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Abstract: In order to overcome the spectral interference of the conventional Fourier transform in the
International Electrotechnical Commission framework, this paper introduces a Bregman-split-based
compressive sensing (BSCS) method to estimate the Taylor–Fourier coefficients in a multi-frequency
dynamic phasor model. Considering the DDC component estimation, this paper transforms the
phasor problem into a compressive sensing model based on the regularity and sparsity of the dynamic
harmonic signal distribution. It then derives an optimized hybrid regularization algorithm with the
Bregman split method to reconstruct the dynamic phasor estimation. The accuracy of the model was
verified by using the cross entropy to measure the distribution differences of values. Composite tests
derived from the dynamic phasor test conditions were then used to verify the potentialities of the
BSCS method. Simulation results show that the algorithm can alleviate the impact of dynamic signals
on phasor estimation and significantly improve the estimation accuracy, which provides a theoretical
basis for P-class phasor measurement units (PMUs).

Keywords: phasor estimation; Taylor–Fourier multi-frequency (TFM); compressive sensing (CS);
Bregman split; cross entropy

1. Introduction

As power grid monitoring technology advances and measurement devices, such as
phasor measurement units (PMUs), are introduced into the power grid, dynamic monitor-
ing of the power system has become crucial in ensuring the reliable operation and control
of the power grid. In particular, harmonic and inter-harmonic information can be used to
protect and monitor power systems, such as high-impedance fault identification [1,2], intel-
ligent islanding detection [3,4], and harmonic state estimation [5,6]. Harmonic distortion
affects the power quality and is not only technically but also economically harmful to the
operation and maintenance of the grid. Apart from that, the continuous input of nonlinear
loads, such as power electronic equipment, leads to the injection of a large number of har-
monics into the grid, resulting in severe distortions in the voltage waveform and degraded
power quality [7]. Therefore, the accurate estimation of harmonics and inter-harmonics has
significant practical value in engineering.

To tackle the challenges of the new measurement environment of distribution networks,
many improved or new PMU methods have been proposed, which fall into two main
categories: model-based phasor measurement methods and discrete Fourier transform
(DFT)-based methods. The first category expands the dynamic phasor approximation with
different mathematical models, including the recursive least squares (RLS) method, the
harmonic phasor estimator (HPE) method, and the autoregressive moving average (ARMA)
method [8–11]. These methods can measure harmonic phasors but require a detailed set
model order to yield desirable results.

The Taylor–Fourier Transform (TFT) [12,13], which can efficiently handle dynamic
phasors, is also included in the first category. Further improvements can be made to
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iteratively estimate the actual fundamental frequency to boost the accuracy of TFT methods
in the non-normative case [14]. However, to produce accurate results with such methods,
the set model order must be close to the actual model with a high signal-to-noise ratio [15].
To cope with these difficulties, Chen et al. [16] employed a sinc interpolation function-
based estimator (SIFE), which can adapt to different harmonic bandwidths and improve
the accuracy of harmonic phasor estimation. However, in practical applications, many
simulations are needed to select the appropriate parameters for each harmonic phasor
model, increasing the harmonic estimation error.

The second category, DFT-based harmonic phasor estimation methods, can effectively
alleviate the harmonic error issue present in the first category. W. Premerlani and R.K.
Mai et al. [17,18] enhanced harmonic phasor estimation by correcting the estimation error
through serial phasor estimation, which can be computed by DFT. DFT can be viewed
as a bank of filters that carry the same frequency bandwidth to measure the harmonic
phasors. Therefore, despite its simplicity and low computational complexity, it fails to adapt
well to harmonic frequencies. Under frequency deviation and inter-harmonic interference
conditions, the errors remain large.

Interpolation and window functions can be generally employed to diminish the errors
under the above-mentioned frequency bias conditions. Interpolated DFT (IpDFT) is used
in [19] to deal with static non-scalar conditions in harmonic phasor estimation. D. Petri
et al. [20] extended IpDFT to include the phasor derivatives of the second-order expansion of
the three DFT components near the fundamental frequency. However, their measurements
are susceptible to decaying direct-current (DDC) components, which may produce phasor
errors of up to 20% [21]. In addition, the window function, while also reducing the error
under frequency bias conditions, will be significantly less effective in preventing external
interference. D. Beleg et al. [22] exploited the longer observation interval filtering feature to
reduce the interference. However, this capability also reduces the dynamics of the tracked
signal because of the demand for shorter observation windows and larger bandwidths.

The above-mentioned estimation algorithms can measure harmonic phasors in most
cases but fail to accurately estimate harmonic phasors in the presence of DDC component
offsets. There are several methods available for estimating the harmonic phasor with DDC
components. The DDC amplitude and time constant were estimated by integrating the
fault current in [23] but are subject to noise and inter-harmonic interference [24]. In [25,26],
a Taylor expansion model was used to approximate the DDC components, with high
computational complexity [27]. Alternatively, the DDC components can be modeled as an
exponential function [28], but this requires a large number of iterative calculations [29].

In recent years, research in machine learning has combined traditional phasor es-
timation methods with compressive sensing algorithms to address the effect of inter-
harmonics on the estimator accuracy and reduce the computational burden of the phasor
solution [30–33]. This method allows for the accurate recovery of a specific signal with
fewer data points while maintaining relatively short observation intervals and resisting
inter-harmonic interference, avoiding the impact of large amounts of redundant data on the
computational speed. M. Bertocco et al. [31] investigated super-resolution discrete Fourier
transform analysis based on compressive sensing (CS). The shorter sampling sequences
can be applied to PMU and harmonic analysis. However, it is applicable to static phasor
models only.

To handle the above-described challenges, the Taylor–Fourier multi-frequency (TFM)
model in CS was introduced to describe the dynamic phasors in the proposed algorithm,
where the Taylor–Fourier (TF) basis [32] is adopted and developed for the CS-based CSTFM
algorithm [33]. The model can represent dynamic phasors at fundamental, harmonic,
and inter-harmonic frequencies with a high degree of accuracy, but the complexity of the
TFM model makes CSTFM computationally demanding. Generally, the CSTFM algorithm
significantly exceeds the current harmonic phasor specifications in accuracy, which makes
the CSTFM method a potential alternative for harmonic or inter-harmonic phasor analysis
in distribution networks [34].



Entropy 2022, 24, 988 3 of 18

In summary, this paper takes the previous work and combines Bregman iterations with
the TFM model described above and the compressive sensing method that has performed
well in the field of harmonic detection. This innovative method aims to accurately estimate
the harmonic, inter-harmonic, and DDC components in the TFM model. Firstly, establishing
a dynamic signal model based on the Taylor–Fourier multi-frequency transform helps to
simultaneously estimate the harmonic and inter-harmonic components and obtain the DDC
components. Based on the regularity and sparsity of the dynamic signal distribution, the
phasor problem is transformed into a compressive sensing problem by introducing an
auxiliary signal. On the basis of the Bregman split method, the dynamic phasor estimation
is then obtained by reconstructing the signal through the optimization of the hybrid
regularization algorithm. The process also considers higher-order derivatives that allow
for simultaneous phasor estimation, making the phasor estimation more accurate and
efficient. The cross entropy can be used as a loss function to measure the similarity between
two distributions. In this case, this paper verified the accuracy of the model by using
the cross entropy to measure the difference in the probability distribution between the
estimated and actual values. As a result, the proposed algorithm can meet the requirements
of most international standards on PMUs. It also reduces the time variant of the harmonic
components and its impact on dynamic phasor estimation in multi-frequency phasor
analysis, which significantly improves the estimation accuracy. An innovative integration
of Bregman iterations and compressive sensing theory is proposed to introduce model
constraints into the conventional signal reconstruction objective function and to derive an
algorithm for signal reconstruction with the proposed BSCS method.

2. DDC Component Estimation

For signals containing fundamental, dynamic harmonic, inter-harmonic, and DDC
components of the power system, the multi-frequency dynamic signal model x(t) can be
represented by the sum of the sinusoidal components of the amplitude and phase given by

x(t) = x0(t) + x1(t) = λe−
t
τ + ∑

fh∈Yh

Rh(t) cos[2π fht + φh(t)] (1)

where x0(t) is the DDC component of the signal, x1(t) is the fundamental and harmonic
signal, λ and τ and Rh(t) and φh(t) are the amplitude and time constant of the DDC
component and the harmonic phasor, respectively, and Yh is a universal set of frequencies
containing harmonic multiples of the actual power system frequency f1 and possible
inter-harmonic frequencies.

2.1. Multi-Frequency Dynamic Signal TFM Model

Each component of x1(t) in Equation (1) can be associated with a dynamic phasor
defined as

Xh(t)=
Rh(t)√

2
ejφh(t), for fh ∈ Yh (2)

Thus, x1(t) in Equation (1) can be rewritten as

x1(t)=
1√
2

∑
fh∈Yh

[
Xh(t)ej2π fht+X*

h(t)e
−j2π fht

]
(3)

On the basis of the prominent inertia characteristics of the power system, this can be
approximated by the Taylor series as

Xh(t)=Xh+t ·X(1)
h + , . . . , +

tK

K!
·X(K)

h (4)

where X(k)
h is the kth-order derivative of Xh and K is the Taylor expansion order. Integrating

factors such as model accuracy and algorithm operations, K is taken as 3 in this paper, i.e.,



Entropy 2022, 24, 988 4 of 18

x1(t)= 1√
2

(
Xh+X(1)

h t+X(2)
h t2+X3

ht3
)

ej2π fht+ 1√
2

(
X∗h+X(1)∗

h t+X(2)∗
h t2+X(3)∗

h t3
)

e−j2π fht
(5)

Therefore, the discrete expression for x1(t) is

x1(kT)= 1√
2

[
Xh+X(1)

h kT+X(2)
h (kT)2 +X3

h(kT)3
]
ej2π fht

+ 1√
2

[
X∗h+X(1)∗

h (kT) +X(2)∗
h (kT)2+X(3)∗

h (kT)3
]
e−j2π fht

(6)

where * denotes the conjugate calculator and T is the sample interval.
Substituting Equation (2) into Equation (6) yields the Taylor expansion expression

for the signal, which is then sampled at a sampling frequency fs. Assume that x1[n] is a
finite sequence of length samples, N is an even number, and −N/2 ≤ n ≤ N/2− 1. The
sampling interval ∆T = 1/ fs. Thus, the time reference for the dynamic phasor calculation
is located at n = 0 in the sample record, and the discretized signal expression x1[n] is
given by

x1[n]=∑
h

K

∑
k=0

(nT)k

k!

[
X(k)

h√
2

ej2π fnnT+
X∗(k)h√

2
e−j2π fnnT

]
=ΦXh (7)

where Φ is the coefficient of [X(k)
h , . . . ,X(k)

h ] in the original equation and denotes a matrix
of size N × [Y(K + 1)] that is a Taylor–Fourier basis matrix of exponential terms. To
avoid confusion with the similar alphabetic phasors in Equation (2), assume that r=Xh, as a

column vector of length Y(K + 1), describes the set Xh=[X(1)
h , . . . ,X(k)

h ] when h ∈ {1, . . . , Y},
so that we obtain x[n]=Φr.

Although a TFM model was initially developed, if the model in Equation (7) is directly
used to estimate Xh(t) and the rate of frequency change, it will generate a considerable
amount of computation and fail to meet the requirements of high reporting rates.

2.2. Estimation of DDC Components in the Multi-Frequency Dynamic Signal

Power system signals often contain DDC components, which are often ignored in
the commonly used harmonic phasor detection methods because of their low content and
the detection difficulties [35]. However, once the DDC components are biased, they can
seriously interfere with the lower-order harmonic components of the original signal. In this
case, the DDC components have a significant impact and cannot be ignored.

In this paper, the DDC components within a narrow time window are approximated
as a dynamic, lower-frequency cosine component model [36], given as

x0(t) = λe−
t
τ ≈
√

2a0(t) cos(2π fDDCt + ϕ0(t))(−Tw/2 ≤ t ≤ Tw/2) (8)

where a0(t) and ϕ0(t) are the amplitude and initial phasor of the DDC components of the
model, respectively, Tw is the length of the algorithm’s observation time window, and fDDC
is a lower frequency.

Then, based on the frequency sample principle, the dynamic phasor corresponding
to the cosine components of the DDC frequency is described as p0(t) = a0(t)ejϕ0(t). For a
time-domain signal p0(t) with a finite amplitude, it can be parametrically modeled based
on the sampling theorem in the frequency domain [37], which is given by

p0(t) ≈
K0

∑
k=0

p0,kej2π(k−d K0
2 e)∆ fdt (9)

where p0,k is the frequency sampling value of the phasor p0(t) at a frequency of(
k−

⌈
K0
2

⌉)
∆ fd, d·e is a downward rounding operator, ∆ fd is the frequency domain sam-

pling interval, K0 represents the number of frequency-domain samples used for the para-
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metric modeling of p0(t), and −T/2 ≤ t ≤ T/2. To achieve greater accuracy in the above
model, it is generally required that ∆ fd be less than 1/T. After modeling p0(t), an ap-
proximate characterization of the dynamic DDC cosine components and the fundamental
dynamic components can be achieved.

In this paper, Nw is assumed to be an odd number such that the moment t = 0 is
centered in the observation window. The discrete form of the DDC components fitted in
Equation (8) can be represented by Equation (10).

x0 =

√
2

2
[Ψ0 Ψ∗0 ]

[
p0
p0
∗

]
=

√
2

2
Ψ0P0 (10)

where x0 is a column vector with Nw samples of the signal x0(t), p0 is a row vector

including p0,k, and Ψ0 is a matrix with Nw exp
(

j2π
[(

k−
⌈

K0
2

⌉)
∆ fd + fDDC

])
sampled

points in each column.
The least-squares method of Equation (10) provides the best parameters as it yields

the minimum error between P0 and the second-order Taylor approximation. At this point,
it is the optimal solution subject to the following constraints

min‖Ψ0P0 − x0‖2 (11)

where ‖·‖2 denotes the Euclidean norm. Then, introducing the Lagrange multiplier and the
Hermitian operator for derivation, the vector of coefficients of the phasor can be solved as

P0 =
(

Ψ0
HΨ0

)−1
Ψ0

Hx0 (12)

where H denotes the Hermitian operator. In this way, according to Equations (9) and (12),
the estimation of the DDC components can be obtained as

p̂0(t0) ≈
K

∑
k=0

p̂0,k (13)

3. Harmonic Phasor Estimation

r ∈ Rn is the original signal, and we can obtain the observed data by calculating its m
linear measurements. To make the formula more concise and easy to understand, x[n] in
Equation (7) is replaced here by A and is given by

A=Φr (14)

where Φ is the m× n matrix and A ∈ Rm is the observed value. The matrix Φ maps from
Rn to Rm, which represents the dimensionality reduction due to m� n. Assume that the
signal r can be compressed by the orthogonal transform Ψ and r=Ψβ. Then, (1) can be
rewritten as

A=ΦΨβ (15)

where β is the conversion coefficient of the original signal r, which can be transformed using
a Gaussian random matrix Φ and a discrete wavelet inverse transform Ψ. The Gaussian
matrix ΦΨ can satisfy the restricted isometry property condition with a high probability.
Thus, when m is large enough, the coefficient β can be well reconstructed, and the original
signal r can be solved by the inverse transformation r=Φβ. Once the signal r has been
determined, we can calculate the harmonic’s frequency f̂h, amplitude X̂h, and frequency
change rate R̂h from [38].

3.1. Solving the Reconstruction Model

Power quality detection data are often contaminated by noise and spike anomalies.
The anomalies are sparse and can be described with the l1 parametrization. To obtain
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estimations with reasonable accuracy and robustness to harmonics and inter-harmonics,
the estimation of r is represented as an optimization problem based on regularization,
which means that the estimation results are converted to the original signal. The objective
function of the reconstructed signal is given as

TN(β)=
µ

2
‖A−ΦΨβ‖2

2 + ‖β‖1 (16)

where ‖x‖q is the lq parametrization of any vector x whose lq parametrization is defined as

‖x‖q =
(
∑m

i=1|x(i)|
q)1/q.

Many studies in this field have contributed to optimizing the objective function in
Equation (16), most of which utilize the sparsity of the transform domain coefficients β.
Because of the specific characteristics of the inter-harmonic signal, the regularization of
Equation (16) allows for the introduction of an auxiliary signal s to obtain the new objective
function T(β), which is given by

T(β)=
µ

2
‖A−ΦΨβ‖2

2+‖β‖1+

∥∥∥∥∥ 1√
|∇s|
∇(Ψβ) · ξs

∥∥∥∥∥
2

2

(17)

where

∇(Ψβ)=∇r=
[

rx
ry

]T

(18)

ξs=
1
|∇s|

[
sy
−sx

]
(19)

∇ is the gradient operator, and ξs is a unit vector perpendicular to the gradient of s. Ψβ is
the signal r; thus,∇(Ψβ) is the gradient of r, and sx and sy are the partial derivatives in the
vertical and horizontal directions, respectively.

The new regularization takes the form of a dot production for the direction vector ξs
of the reference signal features and the gradient vector ∇(Ψβ) of the target signal. The
proposed regularization penalty is weak if the edge direction of s and r is too small. Thus,

we optimize the regularization expression
∥∥∥(1 \√|∇s|)∇(Ψβ) · ξs

∥∥∥2

2
and obtain∥∥∥∥∥ 1√

|∇s|
∇(Ψβ) · ξs

∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

|∇s|
3
2

[
rx ry

]
·
[

sy
−sx

]∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

|∇s|
3
2

[
(DxΨβ)sy − (DyΨβ)sx

]∥∥∥∥∥
2

2

(20)

where Dx is the difference operator in the x-direction and Dy is the difference operator in
the y-direction.

For the objective function (18), we introduce two regularization terms: one for the
l1 regularization of the coefficients β and another for the quadratic regularization that is

constrained by the reference signal s.
∥∥∥(1 \√|∇s|)∇(Ψβ) · ξs

∥∥∥2

2
holds the edge direction

of the signal r and s. The term ξs refers to the new regularization’s direction and 1 \
√
|∇s|

controls its strength. If the gradient of s is slight while the projection ∇r in the ξs direction
is considerable, then a regularization penalty needs to be applied. Compressive sensing
reconstruction can therefore be improved by hybrid regularization.

3.2. Bregman Split Method

The Bregman split method is essentially based on introducing an auxiliary variable
to replace the problematic part of the original function, which simplifies the solution of
the problem. In this paper, we solve the compressive sensing model by the Bregman split
iteration to reduce the signal structure loss; thus, we call our proposed method the BSCS
method. In the new function, based on the split criterion, we introduce auxiliary variables j
and h. For these two constraints, µ is substituted by new regularization parameters σ and



Entropy 2022, 24, 988 7 of 18

τ, which are employed to control the quadratic penalty function term. The expression is
described as

T(β)=
1
2
‖A−ΦΨβ‖2

2+
σ

2
‖j− β− h‖2

2+‖j‖1+
τ

2

∥∥∥∥∥ 1

|∇s|
2
3

[
(DxΨβ)sy − (DyΨβ)sx

]∥∥∥∥∥
2

2

(21)

Based on the Bregman split iteration, the objective function of β can be computed
efficiently. By breaking down the iterative process into several steps, we can reconstruct
the signal by solving the following optimization:

βk = argmin
β

{
1
2
‖A−ΦΨβ‖2

2+
σ

2

∥∥∥jk − β− hk
∥∥∥2

2
+

τ

2

∥∥∥(1/|∇s|
2
3
)[

(DxΨβ)sy − (DyΨβ)sx
]∥∥∥2

2

}
(22)

jk=argmin
j

{σ

2
‖j− β− h‖2

2+‖j‖1

}
(23)

hk = hk+βk − jk (24)

There are two significant properties. First, during the iteration of Equation (22), ‖A−ΦΨβ‖2
2

decreases monotonically until it reaches zero. Furthermore, in the iterative solution of
Equation (22), β monotonically converges to the true solution βtrue as long as
‖A−ΦΨβk‖2

2>‖A−ΦΨβtrue‖2
2. Therefore, the Bregman method is stably convergent.

Regarding Equations (22)–(24), during each iteration cycle Equation (22) becomes
a differentiable optimization problem. We can solve and update Equation (24) directly.
Equation (23) can be solved efficiently with the definition of the shrink function to update
the variable j, which is given by

jk+1=shrink(hk+βk, 1/σ) (25)

where the shrink function is defined as

shrink(x, 1/σ) =
x
|x| ·max

(
|x| − 1

σ
, 0
)

(26)

In Equation (22), Ψ, Dx, Dy, sx, and sy can be considered constant matrices and vectors,
and only β is variable. To minimize Equation (22), the first-order derivative concerning y
is set to zero in the kth iteration. Before that, however, having first found the first-order
derivative concerning β, we then obtain

∂

∥∥∥∥ 1

|∇s|
3
2

[
(DxΨβ)sy − (DyΨβ)sx

]∥∥∥∥2

2

= 1
2

(
sy

|∇s|
3
2

ΨTDT
x

sy

|∇s|
3
2

DxΨ − sx

|∇s|
3
2

ΨTDT
y

sx

|∇s|
3
2

DyΨ

− sy

|∇s|
3
2

ΨTDT
x

sx

|∇s|
3
2

DyΨ+ sx

|∇s|
3
2

ΨTDT
y

sy

|∇s|
3
2

DxΨ

)
β

(27)

Following Equation (27), the linear regularized operator L is defined as

L=
(

sy

|∇s|
3
2

ΨTDT
x

sy

|∇s|
3
2

DxΨ − sx

|∇s|
3
2

ΨTDT
y

sx

|∇s|
3
2

DyΨ

− sy

|∇s|
3
2

ΨTDT
x

sx

|∇s|
3
2

DyΨ+ sx

|∇s|
3
2

ΨTDT
y

sy

|∇s|
3
2

DxΨ

) (28)

From L in Equation (28) and the first-order derivative of Equation (18), we obtain

(ΦΨ)T
(

ΦΨβk −A
)

+σ
(

βk − jk+hk
)

+τLβk=0 (29)



Entropy 2022, 24, 988 8 of 18

By rearranging Equation (20) by βk, a closed solution for βk is obtained as(
σI+ΨTΦTΦΨ+τL

)
βk=(ΦΨ)TA+σ

(
jk − hk

)
(30)

where I is an identity matrix. Since Equation (21) is linear, it can efficiently solve βk. In the
algorithm iteration of this paper, the cycles of Equations (23), (24), and (30) are combined
and updated. When the regularization parameter τ = 0, the algorithm can calculate the
coefficient β, which becomes the basic compressive sensing optimization.

After obtaining the coefficients β, the reconstructed phasor r is obtained by the equa-
tion r=Ψβ. Each of its rows corresponds to the phasor of each frequency component at a
different time. An interpolation factor F is introduced to achieve more acceptable frequency-
domain results. Additionally, ∆′ f = ∆ f /F is the frequency resolution. The reconstructed
phasor frequency can be approximated as f̂h

∼= lh∆′ f , where lh is the frequency index. Once
r is determined, the frequency f̂h, the amplitude X̂h, and the rate of frequency change R̂h of
the required harmonic can be calculated by the following Equations (31)–(33)

X̂h=
√

2r(0)h (31)

f̂h=l̂h∆ f +
Im
[
r(1)h /r(0)h

]
2π

(32)

R̂h=
Im
[(

r(2)h r(0)h −
(

r(1)h

)2
)

/
(

r(0)h

)2
]

2π
(33)

where rh is the h-th column of r, and r(0)h , r(1)h , and r(2)h are the zero-order derivative,
first-order derivative, and second-order derivative of rh, respectively.

3.3. Cross Entropy

Cross entropy can be used as a loss function in machine learning. As cross entropy
is a measure of the similarity between two distributions, the true distribution of the data
set is p and the distribution corresponding to the outcome predicted by the model built
is q. At this point, ‘cross entropy’ refers to the degree of difference between the predicted
outcome q and the true outcome p. It is called the cross entropy loss function. The details
are as follows.

Assume that the logistic regression model corresponding to the two categories has
two zeros or ones. Given a prediction vector x, by means of the logistic regression func-
tion g(z) = 1/(1 + e−z), the true outcome y = 1 corresponds to the predicted outcome
y′ = g(wx); the true outcome y = 0 corresponds to the predicted outcome y′ = 1− g(wx).

The above is a description of the 0–1 distribution of the original data set through g(wx)
and 1− g(wx). From the definition of cross entropy, it follows that

H(p,q) = −∑
i

pi log qi = −y log ŷ− (1− y) log(1− ŷ) (34)

The equation above is the cross entropy obtained for one sample of the test set. With the N
samples in this paper, the corresponding cross entropy loss function is expressed as

L(p,q) =
1
N

N

∑
n=1

H(p,q) = − 1
N

N

∑
n=1

[y log ŷ + (1− y) log(1− ŷ)] (35)

We introduce the reconstructed phasor r to measure the difference in the probability distri-
bution between the estimated value r̂ and the theoretical value

L(r, r̂) = − 1
N

N

∑
n=1

[r log r̂ + (1− r) log(1− r̂)] (36)
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Assuming a binary distribution of errors, L→ 0 can be considered a very close correlation
between the predicted probability distribution and the actual probability distribution,
which proves that the hypothetical model is consistent with the predicted model.

In summary, this paper takes the regularity of the dynamic harmonic frequency do-
main distribution as the optimization objective of dynamic phasor reconstruction and
employs an iterative regularization model algorithm based on the Bregman split method to
reconstruct the dynamic phasors containing the Taylor expansion coefficients of each har-
monic. Finally, we use the cross entropy to measure the distribution difference between the
estimated and theoretical values, which ensures that the model is accurate. The algorithm
is shown in Table 1.

Table 1. A detailed description of the proposed method.

(1). Initialization

1. Input data A, the auxiliary signal s
2. Initialize matrixes Φ, Ψ and parameters µ, σ, τ
3. Compress by the orthogonal transformation Ψ , r← Ψβ

(2). Regularization

1. Regularize Equation (16) by s and obtain the objective function
2. Perform a quadratic optimization and obtain Equation (20)
3. Optimize by the Bregman splitting method

(3). Iterative estimation

1. Commence the Bregman split iteration in Equations (22) and (23),
2. Define the shrinkage equation to solve Equation (23)
3. Derive the partial derivative of Equation (20) and obtain L in Equation (28)
4. Obtain Equation (29) from Equation (28) and the first-order derivative of Equation (24), and

then solve βk by Equations (29) and (30)
5. Cycle (23), (24), and (30), update to calculate the coefficient β, and then pass r=Ψβ to obtain

the reconstructed phasor r
6. Obtain X̂h, f̂h, R̂h according to Equations (31)–(33)

4. Simulation Performance Tests

In this section, we compare the accuracy of the estimation algorithm proposed in
this paper with comparative algorithms in the literature under different test conditions
and analyze the results. The comparison algorithms include the split Bregman iteration-
based compressive sensing method, the Taylor–Fourier transform (TFT), the compressive
sensing Taylor–Fourier multi-frequency method (CSTFM), IpDFT, and the O-splines FIR
filter (OFF) algorithm. Test scenarios include basic performance tests, frequency deviation
tests, harmonic oscillation tests, and interference anti-interference tests.

To evaluate the effectiveness of the different methods, the total vector error (TVE) of
the IEEE measurement standard is introduced in order to describe the relative deviation
between the theoretical and estimated phasor. The TVE is closely related to amplitude
and phasor angle errors but cannot reflect the variation in one aspect alone. Therefore,
this paper introduces two additional metrics (the frequency error (FE) and the ROCOF
error (RFE) [39]) to comprehensively evaluate the effectiveness of the phasor estimation.
The five comparison algorithms all use the same rectangular observation window with a
fundamental frequency bandwidth of 1 Hz. The sampling window length was set to five
frequency periods.

4.1. Basic Performance Tests

To verify the algorithm’s effectiveness when the signal frequency deviates, we assume
that the sampling window is five periods long and the bandwidth of the fundamental fre-
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quency is 1 Hz. We constructed a signal model with fundamental and dynamic components
as shown in the equation below.

x(t) = λe−t/τ + cos(2π f1t + ϕ1(t)) +
Y

∑
h=2

0.1 cos(2π fht + ϕh(t)) (t ≥ 0) (37)

where f1 is the fundamental frequency, which was set to 50 Hz, and ϕ1(t) and ϕh(t)
represent the fundamental and harmonic phasor angles, respectively, which were taken to
be any value in the range of (−π,π). λ and τ, the amplitude and time constant of the DDC
components, were set to 0.6 and 0.04 s, respectively. The low-frequency band harmonic
number h was assumed to be 2–13, and the sampling frequency was 5 kHz.

When employing the algorithm, j and h were initialized as all-zero matrices and we
set the regularization parameter µ = 10. Since σ = ξµ, τ = (0.5− ξ)µ, ξ is the balance
parameter between parameters. The algorithm is more stable in the interval [0.2, 0.3], and k
is the iteration number. Generally, the iteration number and the estimation accuracy are
positively correlated within a specific range. The reconstruction effect and the algorithm
runtime were analyzed while varying the parameters and the iteration number k. The
results are shown in Figure 1.

Figure 1. Reconstruction accuracy and runtime versus different parameters and iteration numbers.

As shown in Figure 1, as the iteration number k increases, the total phasor error gradu-
ally decreases. Still, the algorithm runtime continuously increases, and when k reaches 800,
changing the iteration number has less of an impact on the accuracy, and the reconstruction
accuracy becomes stable at this point. When the balance parameter ξ is varied between 0.2
and 0.3, the estimation accuracy first increases to the maximum value and then decreases,
and its peak is around 0.25. Therefore, appropriately reducing the iteration number k and
choosing a balance parameter can improve the reconstruction performance. Considering
the reconstruction performance and estimation accuracy, we set parameter k = 800 and
balance parameter ξ = 0.25.

Using OFF, CSTFM, TFT, and IpDFT as the comparison algorithms, the estimation
results of TVE, FE, and RFE for the proposed algorithm and the comparison algorithms are
shown in Table 2.

As shown in Table 2, the maximum values of the TVE, FE, and RFE of the BSCS algo-
rithm are 0.691%, 0.057 Hz, and 2.181 Hz/s, respectively. According to the IEEE standard,
the required TVE, FE, and RFE values are 1.5%, 0.06 Hz, and 2.3 Hz/s, respectively [40]. It
can be seen that the proposed method can fully meet the IEEE measurement standard. The
TVE, RFE, and FE values of the proposed BSCS algorithm are lower than those of the other
algorithms. The BSCS method has a better detection ability for dynamic signals.
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Table 2. Comparison of the estimation accuracy among algorithms.

Index h BSCS OFF CSTFM IpDFT TFT

TVE
(%)

2 0.691 2.28 7.418 10.456 8.872
3 0.664 2.96 4.981 8.472 2.672
4 0.576 2.74 4.653 8.714 2.739
5 0.513 1.59 4.187 7.941 2.447
6 0.428 1.44 3.588 7.036 2.387
7 0.431 1.38 3.583 6.809 2.122
8 0.417 0.77 3.122 6.247 1.891
9 0.385 0.46 3.068 6.005 1.662

10 0.393 0.27 3.072 5.311 1.523
11 0.376 0.25 2.234 4.993 1.474
12 0.382 0.28 1.882 4.434 1.430
13 0.137 0.022 0.590 1.877 1.422

FE
(Hz)

2 0.057 0.138 1.736 2.244 1.946
3 0.056 0.136 1.357 2.127 0.702
4 0.053 0.034 1.084 2.035 0.421
5 0.056 0.051 0.873 2.176 0.318
6 0.051 0.063 0.723 2.131 0.237
7 0.050 0.090 0.792 2.309 0.154
8 0.053 0.058 0.738 2.045 0.144
9 0.049 0.064 0.691 1.976 0.141

10 0.048 0.086 0.670 1.841 0.130
11 0.042 0.054 0.665 1.943 0.127
12 0.037 0.073 0.633 1.652 0.135
13 0.037 0.022 0.590 1.877 0.138

RFE
(Hz/s)

2 2.181 2.251 25.211 31.278 44.740
3 1.392 2.138 17.482 27.072 13.662
4 0.927 1.104 12.947 22.056 4.857
5 0.685 0.993 4.087 12.361 2.562
6 0.689 0.896 1.092 10.835 1.881
7 0.564 0.784 0.702 8.569 1.198
8 0.540 0.772 0.551 8.930 0.973
9 0.503 0.665 0.483 7.034 0.802

10 0.386 0.661 0.492 6.787 0.699
11 0.279 0.757 0.474 5.725 0.604
12 0.291 0.445 0.463 5.646 0.584
13 0.283 0.342 0.452 4.724 0.591

The OFF algorithm’s error estimation is close to the proposed method’s error estima-
tion, but its TVE, FE, and RFE metrics still do not meet the IEEE measurement standard. The
reason for this is that this method has large frequency errors due to the considerable noise
in the spatial step reconstruction process. As for the TFT, CSTFM, and IpDFT methods,
they all reconstruct the DDC components through the second-order Taylor model, whose
inherent expansion order will produce specific errors in the reconstruction process; thus,
the accuracy is not high. While the accuracy of the CSTFM method is second only to that
of the OFF algorithm and the BSCS method near the higher harmonics but close to the
accuracy of the TFT method near the lower harmonics, the maximum values of the TVE,
FE, and RFE indicators are 7.418%, 1.736 Hz, and 25.211 Hz/s, respectively, which fail to
meet the IEEE measurement standards [40]. The maximum phasor errors for the IpDFT
and TFT methods are 10.456% and 8.872%, respectively, and the accuracy of the FE and RFE
measurements is also less than desirable. Under dynamic conditions, the Fourier transform
model cannot track the phasor changes in the observation window, leading to an incorrect
phasor evaluation.
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4.2. Frequency Deviation Tests

In the case that an out-of-step fault occurs in the power system, the voltage signal
frequency will change continuously. The measurement accuracy of the phasor, frequency,
and rate of frequency change of the PMU is essential to out-of-step detrending control. The
IEEE specifies that the absolute frequency deviation of the power system should always be
less than 0.5 Hz. Therefore, fh = 1 Hz yields good passband and stopband performance
around each harmonic frequency. As previously mentioned, we considered harmonics up
to the 13th order, with a sampling frequency of 10 kHz. Each test involved 1000 runs, where
the fundamental and harmonic phasors were distributed as random numbers. Therefore,
to assess the impact of the algorithms under frequency deviation conditions, the five
algorithms described above were used as comparison algorithms, and the specific dynamic
signals are shown below.

x(t) = λe−t/τ + 1.5 cos(2π f1t + ϕ1(t)) + 0.15 cos(2π fht + ϕh(t)) (t ≥ 0) (38)

where f1 varies from 49.5 to 50.5 Hz in steps of 0.2 Hz. The amplitude λ and time constant
τ of the DDC components were set to 0.6 and 0.04 s, respectively. In this case, we can see
that the BSCS algorithm is always more accurate than the other four algorithms in terms of
the harmonic phasor, frequency, and ROCOF estimation. This is because the model, which
is based on the dynamic phasor’s higher-order derivatives, helps us obtain better passband
and stopband performance, especially for higher-order harmonics.

Under these conditions, the maximum TVE, FE, and RFE of the BSCS method are
0.30%, 0.025 Hz, and 0.2 Hz/s, respectively. In the IEEE standard, they are thresholded
at 1.5%, 0.01 Hz, and 0.4 Hz/s, respectively. Therefore, the BSCS method satisfies all the
estimation requirements. The proposed estimation algorithm exhibits higher performance
when the frequency deviation affects the signal waveform.

As shown in Figure 2, in terms of 2nd–13th-order harmonic estimation, none of the
other methods meet the IEEE measurement standard. The IpDFT method has larger TVE,
FE, and RFE values compared with the other methods and the lowest estimation accuracy
and is rather sensitive to frequency deviation modulation. The estimation accuracy of
the OFF, TFT, and CSTFM methods is better than that of the IpDFT method. The CSTFM
method estimates the phasor based on a dynamic model, and the error values are less
affected by frequency variations compared with the IpDFT method. Since the TFT method
uses a second-order Taylor model to estimate the phasors, the estimation accuracy is
not as high and is highly affected by frequency deviations. The OFF algorithm uses O-
splines as the sampling operators to obtain the best Taylor–Fourier coefficients. It enables
modulation at harmonic frequencies with an estimation accuracy close to that specified by
the IEEE standard.

Figure 2. Estimation under frequency deviation conditions. (a) Maximum TVE; (b) maximum FE;
(c) maximum RFE.
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4.3. Harmonic Oscillation Tests

The signals used for the tests described in this section are as follows.

x(t) = 1.5[1 + 0.1 cos(2π fmt)][cos(2π f0t + 0.1 cos(2π fmt)) + φ1]
+λe−t/τ + 0.1 cos(2πh f0t + φh) + 0.1h cos(2πh fmt)(t> 0)

(39)

where fm is the modulation frequency, which was set to 5 Hz. The amplitude λ and time
constant τ of the DDC components were set to 0.6 and 0.04 s, respectively. The sample rate
was set to 5 kHz, and the sample period length was five cycles. The other parameters were
the same as the values reported in the previous section.

The estimation results graphically show only the parameter estimation results for the
2nd–13th-order harmonics. The estimation results are shown in Figure 3.

Figure 3. Estimation under harmonic oscillation conditions. (a) Maximum TVE; (b) maximum FE;
(c) maximum RFE.

The harmonic oscillation has a more significant effect on the results of the BSCS
algorithm at lower-order harmonics (e.g., 2nd–7th). However, the proposed algorithm is
more accurate than the other methods in estimating higher harmonic parameters, especially
the estimation of harmonic frequencies and the ROCOF. Under these conditions, the
maximum values of the TVE, FE, and RFE for the BSCS method are 0.27%, 0.007 Hz,
and 2.14 Hz/s, respectively, while those for the CSTFM method are 1.43%, 0.893 Hz, and
7.82 Hz/s, respectively. The maximum values of the TVE, FE, and RFE are respectively
1.49%, 0.924 Hz, and 18.74 Hz/s for the TFT method, 0.52%, 0.036 Hz, and 4.25 Hz/s for
the OFF method, and 3.47%, 1.44 Hz, and 21.29 Hz/s for the IpDFT method. These data
indicate that the TVE, FE, and RFE values of the proposed algorithm are the smallest,
showing that the proposed method has a higher and more stable estimation accuracy under
low-frequency oscillation conditions.

Under the test conditions described in Section 4.3, the corresponding thresholds in
the IEEE standard for the TVE, FE, and RFE are 3.5%, 0.08 Hz, and 2.5 Hz/s, respectively,
which are not satisfied by the four other comparison algorithms. The TFT method is subject
to severe interference between adjacent harmonics in the case of harmonic oscillations,
which affects the TFT method’s estimation accuracy. The OFF method provides an optimal
algorithm for oscillation data compression, where the spline order controls the error. There-
fore, the error’s impact is lower and close to that specified by the measurement standard.
The CSTFM method introduces a TFM model to describe the dynamic phasors, but the
model frequency cannot be selected accurately. This inaccurate signal model will lead to
larger errors. The IpDFT method produces severe spectral leakage and inter-harmonic in-
terference in the case of harmonic oscillations, so it is not suitable for harmonic frequencies
with larger errors.
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4.4. Anti-Interference Tests

In general, power system signals contain inter-harmonics and a certain amount of
noise, which seriously affect the estimation of the harmonic phasors. In the tests described
in this section, Gaussian white noise with a signal-to-noise ratio of 60 dB was introduced to
the signal. The dynamic signals were set as follows

x(t) = cos(2π f1t) + 0.1 cos(2πh f1t) + λe−t/τ+noise + 0.05 cos(2π fit
)

(40)

where fi is the inter-harmonic frequency and h = 2, . . . , 13. The sampling rate was set to
5 kHz, and the sample period length was five cycles. The amplitude λ and time constant τ
of the DDC components were set to 0.6 and 0.04 s, respectively. The simulation results are
shown in Figure 4.

Figure 4. Estimation under inter-harmonic and noise interference conditions. (a) Maximum TVE;
(b) maximum FE; (c) maximum RFE.

From Figure 4, we can see that the TVE, FE, and RFE values of the BSCS method are all
smaller than those of the other algorithms. It can be concluded that the proposed algorithm
has the highest estimation accuracy under dynamic conditions. Despite the local noise in
the process, the reconstruction was almost complete.

The maximum TVE, FE, and RFE values for the BSCS method are 3.52%, 0.44 Hz,
and 2.35 Hz/s, respectively, compared with 9.84%, 1.26 Hz, and 5.1 Hz/s for the OFF
method, 22.97%, 2.65 Hz, and 14.93 Hz/s for the TFT method, and 22.36%, 2.65 Hz, and
14.98 Hz/s for the IpDFT method. Finally, the maximum TVE, FE, and RFE values for the
CSTFM method are 17.42%, 1.32 Hz, and 6.88 Hz/s, respectively. According to the IEEE
standard for the test conditions described in this section, the thresholds for the maximum
TVE, FE, and RFE values are 3.4%, 0.45 Hz, and 2.5 Hz/s, respectively. Our proposed
algorithm completely satisfies the standard requirements. The OFF algorithm has an
optimal spatial sampler for bandlimited signals, provides an optimal data compression
algorithm for oscillations in increasing degrees of splines, and delivers a powerful optimal
state estimator that effectively suppresses noise and inter-harmonic interference. The TFT
method is subject to severe interference between adjacent harmonics in the presence of
noise interference; consequently, the estimation error of the TFT method is larger. In the case
of the IpDFT algorithm, the inter-harmonic components in the vicinity of the fundamental
harmonic cause a greater impact on the frequency estimation. Additionally, the estimation
results can also be affected by the fundamental frequency offset. The proposed BSCS
method reduces the time-variation in inter-harmonic components and their noise impact
on dynamic phasor measurements in the multi-frequency phasor analysis, significantly
improving the estimation accuracy.

5. Conclusions

This paper proposed a new dynamic phasor estimation method based on compressive
sensing theory and the Bregman iteration method. In the proposed method, the DDC
component is first estimated on the basis of the TFM model. The estimation models for
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harmonics and inter-harmonics are then developed based on compressive sensing, followed
by the establishment of auxiliary variables and a solution by the Bregman method. Then,
the dynamic phasor reconstruction problem is transformed into an optimization problem
of a hybrid regularization algorithm to reconstruct the signal and estimate the dynamic
harmonic phasor’s amplitude, frequency, and rate of frequency change. By using cross
entropy, it was verified that the predicted probability distribution correlates very closely to
the actual one, which proves the validity of the proposed model. The superiority of the
proposed algorithm was verified through analytical calculations and simulations.

The performance of the proposed method was verified under different conditions,
in which test signals such as frequency deviations, harmonic oscillations, and additional
noise were employed to simulate severe operating environments. Under these conditions,
the simulation data show that the proposed method’s TVE, FE, and RFE values satisfy
most of the IEEE standards and that the errors are significantly minimized. The results of
the simulations show that the proposed method can significantly improve the accuracy of
dynamic phasor estimation compared with other popular methods. The proposed method
focuses on achieving higher accuracy but increases the computational complexity and
processing time. Moreover, if dense inter-harmonic components exist near the harmonic
frequency, the proposed method may not provide satisfactory results. Thus, maintaining
high accuracy under dense inter-harmonic conditions and achieving the rapid measurement
of multi-frequency dynamic signals will be explored in future research.
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Nomenclature

TFM Taylor–Fourier multi-frequency
CS Compressive sensing
BSCS Bregman split iteration-based compressive sensing
PMUs Phasor measurement units
DFT Discrete Fourier transform
IpDFT Interpolated discrete Fourier transform
OFF O-splines FIR filter algorithm
TVE The total vector error
FE The frequency error
RFE The rate of change of frequency (ROCOF) error
x0(t) The DDC component
x1(t) The fundamental and harmonic signal
λ The amplitude of the DDC component
τ The time constant of the DDC component
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Rh(t) The amplitude of the harmonic phasor
φh(t) The time constant of the harmonic phasor
f1 The actual power system frequency
Xh Dynamic phasor associated with each component of x1(t)
X(k)

h The kth order derivative of Xh
K The Taylor expansion order
∗ The conjugate calculator
T The sample interval
x1[n] The discretized signal expression
Φ The coefficient of [X(k)

h , . . . ,X(k)
h ] in the original equation

r exactly equivalent to Xh
a0(t) The amplitude of the DDC components of the model
ϕ0(t) The initial phase of the DDC components of the model
Tw The length of the algorithm’s observation time window

p0(t)
The dynamic phasor corresponding to the cosine components of the
DDC frequency

d·e The downward rounding operator
∆ fd The frequency-domain sampling interval
K0 The number of frequency-domain samples used for parametric modeling
x0 A column vector with Nw samples of the signal x0(t)
p0 A row vector including p0,k
‖·‖2 The Euclidean norm
H The Hermitian operator
Ψ The orthogonal transform
β The conversion coefficient of the original signal
Φ The Gaussian random matrix
TN(β) The objective function of the reconstructed signal
‖x‖q The lq parametrization of any vector x
s An auxiliary signal for regularization
∇ The gradient operator
ξs A unit vector perpendicular to the gradient of s
sx The partial derivatives in the vertical direction
sy The partial derivatives in the horizontal direction
Dx The difference operator in the x-direction
Dy The difference operator in the y-direction
j, h The auxiliary variables based on the split criterion
σ, τ New regularization parameters to control the quadratic Penalty function term
shrink The shrink function to update the variable
L The linear regularized operator
I An identity matrix
F The interpolation factor
f̂h The frequency of the required harmonic
X̂h The amplitude of the required harmonic
R̂h The rate of frequency change of the required harmonic
rh The h-th column of r
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