1. The orthonormal conditions of the
Laguerre polynomials (with respect to the weighting function e−z) are [18,19]:{ ∫ ∞

0 e−zLn(z)Lm(z) dz = 0, m 6= n∫ ∞
0 e−zLn(z)Lm(z) dz = (n!)2, m = n.

(12)

Given the proposed Φ, which is differentiable (i.e., it satisfies the Lipschitz condi-
tion [20]), we aim to design an observer whose error dynamic is asymptotically stable.

3.2. Bioreactor States Estimator Design

In this section, we present how the previous analysis can be applied for the estimation
of the state of bioreactors. For this purpose, the biological processes’ state-space model
is captured and then utilized for the estimators’ design. The process is assumed to be
continuous with a dilution rate, D and an input substrate concentration, s0. We notice here
that the D is a scalar.

More specifically, the biological reactor processes are described by the following
model [21–23], in the state space:

ṡ(t) = D(t)(s0 − s(t))− µ(s(t))x(t)
R

ẋ(t) = (µ(s(t))− D(t))x(t)
y(t) = s(t).

(13)

The variables s(t) and x(t) are the concentration of biomass (kg/m3) and substrate
(kg/m3), respectively, and µmax, R, and K are the characteristic parameters of the process.
The main assumption concerning the process is that cell growth is described by the Mond
rule, µ(s(t)) = µmax

s(t)
K+s(t) with µmax being the maximum specific growth rate and K being

a saturation constant. Additionally, the cell death is negligible as to the rate of the cell
growth. By the Monod kinetics rule [24], the equations are rewritten as:

ṡ(t) = D(s0 − s(t))− µmax
R

s(t)x(t)
K+s(t)

ẋ(t) = (µmax
s(t)

K+s(t) − D)x(t)
y(t) = s(t)

(14)

We assume that there is no biomass in the feed stream; thus, x0 = x(0) = 0.
In [25], necessary and sufficient conditions have been derived for the observability

of models of biochemical processes. Additionally, Hammouri et al., in [26], proposed a
practical method for constructing an observer based on the immersion of autonomous
nonlinear systems into a nonlinear form of observability. A similar process will be followed
to build the suggested approach. More specifically, to transit into the new coordinates
system, the following transformation is adopted: z1 = h(x) = s(t)

z2 = L f (h(x)) = ṡ(t) = D
(

s0 − s(t)
)
− µmax

R
s(t)

K+s(t) x(t)
(15)

where the variables z1, z2 constitute the new states of the system. The relationship between
the initial and new states are as follows:
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{
s(t) = z1

x(t) = −R K+z1
µ̄ (z2 + Dz1 − Dz10)

(16)

with z10 = s0.
To represent the initial system in the state space “Canonical Form”, we exploit

Equation (13), from which we derive the first-order time derivatives of z1, z2. Hence,
the acquired system is written as: 

ż1 = z2
ż2 = Φ(z1, z2)
y = z1

(17)

In (17), Φ(z1, z2) =
Kz2+µ̄z2

1+Dz1(K+z1)
(K+z1)z1

(z2 + Dz1 − Dz10) is the non-linear full Lips-

chitzian function in R2. Therefore, the system is uniformly observable (i.e., for each input
z10, or equivalently, s0) and the initial state may be reconstructed using the input and
measurement data. It is obvious that the system in (15) is observable when:

rank(O) = rank

( ∂h(x))
∂s

∂h(x))
∂x

∂L f (h(x))
∂s

∂L f (h(x))
∂x

) = rank

([
1 0
∂ṡ
∂s − µmaxs

R(K+s)

])
= 2, (18)

which is satisfied if det(O) = µmaxs
R(K+s) 6= 0. To design the observer, we exploited (6) and (7),

where the steady-state solution of the Riccati equation [15] is S =

[
1
θ − 1

θ2

− 1
θ2

2
θ3

]
, which

holds that S = ST and S−1 =

[
2θ θ2

θ2 θ3

]
, with A =

[
0 1
0 0

]
, C =

[
1 0

]
. Then, the observer

is captured as: {
˙̂z1 = ẑ2 − 2θ(ẑ1 − z1)
˙̂z2 = Φ(z1, z2)− θ2(ẑ1 − z1)

(19)

In order to design the proposed observer, we represent Φ(z1, z2) as:

Φ(z1, z2) = c0‖L0(z)‖2 + c1L1(z)‖2

= c0
√

2 + c1

√
(1− z1)2 + (1− z2)2,

(20)

where L0(z) =
[
1 1

]T
, L1(z) =

[
1− z1 1− z2

]T
.

Going backwards, the observer equations for the state variables of the initial system
will be:

˙̂s(t) = D
(

s0 − ŝ(t)
)
− µmax

R
ŝ(t)

K+ŝ(t) x̂(t)− 2θ
(

ŝ(t)− s(t)
)

˙̂x(t) = − R
µmax

K+ŝ(t)
ŝ(t)

((
µmax

R
ŝ(t)

K+ŝ(t) + D
)(

D(s0 − ŝ(t))− µmax
R

ŝ(t)
K+ŝ(t) x̂(t)

)
+

c0
√

2 + c1

√(
1− ŝ(t)

)2
+
(

1− D
(

s0 − ŝ(t)
)
+ µmax

R
ŝ(t)

K+ŝ(t) x̂(t)
)2

−θ2
(

ŝ(t)− s(t)
))

(21)
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At this point, it should be noticed that, from (8), the observer of (14) (without the
application of the canonical form) is formulated as: ˙̂s(t) = D(s0 − ŝ(t))− µmax

R
ŝ(t)x̂(t)
K+ŝ(t) − 2θ(ŝ(t)− s(t))

˙̂x(t) = (µmax
ŝ(t)

K+ŝ(t) − D)x̂(t)− θ2(ŝ(t)− s(t))
(22)

The observer’s models in (21) and (22) will be evaluated in the experiments.

4. Results and Discussion

The experiment environment has the following characteristics: An Intel(R) Core(TM)
i7-9750 H CPU @ 2.60 GHz 2.59 GHz 16 GB memory, Windows 10 Home, 64-bit operating
system, ×64-based processor, and MATLAB 2022. In this section, we attempt to illustrate
the reconstruction ability of the proposed observer in a realistic scenario. In order to
illustrate the performance of the proposed observer–estimator, we present the results of
the process Models (14) and (21). The simulation of the observers’ models was performed
under the following parameters settings: x(0) = 0g/l, s(0) = 12.0g/l, µmax = 0.2, R = 0.3.
The experiments aim to show the impact of parameter θ and the unknown parameters
c0, c1 on the estimate of the initial state of the bioreactor process. Notation O1 refers to the
observer of (14), while O2 relates to the proposed observer, which is captured by (21).

In Figure 1, the performance of O1 is illustrated for two different values of the conver-
gence parameter θ. We see that when the observer is designed based on the state–space
model captured in (10), the initial state of the system is not successfully estimated. This
behavior relates to the fact that the observability is not satisfied.
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Figure 1. Observer 1 behavior for θ = {5, 15}, x(0) =

[
8

0.5

]
.

To tackle this weakness, we exploit the canonical observability form to design a new
observer system for which the observability holds. Hence, the results in Figures 2–5
demonstrate the performance of the proposed observer whose behavior is represented
by (21). The experiment outcomes reveal the capability of the suggested observer to track
the initial state of the system whose speed convergence increases with the increase in θ,
verifying the role of this parameter, as indicated by (10). Moreover, the performance of
the suggested observer is evaluated by selecting different pairs (c0, c1) of the unknown
parameters involved in the new representation of function Φ(·).

The initial state reconstruction is evaluated, assuming a noiseless scenario under
various selections for the unknowns’ parameters. The results verify that the recovery of the
initial state is achieved with satisfactory accuracy. As illustrated in Figures 4 and 5, when
the two unknown parameters are configured to (c0, c1) = (1, 1) or (0, 1), the initial state of
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s attained the measured output y = s, although for the problem solution, we consider that

the system starts from a random state, x(0) =

[
8

0.5

]
.
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.
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Figure 5. Observer behavior for θ = {15}, c0 = {0, 1}, c1 = 1, x(0) =

[
8

0.5

]
.

The output measures only the first state, s(t), which, as we see, may underestimate
the unmeasured state, x(t), as well as the two unknown parameters, c0 and c1, which
participate in the modeling of Φ(·). The lower (but still acceptable) estimation accuracy
of these quantities is justified by their correlation that prevents their perfect identification.
The methodology achieves good reconstruction without the use of any prior knowledge.

5. Conclusions

This paper focuses on nonlinear observability definitions with an emphasis on geomet-
rical and algebraic tools. Moreover, it presents a methodology for the transformation of a
nonlinear system into Observability Canonical Form, which facilitates the establishment of
an observer that is suitable for the estimation of the initial state of the system. In exploiting
the new coordinates system, it suffices to know the first state s(t) (which should also be
differentiable) of the system in order to effectively estimate its states. From the evaluation
of the current methodology, we conclude that the system representation in canonical form
and the modeling of the second state of the system as a linear combination of the Laguerre
polynomials could lead to the identification of the initial state of the system, even if we
have partial knowledge of its dynamics.

Moreover, we observe that in the steady-state, the first state s is observable by the
output. Additionally, as the parameter θ increases, the system converges more quickly to
the steady-state, as dictated by theory (10). As for the first state, the absolute deviation of
the estimated from the true initial state is on the order of 10−2 for θ = 15, and assuming
c0 = {0, 1}, c1 = 1. However, considering c0 = c1 6= 1, c0 = −c1, c1 = −c0 , the error is
on the order of 10−1. Similar promising behavior is observed for the second state of the
system, with an error on the order of 10−1, which seems to decrease and attain a value that
is more close to zero for θ = 15 (and even higher). Finally, we see that the performance
difference in the estimate of s, x is one order of magnitude.

In future work, we aim to study other basis functions that are suitable for the modeling
of the unknown dynamics Φ(·) of the system in the canonical form, and evaluate their
capability under the same objective. Finally, a challenging direction would be to experiment
with other case studies such as the HIV and glucose dynamics models, in order to design a
proper control algorithm for a future closed-loop therapy system.
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