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Abstract: As a common load-bearing component, mining wire rope produces different types of
damage during a long period of operation, especially in the case of damage inside the wire rope,
which cannot be identified by the naked eye, and it is difficult to accurately detect such damage
using the present technology. In this study we designed a non-destructive testing device based on
leakage magnetism, which can effectively detect the internal defects of wire rope damage, and carried
out simulation analysis to lay a theoretical foundation for the subsequent experiments. To address
the noise reduction problem in the design process, a variational mode decomposition–adaptive
wavelet thresholding noise reduction method is proposed, which can improve the signal-to-noise
ratio and also calculate the wavelet energy entropy in the reconstructed signal to construct multi-
dimensional feature vectors. For the quantitative identification of system damage, a particle swarm
optimization–support vector machine algorithm is proposed. Moreover, based on the signal following
the noise reduction step, seven different feature vectors, namely, the waveform area, peak value,
peak-valley value, wavelet energy entropy classification, and identification of internal and external
damage defects, have been determined. The results show that the device can be used to effectively
identify internal damage defects. In addition, the comparative analysis showed that the algorithm
can reduce the system noise and effectively identify internal and external damage defects with a
certain superiority.

Keywords: internal wire rope damage; PSO-SVM algorithm; VMD-AWT noise reduction algorithm;
wavelet energy entropy; non-destructive wire rope testing device

1. Introduction

Wire rope is widely used in mining operations due to its high strength, light weight,
and good elasticity [1,2]. However, the degree of damage sustained by the wire rope
increases considerably with the increase in the usage time and due to the increase in the
long-term impact of factors such as tensile bending, alternating loads, and the environment.
Furthermore, this damage is inevitable if it is not addressed in time, and it can adversely
affect the productivity of mining operations and threaten the safety of both the personnel
and the equipment. Coal mine safety regulations have been established to ensure the
productivity of mining operations; according to these regulations, mining hoist ropes must
be tested every day and their scrap period is two years. If the degree of damage does not
exceed the relevant provisions, their usage can be extended by no more than one year.

Various methods have been proposed for the non-destructive testing of wire ropes.
Most of the current studies are focused on methods such as ultrasonic detection [3], electro-
magnetic detection [4], X-ray detection, and magnetostriction [5], as well as eddy current,
current, and vibration detection [6,7]. The electromagnetic detection method is the most
widely implemented method, owing to its demonstrated reliability and practicality. The
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basic principle of the electromagnetic-based leakage detection method used in this study
is shown in Figure 1. The permanent magnet magnetizes the wire rope to saturation,
forming a closed magnetic circuit among the wire rope, magnet, and yoke. In the presence
of a damage, the original magnetic induction lines through the wire rope form a closed
magnetic circuit in the air and generate a leakage magnetic field.
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When using the electromagnetic detection method to detect leakage, the wire rope
detection signal is mixed with a variety of sources of interference noise, including the
spiral structure of the wire rope, which produces periodic changes in the strand noise; the
detection of the magnetic field in an environment of complex and variable high-frequency
low-amplitude noise; the shaking of the wire rope during the operation process, producing
low -frequency random noise; electromagnetic interference issuing from the electromagnetic
detection circuit; detection line voltage jitter; drift; and other sources of noise, all of
which affect the accurate judgment of the leakage signal. To address the aforementioned
challenges, Peng, F. et al. [8] applied a multi-stage filtering method based on EEMD and
optimal wavelets in three-dimensional UME signal processing to effectively suppress noise
interference. Zhang, J. et al. [9] proposed a new filtering system consisting of the Hilbert
yellow transform and compressive-aware wavelet filtering to denoise strand and high-
frequency noises. Furthermore, Chun et al. [10] designed a filter based on the multi-stage
wavelet analysis of a time-domain-reflection method. Moreover, they effectively eliminated
the wild-point noise and industrial frequency interference noise. The abovementioned
wire rope damage signal has been studied extensively. However, because the effect of
wavelet packet decomposition depends on the choice of the wavelet basis function and the
number of decomposition layers, it is not an adaptive signal decomposition method. In
recent years, EMD has been widely used in mechanical fault diagnosis. However, owing to
the existence of endpoint effects and modal confusion, this algorithm needs to be further
studied. To address the limitations of EMD and WT, Dragomiretskiy et al. [11] proposed a
new adaptive time-frequency analysis method called VMD in 2014. Compared with EMD
and AWT, VMD can suppress interference signals, prevent the loss of useful information,
and provide a high-quality data source for subsequent feature extraction. Moreover, it has
high decomposition accuracy and operational efficiency and can effectively suppress the
overlap mode in a signal decomposition process.

Wire rope detection is challenging because of signal noise reduction, as well as the
difficulties involved in achieving a quantitative detection process following noise reduction,
owing to the complex structure, shape, and location of the wire rope, which itself produces
different types of defects. To solve this problem, some scholars have conducted represen-
tative studies. Li, J. et al. designed a nondestructive wire rope inspection device which
used double detection plates to collect MFL data, improved the image resolution based
on a super-resolution algorithm, and finally used the AdaBoost classifier to classify the
defect images [12]. Zhang, J. designed a device based on a residual magnetic field device,
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proposing a novel filtering system to improve the signal-to-noise ratio, and at the same
time used digital image processing techniques to achieve the quantitative recognition of
defect images [13,14]. Tan, X. proposed a novel test structure with a huge array of mag-
netoresistive sensors to effectively identify multiple types of damage and finally applied
radial basis neural networks for the quantitative recognition of magnetic images [15]. W
Sharatchandra Singh et al. designed an ultrasonic sensor to detect wire rope damage signals
by means of ultrasonic detection method and conducted quantitative recognition research
using a BP neural network [16]. Artificial neural networks and related algorithms have
contributed significantly to the field of pattern recognition. However, their recognition
performance is significantly influenced by several parameters and can easily fall into a local
minima in the optimization process. However, SVMs have few adjustable parameters and
stable operation [17]. Thus, with fewer training samples, higher diagnostic accuracy can be
achieved. Therefore, in this study we used SVMs based on PSO for the identification of
internal and external wire rope damages.

In summary, it is difficult to detect the internal damage of wire ropes using the existing
flaw detection equipment. Therefore, we have designed a wire rope detection device based
on leakage magnetism. The detection device is implemented using permanent magnets
to magnetize the wire rope, axial, and radial magnetization sensors in order to obtain the
wire rope defect information. At the same time, the mapping relationship between internal
damage and external damage was analyzed using the finite element method to prepare for
the experiment. The VMD-AWT noise reduction method is used to reduce the noise of the
original signal and calculate the wavelet information entropy based on the reconstructed
signal to construct a multidimensional feature vector. Finally, the PSO-SVM algorithm is
proposed to effectively and quantitatively classify and identify the internal and external
defects of the wire rope using a multi-dimensional feature vector dataset.

The rest of this paper is organized as follows. In Section 2, we introduce the principles
of VMD–AWT, wavelet energy entropy, and other methods. In Section 3, we introduce
the principles of quantitative models (SVM and PSO–SVM). In Section 4, we present
the simulation analysis carried out prior to the experiments. In Section 5, we introduce
the experimental setup and experimental design process. In Section 6, we present the
noise reduction of the experimental data via VMD-AWT and verify the signal-to-noise
ratio by comparing it with others. In Section 7, we perform feature extraction and PSO-
SVM identification and compare the results with those of various methods to verify the
superiority of the algorithms in this study. Finally, the conclusions are summarized.

2. Noise Reduction and Recognition Principles
2.1. VMD-AWT Adaptive Noise Reduction

The proposed method uses the VMD-AWT approach to pre-process the wire rope
experimental sampling data and employs the denoising principle of the VMD-AWT algo-
rithm to decompose the original detection signal into k endowment modal components
with different center frequencies and limited bandwidths. This is performed to achieve
the correlation analysis of the decomposed IMF with the original signal and to perform
adaptive wavelet threshold noise reduction on each IMF based on the correlation analysis
results. Finally, the IMF components with adaptive wavelet threshold noise reductions are
reconstructed to obtain notable wire rope damage characteristics.

The variational modal decomposition can be primarily divided into the construction
of the variational problem and its solution; the construction of the variational problem is
expressed as follows:

A constraint model is developed to minimize the sum of the bandwidths of the
components in the VMD algorithm. The variational solution problem is expressed as min

{uk}{ωk}

{
∑k‖∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
s.t. ∑k uk = f

(1)
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This constrained problem must be converted to an unconstrained problem to obtain
the optimal solution of Equation (1), and this can be achieved by extending the Lagrange
function as follows:

L({uk}, {ωk}, λ) = α ∑
k

∥∥∥∥∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−∑
k

uk(t)

∥∥∥∥∥
2

2

+ 〈λ(t), f (t)−∑
k

uk(t)〉 (2)

Here, α represents the quadratic term penalty factor; λ represents the Lagrange
multiplier; the alternating direction multiplier algorithm is used to continuously update
each IMF’s un+1

k , and wn+1
k , and λn+a; and the “saddle point” of the Lagrange expression

is calculated.
Subsequently, the solution of the quadratic optimization problem to be solved is

obtained as

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

´ ∞
0 ω|ûk(ω)|2dω´ ∞

0 |ûk(ω)|2dω
(4)

λn+1 = λn + τ
(

x−∑k un+1
k

)
(5)

Here, n denotes the number of iterations.

∑k
k=1

∣∣∣un+1
k − un

k

∣∣∣2
2∣∣un

k

∣∣2
2

< ε (6)

Here, ε denotes the discriminatory accuracy.
A soft threshold approach is adopted here to perform noise reduction on the modal

components following decomposition via the variational modal decomposition algorithm.
The specific process is as follows.

A discrete wavelet transform transforms the function f (t) under the wavelet base. Its
transform expression is given as

Tf (α, τ) = [ f (t), ψα,τ(t)] =
1√
α

ˆ +∞

−∞
f (t)ψ∗(

t− τ

α
)dt (7)

where ψ(t) is the wavelet base, α is the expansion, and τ is the translation. WTf (α, τ)
represents the wavelet coefficients under the wavelet transform. The inverse transform can
be expressed as

(t) =
1
cφ

ˆ +∞

0

da
α2

ˆ +∞

−∞
WTf (u, τ)

1√
α

ψ

(
t− τ

a

)
dt (8)

Soft thresholding involves setting the smaller wavelet coefficients to zero and shrinking
the larger coefficients toward the zero transform as follows:

Ŵj,k =

sgn
(

Wj,k

)
∗
(∣∣∣Wj,k − Thr

∣∣∣) ∣∣∣Wj,k

∣∣∣ ≥ Thr

0
∣∣∣Wj,k

∣∣∣ < Thr
(9)

where Wj,k denotes the wavelet coefficient and Thr denotes the wavelet threshold.
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2.2. Wavelet Energy Entropy

The wavelet energy entropy consists of information entropy and the wavelet transform.
The accuracy of the recognition results is further improved by the information entropy
processing of the energy spectrum of the discrete wavelet transform subsignals.

Let Ejd be the wavelet energy of the high-frequency component of the signal at scale j.
It is expressed as

Ejd = ∑t

∣∣∣xjd(t)
∣∣∣2 j = 1, 2, · · · , m. (10)

The wavelet energy of the high-frequency component at each scale is summed. The
energy set is given as

Ed = {E1d, E2d, · · · , Emd} (11)

To study the transformation law of the signal think x(t) with time, a sliding window
of width ω and a sliding factor δ is added to the jth subsignal; at this time, the intercepted
signal is xjd(lδ), xjd(ω + lδ), l = 1, 2, · · · , L, where L is the number of sliding windows.

In a certain sliding window, the total signal energy E is equal to the sum of the
component energies Ejd at each scale. Let Pj = Ejd/E; then, the wavelet energy entropy in
the lth sliding window is

HWEE,l(Ed) = −∑j pjlnpj (12)

Equation (12) reflects the characteristics of the signal energy distribution within a
sliding window of the wavelet coefficients. Using the sliding window, the wavelet energy
entropy variation pattern with time can be obtained.

3. Quantitative Analysis Model Construction

Artificial intelligence models are the most widely used models to establish the correla-
tion between the internal damage, external damage, and feature quantities of wire ropes,
using a large number of samples for learning and training. The increased use of support
vector machines can be attributed to the structural risk minimization design. Further-
more, they significantly improve the classification performance, prevent over-learning, and
present good generalization capability. Therefore, the support vector machine classification
model was implemented for the identification of internal and external damage signals of
wire ropes.

3.1. Support Vector Machine Principle

Support vector machines are commonly employed for classification and regression
prediction. They are characterized by their ability to map the sample space to a higher-
dimensional feature space through non-linear mapping. This allows them to determine
the best separated hyperplane, to ensure that the sum of the distances from the two
types of samples to the separated hyperplane are maximized, and to yield a good classifi-
cation performance.

The algorithm steps are as follows:

(1) For a given training set, T = {(X1, Y1), (X1, Y2), · · · , (Xn, Yn)} the computation is
performed to obtain the best separated hyperplane, and the original classification
problem is equated to an optimization problem that is to be solved, which can be
expressed as: 

minJ(ω, b, ξi) =
1
2 ωTω + C ∑n

i=1 ξi
s.t.Yi

[
ωT ı (Xi)− b

]
+ ξi < 1

ξi < 0, i = 1, 2, · · · , n
(13)

where Xi denotes the input vector, Yi denotes the corresponding label data,ω denotes
the vector of separated hyperplane weights, b denotes the amount of deviation, and
ξi denotes the non-negative relaxation factor. C represents the penalty factor andı
(Xi) represents a non-linear mapping function which maps the sample data to a
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high-dimensional feature space to avoid the problem of the linear indistinguishability
of the data.

(2) The Lagrangian functions constructed for the aforementioned equations based on the
KKT conditions forω and b are processed by taking partial derivatives and setting
them to zero. Consequently, the optimal discriminant function can be solved, which
is denoted as:

Y = sgn
{

∑n
i=1 ∝i Yi

[
(X)T


(Xi) + b

]}
(14)

where ∝i (i = 1, 2, · · · , n) represents the Lagrangian multiplier.
(3) The kernel functions for SVM K

(
Xi, Xj

)
=
ı
(Xi)

T ı (Xj
)

are then defined. The com-
monly used kernel functions for SVM include linear kernel functions, polynomial
functions, radial basis functions (RBF), and sigmoid kernel functions. The RBF is
selected as the kernel function of SVM since the RBF kernel contains fewer parame-
ters, has relatively less of an impact on the complexity of the prediction model, and
has a wider convergence domain and stronger generalization ability; it is expressed
as follows:

K
(
Xi, Xj

)
= exp

(
−γ‖Xi − Xj‖2

)
(15)

where γ denotes the kernel function parameter.

3.2. PSO-Based Optimization of SVM Parameters

For the SVM classification model, which incorporates RBF as the kernel function, the
error penalty factor, C, and the kernel function parameters, γ, are significant parameters
which directly affect the recognition accuracy. The values of C and γ and the kernel function
parameters must be optimized to improve the recognition rate of internal and external
damages in wire ropes.

PSO displays fast convergence, a simple search mechanism, and good robustness
in dynamic objective identification, which can prevent it from falling into local optimal
solutions. Therefore, PSO was selected to update the parameters.

In the PSO algorithm, m particles are randomly generated to form the initial popula-
tion, and each particle represents a feasible solution to the problem, where n is the number
of dimensions in the solution space. The corresponding fitness f iti of each particle is the
reciprocal of the sum of the squares of the errors, calculated based on an SVM multimetric
mixture model. This can be expressed as

f iti =
1

∑n
i=1
(
Yi − Ŷi

)2 (16)

where Yi is the damage test value and Ŷi is the value calculated using the SVM model.
The particle updates its position and velocity via individual and population extremes

and determines the global optimal solution by following the current searched optimal
value, which is expressed as follows:

vs,t+1= ηvs,t+c1r1(us,best − us,t) + c2r2(ubest − us,t) (17)

us,t+1 = us,t+vs,t+1 (18)

where us denotes the position of the Sth particle in the search space, vs denotes the velocity
of the Sth particle, and t denotes the current number of updates. Furthermore, η denotes
the inertia weight; c1 and c2 represent the acceleration factors; r1 and r2 represent random
numbers between 0 and 1; us,best denotes the current optimal position searched for by the
Sth particle; and ubest denotes the current global optimal position searched for.

The parameter optimization procedures of the PSO-SVM prediction model are
as follows:

(1) Normalize the data required for PSO-SVM training and prediction
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(2) Set the parameter values in the PSO algorithm and SVM model.
(3) Initialize the particle population, calculate the corresponding fitness value of the

particle according to Equation (16), and update its speed and position according
to Equation (17).

(4) During the process of continuous iteration in the search space, if the algorithm ter-
mination condition is satisfied, the optimal parameter is output; otherwise, step (3)
is repeated.

(5) The optimal parameters C and γ are used to train the SVM and build the PSO-SVM
model to obtain the recognition results.

In summary, the identification process of the internal and external damages of a wire
rope is shown in Figure 2.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 21 
 

 
Figure 2. PSO-SVM classification process. 

4. Simulation of Internal and External Damage Thresholds 
The damage in a wire rope under all movement conditions is simulated using dy-

namic simulation. This simulation helps in the process of obtaining a large amount of 
continuous damage data, which can be further used to calculate the theoretical threshold 
value of the wire rope under different damage conditions and provide the theoretical basis 
for further experiments. 

Maxwell magnetic field simulation software was used to simulate the magnetic field 
of the wire rope testing model. The diameter of the wire rope was set to 30 mm. The sim-
ulated wire rope was a six-strand simulation model. The middle of the six-stranded wire 
rope interior contained the damage defect. The magnetic vector of the left magnet of the 
model diverged in the outward direction, and the magnetic vector of the right magnet 
contracted in the inward direction. This ensured that the wire rope formed a closed loop 
with the left and right magnets. The permanent magnet was a NdFeB magnet with a max-
imum magnetic energy product of about 380 kA/mଷ; the gag bit was composed of pure 
industrial iron. We set the maximum cell length to 1 mm, the maximum operation step to 
10, the permissible error rate to 1%, and the residual value for non-linearity to 0.0001. The 
wire rope moved as a whole along the horizontal direction from left to right, from y = −40 
mm to y = 40 mm; the step size was set to 0.1 mm. Figure 3 illustrates the theoretical sim-
ulation model. 

Figure 2. PSO-SVM classification process.

4. Simulation of Internal and External Damage Thresholds

The damage in a wire rope under all movement conditions is simulated using dynamic
simulation. This simulation helps in the process of obtaining a large amount of continuous
damage data, which can be further used to calculate the theoretical threshold value of
the wire rope under different damage conditions and provide the theoretical basis for
further experiments.

Maxwell magnetic field simulation software was used to simulate the magnetic field
of the wire rope testing model. The diameter of the wire rope was set to 30 mm. The
simulated wire rope was a six-strand simulation model. The middle of the six-stranded
wire rope interior contained the damage defect. The magnetic vector of the left magnet of
the model diverged in the outward direction, and the magnetic vector of the right magnet
contracted in the inward direction. This ensured that the wire rope formed a closed loop
with the left and right magnets. The permanent magnet was a NdFeB magnet with a
maximum magnetic energy product of about 380 kA/m3; the gag bit was composed of
pure industrial iron. We set the maximum cell length to 1 mm, the maximum operation
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step to 10, the permissible error rate to 1%, and the residual value for non-linearity to
0.0001. The wire rope moved as a whole along the horizontal direction from left to right,
from y = −40 mm to y = 40 mm; the step size was set to 0.1 mm. Figure 3 illustrates the
theoretical simulation model.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 21 
 

 

Figure 3. Theoretical imulation model. (a) Wire rope model, (b) simulated magnetic line distribution 

model. 

Analysis of Simulation Results 

Figure 4 presents the simulation results. The different widths, lengths, and lift-off 

values (the distance between the sensor and the wire rope), the value of the wire rope’s 

internal damage defects, the defect type, and the correlations between these factors have 

been illustrated in the figure based on the principle of single variables. 

 

Figure 4. Simulation results of internal defects in wire ropes and (a) different widths, (b) different 

depths, and (c) different lift-off values. 

Figure 4 shows that as both the wire rope defect type and the sensor distance from 

the location of the wire rope were different, the corresponding magnetic force line distri-

bution state was different. This causes a defect length and a defect depth, and the lift-off 

value of the formation of the magnetic field strength is different. Notably, the magnetic 

flux density value of the defect magnetic signal increases with an increasing defect length. 

However, it tends to be stable when the defect length increases to a certain range. The 

defects sensors 

Distribution of 

magnetic lines 

on the left 

Distribution of 

magnetic lines 

on the right 

(a) 

(b) 

Defect detection location 

Simulation of the overall 

model 

Figure 3. Theoretical imulation model. (a) Wire rope model, (b) simulated magnetic line distribu-
tion model.

Analysis of Simulation Results

Figure 4 presents the simulation results. The different widths, lengths, and lift-off
values (the distance between the sensor and the wire rope), the value of the wire rope’s
internal damage defects, the defect type, and the correlations between these factors have
been illustrated in the figure based on the principle of single variables.
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Figure 4. Simulation results of internal defects in wire ropes and (a) different widths, (b) different
depths, and (c) different lift-off values.

Figure 4 shows that as both the wire rope defect type and the sensor distance from the
location of the wire rope were different, the corresponding magnetic force line distribution
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state was different. This causes a defect length and a defect depth, and the lift-off value of
the formation of the magnetic field strength is different. Notably, the magnetic flux density
value of the defect magnetic signal increases with an increasing defect length. However, it
tends to be stable when the defect length increases to a certain range. The magnetic flux
density value of the defect’s magnetic signal increases with the defect depth, and the trend
is linear. The flux density of the defect signal decreases with an increase in the lift-off value.

We produced results for 20 external defects and extracted the peak and valley values
of the internal and external defects for comparison to determine the mapping correlation
between the internal defects and external defects. Figure 5 presents the comparison results.
The average value of the peak and valley values of the internal defects for different lengths
of the wire rope was 0.0748 T. The average value of the peak and valley values of the
external defects for different lengths of the wire rope was 0.1024 T. The relative difference
between the peak and valley of the internal and external defects of different depths of
the wire rope was approximately 26.95%. The internal defects of different depths of the
average value was 0.12 T. The average value of the peaks and valleys of the external defects
of the different depths was 0.169 T. The relative difference between the peaks and valleys
of the internal and external defects of different depths of the wire rope was approximately
29%. The average value of the peaks and valleys of the internal defects was 0.03702 T. The
average value of the peaks and valleys of the external defects was 0.0506 T, and the relative
difference between these parameters was approximately 26.8%.
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Based on what has been discussed above, a mapping correlation could be obtained
between the different damages through the comparison of the internal and external defects
of the wire rope’s peak and valley values; the two defects could be identified theoretically
to provide a theoretical basis for the experimental design validation.

5. Experimental Verification
5.1. Experimental Platform Design

To verify the effectiveness of the proposed algorithm, in this study we designed an
online wire rope inspection platform for experimental verification. The system comprised
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a magnetic leakage nondestructive testing device, an inspection circuit, a data acquisition
module, and an overall support for the experiment. Figure 6 illustrates the overall structure.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 21 
 

 
Figure 6. Online testing platform. 

5.2. Flaw Detector Prototype Design 
The overall prototype of the leakage magnetic flaw detector was developed based on 

the available theoretical information, as shown in Figure 7. A modified Hall sensor was 
used for damage signal collection, and the collected signal was extracted in the acquisition 
system after it had passed through the signal acquisition box. The radial sensor was placed 
flat and evenly around the wire rope to obtain the radial magnetic field; this can effectively 
suppress the background magnetic field. The axial sensor collected the axial magnetic 
field signal, which was used in combination with the radial sensor. This improved the 
detection of wire rope defects along multiple directions and increased the accuracy. Con-
sequently, the sensor presented high accuracy and low energy consumption. 

 
Figure 7. Wire rope inspection system. (a) Flaw detector, (b) internal structure of the detector, (c) 
overall system of signal acquisition, (d) radial sensor, (e) axial sensor. 

5.3. Experimental Design 
The working speed of the wire rope in the experiments was set to 1 m/s and the room 

temperature was set to 25 °C. The sampling was performed using an encoder, the param-
eters of which were set to 2000 p/r (p-pulse, r-ring). 

The wire rope was selected for the experiment to test the magnetic field response at 
different defect lengths, different defect depths, and different lift-off values. The defect 
lengths were set to 3, 5, 7, 9, 11, 13, and 15 mm, and the damage cross-section was 10 mm. 
The defect depths were based on broken wires of 5, 10, 15, 20, 25, 30, and 35 mm, and the 
defect length was 15 mm. The different lift-off values were 2, 4, 6, 8, 10, and 12 mm, and 
the defect depth and defect length were 10 mm and 15 mm, respectively. 

Figure 6. Online testing platform.

5.2. Flaw Detector Prototype Design

The overall prototype of the leakage magnetic flaw detector was developed based on
the available theoretical information, as shown in Figure 7. A modified Hall sensor was
used for damage signal collection, and the collected signal was extracted in the acquisition
system after it had passed through the signal acquisition box. The radial sensor was placed
flat and evenly around the wire rope to obtain the radial magnetic field; this can effectively
suppress the background magnetic field. The axial sensor collected the axial magnetic field
signal, which was used in combination with the radial sensor. This improved the detection
of wire rope defects along multiple directions and increased the accuracy. Consequently,
the sensor presented high accuracy and low energy consumption.
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5.3. Experimental Design

The working speed of the wire rope in the experiments was set to 1 m/s and the
room temperature was set to 25 ◦C. The sampling was performed using an encoder, the
parameters of which were set to 2000 p/r (p-pulse, r-ring).

The wire rope was selected for the experiment to test the magnetic field response at
different defect lengths, different defect depths, and different lift-off values. The defect
lengths were set to 3, 5, 7, 9, 11, 13, and 15 mm, and the damage cross-section was 10 mm.
The defect depths were based on broken wires of 5, 10, 15, 20, 25, 30, and 35 mm, and the
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defect length was 15 mm. The different lift-off values were 2, 4, 6, 8, 10, and 12 mm, and
the defect depth and defect length were 10 mm and 15 mm, respectively.

External damage defects of the wire rope were introduced to verify the difference in
signals between the internal defects and external defects of the wire rope. The background
of the experimental design of the external defects of the wire rope was consistent with that
of the experiments of the internal defects of the wire rope, wherein 14 groups of internal
defects and external defects of wire rope were produced, as shown in Figure 8.
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6. Data Noise Reduction Processing

The experimental process with the use of the signal acquisition system to evaluate
the internal damage of the wire rope is shown in Figure 9, where (a) indicates the internal
overall defect signal of the wire rope, (b) the interception of the damage of a 15 mm internal
defect signal, and (c) the interception of the internal defect-free signal. The external damage
of the wire rope is shown in Figure 10, where (a) indicates the external overall defect signal
of the wire rope, (b) the interception of the damage of a 15 mm external defect signal, and
(c) the interception of the external defect-free signal. These figures show that the wire rope
external defect signal was significantly different from the internal damage defect signal.
Similarly, Figures 9c and 10c show that the levels of signal noise for wire rope internal
and external damage were considerable, were not conducive to the extraction of feature
vectors, and affected the quantitative analysis of recognition. Therefore, the VMD-AWT
algorithm for noise reduction was used to ensure the recognition rate of the internal and
external damages.
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Figure 9. Internal defect of a wire rope: (a) the internal overall defect signal of the wire rope, (b) the
interception of the damage from a 15 mm internal defect signal, and (c) the interception of an internal
defect-free signal.
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6.1. VMD-AWT Algorithm to Decompose the Signal for Noise Reduction

The VMD-AWT algorithm was used for signal noise reduction processing. The VMD
algorithm decomposes the signal by pre-determining the number of modes to be decom-
posed, K. Following the calculation, K lies in the range of 6–11 and is determined by
observing that the center frequency of each mode generates modal blending, following
the VMD process. Table 1 presents the center frequencies of the modal components under
different values of the number of modes, K, after the damage signal was decomposed
by VMD.

Table 1. Center frequencies corresponding to different K values.

K Center Frequencies

6 1.3 × 10−10 0.3527 0.668 0.9622 1.3366 1.7781
7 1.3 × 10−10 0.3449 0.6537 0.9274 1.2252 1.5048 1.7858
8 1.3 × 10−10 0.2200 0.4522 0.6944 0.9480 1.2311 1.5092 1.7862
9 1.3 × 10−10 0.2148 0.4394 0.6807 0.9301 1.1952 1.4007 1.6140 1.7969

10 1.3 × 10−10 0.2026 0.4092 0.6344 0.8138 0.9393 1.2153 1.4154 1.6212 1.7980
11 1.3 × 10−10 0.1951 0.3145 0.5013 0.6694 0.8420 1.0222 1.2255 1.4226 1.6245 1.7984

Table 1 shows that the center frequencies were close together when K = 10 and that
an over-decomposition occurred; thus, a value of 9 was chosen for K. For the sake of
simplicity, the subsequent analysis in this paper is focused only on the wire rope external
length damage signal in order to demonstrate the display effect of the method. Figure 11
illustrates the wire rope damage signal obtained via VMD decomposition of the nine IMF
components and their corresponding spectra, as well as the 10th residual for the VMD
decomposition of the noise signal waveform and its corresponding spectrum.
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It can be observed from the IMF component maps obtained via VMD decomposition
and their corresponding spectrograms that the VMD algorithm can decompose the signal
into multiple modal components with different center frequencies of finite bandwidth.

The noise in the signal was mostly observed at higher frequencies. The principle
of noise reduction in the VMD algorithm involves decomposing the signal into multiple
finite frequency bandwidths using different frequency bandwidths, and directly rejecting
the decomposed high-frequency components to achieve noise reduction. However, since
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the decomposed high-frequency IMF was mixed with valid signals, directly rejecting the
high-frequency components mixed with valid signals would result in the loss of effective
information. Therefore, correlation contrast analysis was employed, and adaptive wavelet
threshold noise reduction was then adopted for the IMF components of different frequen-
cies, based on the correlation contrast analysis results, which eliminated most of the noise
components while retaining the effective signal information.

The time-domain waveform obtained following the wavelet noise reduction is shown
in Figure 12a, depicting the intercepted signal at 7 mm damage. Figure 12b depicts the
overall time-domain waveform. Figure 12b shows that the changes in the waveforms of the
VMD-AWT noise reduction signal and original signal were consistent, and the noise signal
was removed. The effective features of the original signal were well retained, and the noise
reduction effect was significant.

Figure 12. VMD-AWT time-domain noise reduction map. (a) Waveform plot after VMD-AWT noise
reduction, (b) Comparison of VMD-AWT noise reduction and original local waveform.

6.2. Comparison of Noise Reduction Effect

The advantages of the VMD-AWT method proposed in this paper in processing
complex signals were demonstrated through comparison and analysis with AWT and EMD.
Figure 13 presents the time-domain waveforms obtained following noise reduction, where
(a) shows the overall time domain waveform following noise reduction and (b) shows the
local signal waveform in the screenshot. Figure 13b shows that the signal curve following
noise reduction obtained via VMD-AWT was smoother than that of other algorithms, and
the noise component was smaller.
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The denoising effect of the VMD-AWT on the damage signals of the wire rope was
quantitatively evaluated by comparing and analyzing the VMD-AWT adaptive noise
reduction algorithm with the AWT and EMD algorithms. Three metrics, i.e., the signal-to-
noise ratio (SNR), mean square error (RMSE), and correlation coefficient (R), were used to
evaluate the denoising effect.

(1) Signal-to-noise ratio (SNR):

SNR = 10 log
POWERsignal

POWERnoise
(19)

SNR reflects the noise-removal ability of a noise removal method; the larger the SNR
value, the better the noise removal effect.

(2) Mean square error (RMSE):

RMSE =

√
1
n ∑n

i=1(yi − xi)
2 (20)

The RMSE indicates the difference between the amplitude of the denoised signal and
the original signal. The smaller the RMSE value, the better the denoising effect. Here, yi
denotes the original signal and xi denotes the denoised signal.

(3) Correlation coefficient, R:
R = Cov(xi, yi)/σxσy (21)

The correlation coefficient reflects the correlation between the denoised signal and the
original signal. The closer R is to 1, the higher the correlation between the denoised signal
and the original signal. Here, Cov(xi, yi) represents the covariance of xi and yi, and σx and
σy represent the standard deviations of xi and yi, respectively.

Table 2 presents a summary of the noise reduction effects of different noise reduction
methods. It can be observed that the SNR of the VMD-AWT noise reduction method was
approximately 27.5950 dB, which was higher than that of the AWT and EMD algorithms by
4.3427 dB and 6.2421 dB, respectively, with obvious noise reduction effects. Additionally,
the correlation coefficient of the VMD-AWT noise reduction method was approximately
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0.9910, which was close to the original signal in terms of morphology and which was thus
able to eliminate the noise components and retain the effective features of the signal.

Table 2. Noise reduction effects of different noise reduction methods.

Noise Reduction Indicators SNR RMSE R

AWT 23.2523 0.0619 0.9903
EMD 21.3529 0.0656 0.9865

VMD-AWT 27.5950 0.0593 0.9910

7. Quantitative Identification of Damage within PSO-SVM
7.1. Damage Signal Eigenvalue Extraction

The extraction of eigenvalues from the signal following noise reduction and recon-
struction is beneficial to improving the classification recognition rate. However, as the
damage-signal features of the wire rope present significant variability, the original sample
data set of the wire rope’s characteristic wire-break-signal attributes had to be normalized
using the following formula:

YI J =
XI J − Xavgj

Sj
, I = 1, 2, · · · , N; J = 1, 2, · · · , p (22)

where XI J represents the original feature attribute of the broken wire signal; Xavgj repre-
sents the mean of the Jth feature attribute; Sj denotes its standard deviation; N denotes the
total number of samples; p denotes the total number of feature attributes; and YI J denotes
the normalized data value of the Jth feature attribute of the Ith sample.

The theoretical and experimental analyses indicated that the primary factors affecting
the wire rope damage signals were the peak value, peak-to-peak value, area above the
waveform, area below the waveform, wire rope diameter, and wire diameter. The experi-
mentally obtained defect signals were used as samples to extract the different eigenvalues
of each damage signal. The eigenvalues were combined with the wavelet energy entropy
calculated following noise reduction to form multidimensional features, of which 20 groups
of signal eigenvalue samples were extracted, as shown in Table 3.

Table 3. Signal eigenvalue samples.

Serial
Number Peak Value Peak-to-Peak

Value
Area below

the Waveform
Area above

the Waveform
Wavelet Energy

Entropy
Wire Rope
Diameter

Wire
Diameter

1 0.04358 0.0939 12.504 −10.9718 0.0017 0.3 0.08
2 0.0457 0.08616 10.8723 −8.4009 0.0018 0.3 0.08
3 0.04447 0.08237 11.2564 −11.6126 0.0013 0.3 0.08
4 0.03313 0.06224 9.2805 −8.1743 0.0014 0.3 0.08
5 0.02583 0.05189 6.8754 −7.0832 0.0019 0.3 0.08
6 0.02418 0.04783 4.5371 −7.52 0.0015 0.3 0.08
7 0.1091 0.2407 24.2996 −24.7881 0.0024 0.3 0.08
8 0.09866 0.19352 13.5774 −8.7307 0.0042 0.3 0.08
9 0.0613 0.15481 5.4995 −15.9693 0.0056 0.3 0.08

10 0.04003 0.11305 13.9955 −15.9619 0.0082 0.3 0.08
11 0.03867 0.08336 24.379 −4.7879 1.62 × 10−5 0.3 0.08
12 0.0144 0.05574 5.6312 −4.8955 1.32 × 10−5 0.3 0.08
13 0.01078 0.0346 6.364 −3.4975 1.91 × 10−5 0.3 0.08
14 0.03816 0.09071 6.3293 −7.184 2.43 × 10−5 0.3 0.08
15 0.02118 0.06409 5.0068 −7.7042 1.29 × 10−5 0.3 0.08
16 0.01909 0.05717 1.6488 −11.6167 2.72 × 10−5 0.3 0.08
17 0.008588 0.046494 4.2232 −7.0306 2.42 × 10−5 0.3 0.08
18 0.01377 0.03742 6.8358 −3.3085 1.26 × 10−5 0.3 0.08
19 0.001713 0.024893 0.898 −9.769 1.94 × 10−5 0.3 0.08
20 0.01143 0.03476 1.9496 −5.2623 2.08 × 10−5 0.3 0.08
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7.2. Comparison of Internal and External Damage Identification
7.2.1. PSO-SVM Damage Identification Results

We selected 106 groups from the extracted eigenvalue samples as training samples
and 25 groups as test samples. We used the RBF kernel as the training function. The PSO
algorithm was used to optimize the parameters of the penalty factor and kernel function
of the SVM, and Figure 14 presents the obtained fitness curve. Figure 15 presents the
recognition results, which demonstrate that the optimal fitness curve leveled off after
several iterations. The number of populations was N = 20 and the number of terminated
evolutionary iterations was 200; the acceleration constants were C1 = 1.5 and C2= 1.7,
the optimal parameters obtained were C = 3.5817 and g = 181.5086, and the internal and
external damage recognition rate was 97.619%.
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7.2.2. Comparison of Multiple Algorithms in Internal and External Damage Recognition

To verify the superiority of the proposed algorithm for the identification of damages
inside and outside the wire rope, the same experimental data set was used for the compar-
ative analysis of the EMD-AWT-PSOSVM, EMD-SVM, AWT-SVM, EMD-PSOSVM, and
AWT-PSOSVM algorithms. The results are shown in Table 4.
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Table 4. Comparison results of multiple algorithms.

Serial
Number

Algorithm
Identification Accuracy (%) Average Identification

Accuracy (%)1 2 3 4 5

1 EMD-AWT-PSOSVM 97.6190 97.6190 97.6190 95.0476 97.6190 97.1047
2 EMD-SVM 61.3208 61.3208 58.4905 61.3208 61.3208 60.7547
3 AWT-SVM 87.7358 85.8491 87.7358 88.6792 87.7358 87.5471
4 EMD-PSOSVM 67.9245 67.9245 66.0377 67.9245 67.9245 67.5471
5 AWT-PSOSVM 92.4528 92.4528 90.0566 92.4528 92.4528 91.9735

To verify the effectiveness of the noise reduction algorithm, algorithms such as EMD-
PSO-SVM and AWT-PSO-SVM were introduced for a comparison, as shown in Table 4.
Additionally, after the proposed VMD-AWT algorithm was used to perform noise reduction,
the recognition accuracy of the algorithm was significantly better than that of the other
two algorithms. This indicates that the proposed algorithm can significantly improve the
recognition rate of the PSO-SVM algorithm.

To verify the effectiveness of the PSO-SVM recognition process, four algorithms,
namely, EMD-SVM, AWT-SVM, EMD-PSO-SVM, and AWT-PSO–SVM, were introduced.
According to the longitudinal comparison, the recognition accuracy of the SVM after PSO
was higher than that of the empirically selected SVM. This shows the effectiveness of the
PSO-SVM algorithm.

In summary, compared with those of the other methods, the average recognition
rate of the proposed algorithm was higher, at 97.1047 %; this indicates that the proposed
algorithm can effectively identify internal damage defects. Thus, the superiority of the
proposed algorithm was validated.

8. Conclusions

In this study, we designed a non-destructive-testing device for wire ropes and im-
proved upon the Hall element detection device, as well as the detection accuracy of wire
rope defects. Furthermore, based on the use of the non-destructive wire rope testing device
for model construction and simulation analysis, the internal and external damages of
the wire rope in the peak and valley values presented significant differences. Then, we
extracted the internal and external damages in the peak and valley values and observed a
theoretical mapping relationship between the two to lay a foundation for effective experi-
mentation. For the quantitative identification of the internal and external damage values of
the wire rope, an identification method based on the VMD-AWT and PSO–SVM algorithms
was proposed. The experimental and comparative analyses demonstrated the superiority
of the proposed method. The contributions of this study are as follows:

(1) Noise components still existed after the VMD decomposition of the noise signal. The
wavelet threshold method was introduced to further process the noise components.
The signal components were reconstructed to obtain the denoised signal via the iden-
tification of the useful components. In terms of morphology, we can effectively deal
with the damage signal in the presence of sudden changes, spikes, and other nonlinear,
local characteristics, and apply smoothing to retain the effective characteristics of
the signal and adequately characterize the original signal, thereby improving the
recognition rate of the damage signal inside and outside the wire rope.

(2) Based on the damage signal obtained following noise reduction using the particle
swarm algorithm to optimize the penalty factor and kernel function parameters of the
SVM, seven different feature vectors, namely, the waveform area, peak, peak-valley,
and wavelet energy entropy, were extracted through experimental and theoretical
analyses to identify the internal and external damages of the wire rope. Compared
with those of the SVM and PSO-SVM algorithms, the proposed algorithm displayed a
superior identification performance.
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(3) The VMD-AWT noise reduction algorithm was compared with the AWT and EMD
algorithms. From the comparative analysis values, the SNR of the VMD-AWT noise
reduction method proposed in this study reached 27.5950 dB, which was higher than
those of the AWT and EMD algorithms, which were 4.3427 and 6.2421 dB, respectively.
Moreover, the noise reduction effect was more significant.

(4) The experimental results showed that the proposed method was feasible, and the
recognition rate of the VMD-AWT-PSO-SVM algorithm reached 97.619%, which could
effectively identify the internal and external damages. Meanwhile, the comparison
with the EMD-SVM, AWT-SVM, EMD-PSO-SVM, and AWT-PSO-SVM algorithms
verified that the performance of this method was superior to that of other algorithms.
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Abbreviations

VMD Variational modal decomposition noise reduction algorithm
AWT Wavelet noise reduction algorithm
PSO Particle swarm optimization algorithm
SVM Support vector machine algorithm
EMD Empirical modal decomposition noise reduction algorithm

VMD–AWT Variational modal decomposition noise reduction algorithm based on wavelet
adaptive filtering

PSO–SVM Particle swarm optimization based on support vector machine
RBF Radial basis function
MFL Magnetic leakage detection
AdaBoost Weak classifier algorithm
IMF Eigen modulus obtained after variational modal decomposition
Hilber Hilbert transform
Lagrange Lagrangian function
SNR Signal-to-noise ratio
RMSE Mean square error
R Correlation coefficient
EEMD Ensemble empirical mode decomposition
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