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Abstract: In this contribution, we specify the conditions for assuring the validity of the synergy of the
distribution of probabilities of occurrence. We also study the subsequent restriction on the maximal
extension of the strict concavity region on the parameter space of Sharma–Mittal entropy measures,
which has been derived in a previous paper in this journal. The present paper is then a necessary
complement to that publication. Some applications of the techniques introduced here are applied to
protein domain families (Pfam databases, versions 27.0 and 35.0). The results will show evidence
of their usefulness for testing the classification work performed with methods of alignment that are
used by expert biologists.
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1. Introduction

We have been working since 2015 on the problem of testing the alignment of protein
domain families which are proposed by expert biologists and bioinformaticians. We have
found that the use of selected entropy measures is very proficient for testing the results
published by those professionals and they favour a rigorous ANOVA statistical analysis [1].
In order to reduce the search space for admissible values of entropy measures, we have
emphasized the need for work in the region related to strict concavity of these entropies.
This study has been undertaken in a previous work, and we present in Section 2 a summary
of those developments. In the present work, we aim to complement the results of a
previous publication [2], and a subsequent restriction on the parameter space has to be
performed in order to guarantee the synergy of the probability distributions to be tested.
Non-synergetic distributions are not worthwhile for working because they will not preserve
the fundamental property of getting more information of amino acids into t-sets of columns
than to sum up the information obtained from individual columns. In Section 3, a brief
digression is then made for introducing the Sharma–Mittal class of entropy measures.
Section 4 emphasizes the aspects of synergy of the distributions and their consequences
for the reduction of the parameter space of Sharma–Mittal entropies. In Section 5, we
treat the analysis of the maximal extension of the parameter space, and we repeat the
reduction process imposed by the requirement of fully synergetic distributions of Section 4.
We conclude the paper in Section 6 by studying the relation of Hölder and generalized
Khinchin–Shannon (GKS) inequalities.

2. The Construction of the Probabilistic Space

Let us consider a set of m f domains (m f rows) from a chosen family of protein domains.
In order to associate a rectangular array with this family, to be taken as its representative in
the probabilistic space we are constructing, we specify its number of columns as n f = n.
This means that among m f rows, we disregard all rows such that the number of their amino
acids satisfies n f < n and preserve m′f rows whose number of amino acids satisfies n f ≤ n,
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but disregard (n f − n) amino acids in these m′f rows. We then choose m rows from among
the m′f rows to obtain m × n rectangular arrays. There are m′f !/[m!(m′f − m)!] of these
m× n rectangular arrays. Any one of them can be used as a representative of the domain
family to be analysed in the statistical procedure to be implemented.

The next step is to assign a joint probability of occurrence of a set of variables a1, . . . , at
in columns j1, . . . , jt to be given by

pj1 ...jt(a1, . . . , at) =
nj1 ...jt(a1, . . . , at)

m
, (1)

where nj1 ...jt(a1, . . . , at) stands for the number of occurrences of the set a1, . . . , at in the t
columns of the subarray m× t of the representative array m× n (1 ≤ t ≤ n). The symbols
a1, . . . , at will be running over the letters of the one-letter code for the twenty amino acids:
aj(1 ≤ j ≤ t) ∈ {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.

We then have
∑

a1,...,at

nj1 ...jt(a1, . . . , at) ≡ m . (2)

We also introduce the conditional probabilities of occurrence, which are given implicitly by

pj1 ...jt(a1, . . . , at) ≡ pj1 ...jt(a1, . . . , at−1|at)pjt(at) , (3)

where pj1 ...jt(a1, . . . , at−1|at) is the probability of occurrence of the amino acids in the
columns j1, . . . , jt−1, if the distribution of amino acids in the jt-th column is known a priori.

The Bayes’ law for probabilities of occurrence [2,3] can be written as

pj1 ...jt(a1, . . . , at) ≡ pj1 ...jt(a1, . . . , at−1|at)pjt(at)

= pjt j1 ...jt−1(at|a1, . . . , at−1)pj1 ...jt−1(a1, . . . , at−1)

= pjt jt−1 j1 ...jt−2(at, at−1|a1, . . . , at−2)pj1 ...jt−2(a1, . . . , at−2)

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= pjt ...j3 j1 j2(at, . . . , a3|a1, a2)pj1 j2(a1, a2)

= pjt ...j2 j1(at, . . . , a2|a1)pj1(a1)

= pjt ...j1(at, . . . , a1) . (4)

The equality of the three first right-side members, as well as the equality of the three last
ones, does correspond to the application of Bayes’ law [2,3]. The symmetries for the joint
probability distribution pj1 ...jt(a1, . . . , at) are due to the ordering of the columns for the
distributions of amino acids.

From the ordering j1 < j2 < . . . < jt, the values assumed by the variables j1, . . . , jt are
respectively given by

j1 = 1, 2, . . . , n− t + 1

j2 = j1 + 1, j1 + 2, . . . , n− t + 2
... , 1 ≤ t ≤ n

jt−1 = jt−2 + 1, jt−2 + 2, . . . , n− 1

jt = jt−1 + 1, jt−1 + 2, . . . , n .

(5)

We then have (n
t) = n!

t!(n−t)! geometric objects pj1 ...jt(a1, . . . , at) of t columns and (20)t

components each.
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3. The Sharma–Mittal Class of Entropy Measures

As emphasized in Ref. [2], the introduction of random variable functions such as
entropy measures associated with the probabilities of occurrence, is suitable to provide an
analysis of the evolution of these probabilities through the regions of the parameter space
of entropies. The class of Sharma–Mittal entropy measures seems to be particularly adapted
to this task when related to the occurrence of amino acids in the objects pj1 ...jt(a1, . . . , at).
The thermodynamic interpretation of the notion of entropy greatly helps to classify the
distribution of its values associated with protein domain databases and to interpret its
evolution through the Fokker–Planck equations to be treated in forthcoming articles in this
line of research.

The two-parameter Sharma–Mittal class of entropy measures is usually given by

(SM)
(r,s)
j1 ...jt

=

(
α
(s)
j1 ...jt

) 1−r
1−s − 1

1− r
; (SM)

(r,s)
jt

=

(
α
(s)
jt

) 1−r
1−s − 1

1− r
, (6)

where
α
(s)
j1 ...jt

= ∑
a1,...,at

[
pj1 ...jt(a1, . . . , at)

]s ; α
(s)
jt

= ∑
at

[
pjt(at)

]s . (7)

The parameters r, s must bound a region corresponding to a strict concavity in the
parameter space. A necessary requirement to be satisfied [3] is

∂2(SM)
(r,s)
j1...jt

∂
(

pj1...jt (a1,...,at)
)2 = s

(
α
(s)
j1 ...jt

) s−r
1−s ·

[
pj1 ...jt(a1, . . . , at)

]s−2 ·
[

s(s−r)
(1−s)2 p̂j1 ...jt(a1, . . . , at)− 1

]
< 0 , (8)

where p̂j1 ...jt(a1, . . . , at) stands for the escort probability associated with the joint probability
pj1 ...jt(a1, . . . , at), or,

p̂j1 ...jt(a1, . . . , at) =

[
pj1 ...jt(a1, . . . , at)

]s

α
(s)
j1 ...jt

; p̂jt(at) =

[
pjt(at)

]s

α
(s)
jt

. (9)

Equation (8) leads to
r ≥ s > 0 . (10)

Some special cases of one-parameter entropies are commonplace in the scientific litera-
ture [3–9]:

The r = s region is the domain of the Havrda–Charvat [6] entropy measure H(s)
j1 ...jt

,

H(s)
j1 ...jt

=
α
(s)
j1 ...jt
− 1

1− s
. (11)

The r = 2− s, 0 ≤ s ≤ 1, region will stand for the domain of the Landsberg–Vedral [7]
entropy measure, L(s)

j1 ...jt
,

L(s)
j1 ...jt

=
α
(s)
j1 ...jt
− 1

(1− s)α(s)j1 ...jt

≡
H(s)

j1 ...jt

α
(s)
j1 ...jt

. (12)

The Renyi R(s)
j1 ...jt

[8] and the “non-extensive” Gaussian [9] G(r)
j1 ...jt

entropy measures are
obtained from limit processes:



Entropy 2022, 24, 993 4 of 16

R(s)
j1 ...jt
≡ lim

r→1

(
α
(s)
j1 ...jt

) 1−r
1−s − 1

1− r
= lim

r→1

d
dr

[(
α
(s)
j1 ...jt

) 1−r
1−s − 1

]

d
dr (1− r)

= lim
r→1

e
1−r
1−s ·log α

(s)
j1...jt ·

(
−1
1−s

)
log αs

j1 ...jt

−1

=
log α

(s)
j1 ...jt

1− s
. (13)

G(r)
j1 ...jt
≡ lim

s→1

(
α
(s)
j1 ...jt

) 1−r
1−s − 1

1− r
=

1
1− r


exp


(1− r) · lim

s→1

d
ds log α

(s)
j1 ...jt

d
ds (1− s)


− 1




=
1

1− r


exp


−(1− r) · lim

s→1

d
ds α

(s)
j1 ...jt

α
(s)
j1 ...jt


− 1


 .

After using the definition of α
(s)
j1 ...jt

, Equation (7), and lim
s→1

α
(s)
j1 ...jt

= 1 from Equations (1) and (2),
we get:

G(r)
j1 ...jt

=
e(1−r)Sj1...jt − 1

1− r
, (14)

where Sj1 ...jt is the Gibbs–Shannon entropy measure

Sj1 ...jt = −∑
a1,...,at

pj1 ...jt(a1, . . . , at) log pj1 ...jt(a1, . . . , at) . (15)

The Gibbs–Shannon entropy measure, Equation (15), is also obtained by taking the
convenient limits of the special cases of Sharma–Mittal entropies, Equations (11)–(14):

lim
s→1

H(s)
j1 ...jt

= lim
s→1

L(s)
j1 ...jt

= lim
s→1

R(s)
j1 ...jt

= lim
r→1

G(r)
j1 ...jt

= Sj1 ...jt . (16)

We shall analyse in the next section the structure of the two-parameter space of
Sharma–Mittal entropy by taking into consideration these special cases.

We are now reminded that for the limit of Gibbs–Shannon entropy, a conditional
entropy measure is defined [3] by

Sj1 ...jt−1|jt = −∑
a1,...,at

pjt(at)pj1 ...jt(a1, . . . , at−1|at) log pj1 ...jt(a1, . . . , at−1|at) . (17)

We then have analogously for the conditional Sharma–Mittal entropy measure [3]

(SM)j1 ...jt−1|jt =

(
∑

a1,...,at
p̂jt(at)

[
pj1 ...jt(a1, . . . , at−1|at)

]s
) 1−r

1−s
− 1

1− r
. (18)

It is easy to show by trivial calculation that, analogously to Equation (16), we will have

lim
s→1

lim
r→s

(SM)j1 ...jt−1|jt = lim
s→1

lim
r→2−s

(SM)j1 ...jt−1|jt = lim
s→1

lim
r→1

(SM)j1 ...jt−1|jt = lim
r→1

lim
s→1

(SM)j1 ...jt−1|jt = Sj1 ...jt−1|jt . (19)

From Equations (6), (7) and (18) and the application of the Bayes’ law, Equation (4),
we can write

(SM)j1 ...jt = (SM)jt + (SM)j1 ...jt−1|jt + (1− r)(SM)jt(SM)j1 ...jt−1|jt . (20)
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4. Aspects of Synergy and the Reduction of the Parameter Space for Fully Synergetic
Distributions

For the Gibbs–Shannon entropy measure, the inequality written by A. Y. Khinchin [3,10] is

Sj1 ...jt−1|jt ≤ Sj1 ...jt−1 . (21)

This inequality would be described by Khinchin as: “On the average, the knowledge a priori
of the distribution on the column jt can only decrease the uncertainty of the distribution on
the j1, . . . , jt−1 columns”. We can write an analogous inequality for the Sharma–Mittal class
of entropies

(SM)j1 ...jt−1|jt ≤ (SM)j1 ...jt−1 . (22)

We then get from Equations (20) and (22)

(SM)j1 ...jt ≤ (SM)jt + (SM)j1 ...jt−1 + (1− r)(SM)jt(SM)j1 ...jt−1 . (23)

After iteration of this equation, t→ t− 1→ t− 2→ . . ., we can also write

(SM)j1 ...jt ≤

t
∏
l=1

[
1 + (1− r)(SM)jl

]
− 1

1− r
. (24)

The inequalities in (21)–(24) are associated with what are called “synergetic conditions”. In
this section, we also derive the fully synergetic conditions as GKS inequalities.

After using Equations (7) and (9) in Equation (23), we get

(
α
(s)
j1 ...jt

) 1−r
1−s

1− r
≤

(
α
(s)
jt

) 1−r
1−s ·

(
α
(s)
j1 ...jt−1

) 1−r
1−s

1− r
, (25)

and after iteration and use of Equation (24)

(
α
(s)
j1 ...jt

) 1−r
1−s

1− r
≤

t
∏
l=1

(
α
(s)
jl

) 1−r
1−s

1− r
. (26)

The hatched region of strict concavity in the parameter space of Sharma–Mittal en-
tropies, C = {(s, r) | r ≥ s > 0}, is depicted in Figure 1. The special cases corresponding
to Havrda–Charvat’s (r = s), Landsberg–Vedral’s (r = 2− s), Renyi’s (r = 1), and “non-
extensive” Gaussian’s (s = 1) entropies are also represented.

We can identify three subregions in Figure 1. They will correspond to

RI = {(s, r) | 1 > r ≥ s > 0} ⇒ α
(s<1)
j1 ...jt

≤
t

∏
l=1

α
(s<1)
jt

, (27)

RII = {(s, r) | r ≥ s > 1} ⇒ α
(s>1)
j1 ...jt

≥
t

∏
l=1

α
(s>1)
jt

, (28)

RIII = {(s, r) | r > 1 > s > 0} ⇒ α
(s<1)
j1 ...jt

≤
t

∏
l=1

α
(s<1)
jt

(29)

where the ordering of α-symbols has been obtained from Equation (26). The subregions RI
and RIII are what we call fully synergetic subregions, and the corresponding inequalities
are the GKS inequalities [2].
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s

r

0

1

2

3

1 2 3

Figure 1. The strict concavity region C = {(s, r) | r ≥ s > 0} of Sharma–Mittal class of entropy
measures. It is the epigraph of the curve (r = s), and this corresponds to the Havrda–Charvat entropy,
which is depicted in brown. The Landsberg–Vedral’s (r = 2− s), Renyi’s (r = 1), and “non-extensive”
Gaussian’s (s = 1) are depicted in green, blue, and red, respectively.

The subregions RI, RII, and RIII are depicted in Figure 2a–c, respectively. The union of
subregions RI and RIII is the fully synergetic Khinchin–Shannon restriction to be imposed
on the strict concavity region of Figure 1 and it is depicted in Figure 2d below.

s

r

0

1

1

(a)

s

r

0

1

1

(b)
Figure 2. Cont.
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s

r

0

1

2

1

(c)

s

r

0

1

2

1

(d)
Figure 2. Subregions of the strict concavity region C = {(s, r) | r ≥ s > 0} of the Sharma–Mittal
class of entropy measures. (a) Khinchin–Shannon subregion RI—fully synergetic.; (b) The non-
synergetic subregion RII; (c) Khinchin–Shannon subregion RIII—fully synergetic; (d) Khinchin–
Shannon subregion RI ∪RIII—fully synergetic. The reduced subregion RI ∪RIII of Figure 1 is obtained
by taking into consideration fully synergetic distributions only.

5. The Maximal Extension of the Parameter Space and Its Reduction for Fully
Synergetic Distribution

In Figures 1 and 2d, we have depicted the structure of the strict concavity region for
Sharma–Mittal entropy measures and its reduction to a subregion by the application of
the requirement of fully synergetic distributions, respectively. Our analysis has used a
coarse-grained approach to concavity given by Equations (8) and (10). We now introduce
some necessary refinements for characterizing the probability of occurrence in subarrays
of m rows and t columns, m× t. For t columns, there are (20)t possibilities of occurrence
of amino acids, which could be a large number, but we could count not individual amino
acids, but groups of t-sets of amino acids (µ-groups) which appear on the m rows of the
m × t array. We characterize these µ-groups by µ = 1, . . . , m, from all equal µ-groups
(µ = 1) to m different µ-groups (µ = m). We also call qµ, the number of equal t-sets of a
given µ-group.

In Equation (2), the sum is over all the amino acids that make up the geometric object
defined in Equation (1), the probability of occurrence. We can now perform the sum over
µ-groups and write

∑
a

qµ
1 ,...,a

qµ
t

pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)
= ∑

a
qµ
1 ,...,a

qµ
t

nj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)

m
=

m

∑
µ=1

qµ

m
= 1 , (30)

where
(
a

qµ

1 , . . . , a
qµ

t
)

are the t-sets of a µ-group. We also have from Equation (7)

∑a
qµ
1 ,...,a

qµ
t

[
pj1 ...jt

(
a

qµ

1 , . . . , a
qµ

t
)]s

= ∑a
qµ
1 ,...,a

qµ
t

[
nj1...jt

(
a

qµ
1 ,...,a

qµ
t

)
m

]s

= ∑m
µ=1

(
qµ

m

)s
= α

(s)
j1 ...jt

. (31)

From Equations (30) and (31), we can now proceed to the calculation of the Hessian
matrix for Sharma–Mittal entropy measures. We have for the first derivative of (SM)j1 ...jt

∂(SM)j1 ...jt

∂pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
) =

s
1− s

(
α
(s)
j1 ...jt

) s−r
1−s
[

pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)]s−1

. (32)

We then have for a generic element of the Hessian matrix [2]



Entropy 2022, 24, 993 8 of 16

Hqµqν =
∂2(SM)j1 ...jt

∂pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)
∂pj1 ...jt

(
aqν

1 , . . . , aqν
t
)

= s
(

α
(s)
j1 ...jt

) s−r
1−s
[

pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)]s−2

[
s(s− r)
(1− s)2

pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)

pj1 ...jt
(
aqν

1 , . . . , aqν
t
) · p̂j1 ...jt

(
aqν

1 , . . . , aqν
t
)
− δµν

]
, (33)

where p̂j1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)

is the escort probability associated to pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)
, or

p̂j1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)
≡

[
pj1 ...jt

(
a

qµ

1 , . . . , a
qµ

t
)]s

∑
bqν

1 ,...,bqν
t

pj1 ...jt
(
bqν

1 , . . . , bqν
t
) . (34)

The principal minors are given by

det Hqµqν(µ, ν = 1, . . . , k) = (−1)k−1sk
(

α
(s)
j1 ...jt

) k(s−r)
1−s

[ k

∏
µ=1

pj1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)]s−2

·
[

s(s− r)
(1− s)2

k

∑
µ=1

p̂j1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)
− 1

]
, k = 1, . . . , m , (35)

and we have

k

∑
µ=1

p̂j1 ...jt
(
a

qµ

1 , . . . , a
qµ

t
)
=

k

∑
µ=1

[
pj1 ...jt

(
a

qµ

1 , . . . , a
qµ

t
)]s

m
∑

µ=1

(
qµ

m

)s =

k
∑

µ=1

(
qµ

m

)s

m
∑

µ=1

(
qµ

m

)s ≡ σk(s) (36)

according to Equation (31).
From Equations (35) and (36), the requirement of strict concavity will lead to

s(s− r)
(1− s)2 σk(s)− 1 < 0 . (37)

We then have
det Hqµqν(µ, ν = 1, . . . , k) < 0 , k odd; > 0 , k even. (38)

This does correspond to the criterion of negative definiteness of the Hessian matrix for
strict concavity of multivariate functions [11].

Each k-value is associated with the k-epigraph region, which is the k-extension of the
strict concavity region presented in Figure 1. These regions are given by

Ckmax = {(s, r) | r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r > s− (1− s)2

s σk(s)

}
, k = 1, . . . , m . (39)

The greatest lower bound of the sequence of k-curves is given by σm(s) = 1. We
then have

rm(s) = 2− 1
s

. (40)

We can then write for the maximal extended region of strict concavity

Cmax = {(s, r) | r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r > 2− 1
s

}
. (41)
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The region corresponding to Equation (41) is depicted in Figure 3 below.
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We can then write for the maximal extended region of strict concavity:

Cmax = {(s, r) | r ≥ s > 0} ∪
{
(s, r)

∣∣∣∣ s > r > 2 − 1
s

}
. (41)

The region corresponding to Equations (41) is depicted in Figure 3 below.

0

1

2

0.5 1 s

r

Figure 3. The maximal strict concavity region of the Sharma-Mittal class of entropy measures.
The hatched region is the epigraph of the curve r = 2 − 1/s which is depicted in black. The
Havrda-Charvat (r = s) region is in brown. The Landsberg-Vedral (r = 2 − s), Renyi (r = 1), and
“non-extensive” Gaussian (s = 1) regions are depicted in green, blue, and red, respectively.

We are now ready to undertake the application of restrictions for fully synergetic
distributions (validity of GKS inequalities) to the maximal strict concavity region of
Figure 3.

We start by identifying two regions included in Figure 3. They will be given by

RIV =

{
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∣∣∣∣ 1 > s > r ≥ 2 − 1
s
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}
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∏
l=1

α
(s<1)
jt

, (42)

RV =

{
(s, r)

∣∣∣∣ s > r ≥ 2 − 1
s
> 1

}
⇒ α

(s>1)
j1 ...jt

≥
t

∏
l=1

α
(s>1)
jt

. (43)

These regions are depicted in Figures 4a and 4b, respectively.
In order to find the reduced region corresponding to Figure 3, analogously to what

has been done for Figure 1, we also need the subregions RI, RIII, Equations (27), (29):
the resulting subregion of fully synergetic distributions is given by RIV ∪ RI ∪ RIII and is
depicted in Figure 5.

6. Hölder Inequalities and GKS Inequalities. A Possible Conjecture

In this section, we study the relation between GKS inequalities [2] and Hölder
inequalities by using examples of distributions obtained from databases of protein
domain families. In order to start, some definitions and properties of the probabilistic
space are now in order.

Figure 3. The maximal strict concavity region of the Sharma–Mittal class of entropy measures.
The hatched region is the epigraph of the curve r = 2 − 1/s which is depicted in black. The
Havrda–Charvat (r = s) region is in brown. The Landsberg–Vedral (r = 2− s), Renyi (r = 1), and
“non-extensive” Gaussian (s = 1) regions are depicted in green, blue, and red, respectively.

We are now ready to undertake the application of restrictions for fully synergetic dis-
tributions (validity of GKS inequalities) to the maximal strict concavity region of Figure 3.

We start by identifying two regions included in Figure 3. They will be given by

RIV =

{
(s, r)

∣∣∣∣ 1 > s > r ≥ 2− 1
s
> 0

}
⇒ α

(s<1)
j1 ...jt

≤
t

∏
l=1

α
(s<1)
jt

, (42)

RV =

{
(s, r)

∣∣∣∣ s > r ≥ 2− 1
s
> 1

}
⇒ α

(s>1)
j1 ...jt

≥
t

∏
l=1

α
(s>1)
jt

. (43)
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Figure 5. RIV ∪ RI ∪ RIII is the reduction of the region of Figure 3 by taking into consideration the
fully synergetic distributions only.

Let us firstly introduce the definition of the conditional probability of occurrence of
the escort probability of occurrence [13]. This is a simple application to escort probabili-
ties of Equation (3):

p̂j1 ...jt(a1, . . . , at−1|at) =
p̂j1 ...jt(a1, . . . , at)

p̂jt(at)
. (44)

From the definitions of escort probabilities, Equation (9), we can write,

p̂j1 ...jt(a1, . . . , at) =

(
pj1 ...jt(a1, . . . , at)

)s

∑
b1,...,bt

(
pj1 ...jt(b1, . . . , bt)

)s , (45)

and,

p̂jt(at) =

(
pjt(at)

)s

∑
bt

(
pjt(bt)

)s . (46)

In Equations (44)–(46), the symbols a1, . . . , at; b1, . . . , bt assume the representative letters
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Let us firstly introduce the definition of the conditional probability of occurrence of
the escort probability of occurrence [13]. This is a simple application to escort probabili-
ties of Equation (3):

p̂j1 ...jt(a1, . . . , at−1|at) =
p̂j1 ...jt(a1, . . . , at)

p̂jt(at)
. (44)

From the definitions of escort probabilities, Equation (9), we can write,

p̂j1 ...jt(a1, . . . , at) =

(
pj1 ...jt(a1, . . . , at)

)s

∑
b1,...,bt

(
pj1 ...jt(b1, . . . , bt)

)s , (45)

and,

p̂jt(at) =

(
pjt(at)

)s

∑
bt

(
pjt(bt)

)s . (46)

In Equations (44)–(46), the symbols a1, . . . , at; b1, . . . , bt assume the representative letters

(b)

Figure 4. Subregions of the maximal strict concavity region of the Sharma–Mittal class of entropy
measures (Figure 3). (a) Khinchin–Shannon subregion RIV—fully synergetic; (b) The non-synergetic
subregion RV.

In order to find the reduced region corresponding to Figure 3, analogously to what
has been done for Figure 1, we also need the subregions RI, RIII, Equations (27) and (29):
the resulting subregion of fully synergetic distributions is given by RIV ∪ RI ∪ RIII and is
depicted in Figure 5.
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Let us firstly introduce the definition of the conditional probability of occurrence of
the escort probability of occurrence [13]. This is a simple application to escort probabili-
ties of Equation (3):

p̂j1 ...jt(a1, . . . , at−1|at) =
p̂j1 ...jt(a1, . . . , at)

p̂jt(at)
. (44)

From the definitions of escort probabilities, Equation (9), we can write,

p̂j1 ...jt(a1, . . . , at) =

(
pj1 ...jt(a1, . . . , at)

)s

∑
b1,...,bt

(
pj1 ...jt(b1, . . . , bt)

)s , (45)

and,

p̂jt(at) =

(
pjt(at)

)s

∑
bt

(
pjt(bt)

)s . (46)

In Equations (44)–(46), the symbols a1, . . . , at; b1, . . . , bt assume the representative letters

Figure 5. RIV ∪ RI ∪ RIII is the reduction of the region of Figure 3 by taking into consideration the
fully synergetic distributions only.

6. Hölder Inequalities and GKS Inequalities: A Possible Conjecture

In this section, we study the relation between GKS inequalities [2] and Hölder inequal-
ities by using examples of distributions obtained from databases of protein domain families.
In order to start, some definitions and properties of the probabilistic space are now in order.

Let us first introduce the definition of the conditional probability of occurrence of the
escort probability of occurrence [12]. This is a simple application to escort probabilities of
Equation (3):

p̂j1 ...jt(a1, . . . , at−1|at) =
p̂j1 ...jt(a1, . . . , at)

p̂jt(at)
. (44)

From the definitions of escort probabilities, Equation (9), we can write

p̂j1 ...jt(a1, . . . , at) =

(
pj1 ...jt(a1, . . . , at)

)s

∑
b1,...,bt

(
pj1 ...jt(b1, . . . , bt)

)s , (45)

and

p̂jt(at) =

(
pjt(at)

)s

∑
bt

(
pjt(bt)

)s . (46)

In Equations (44)–(46), the symbols a1, . . . , at; b1, . . . , bt assume the representative letters of
the one-letter code for the 20 amino acids, aj; bj (1 ≤ j ≤ t) ∈ {A, C, D, E, F, G, H, I, K, L, M,
N, P, Q, R, S, T, V, W, Y}.

After substituting Equations (45) and (46) into Equation (44), we get

p̂j1 ...jt(a1, . . . , at−1|at) =

(
pj1 ...jt(a1, . . . , at−1|at)

)s(pjt(at)
)s

∑
b1,...,bt

(
pjt(bt)

)s(pj1 ...jt(b1, . . . , bt−1|bt)
)s · p̂jt(at)

, (47)

and from Equation (46)

p̂j1 ...jt(a1, . . . , at−1|at) =

(
pj1 ...jt(a1, . . . , at−1|at)

)s

∑
b1,...,bt

p̂jt(bt)
(

pj1 ...jt(b1, . . . , bt−1|bt)
)s . (48)
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We also write the definition of escort probability of occurrence of the conditional
probability of occurrence [12]

pj1 ...jt(a1, . . . , at−1|at )̂ =

(
pj1 ...jt(a1, . . . , at−1|at)

)s

∑
b1,...,bt−1

(
pj1 ...jt(b1, . . . , bt−1|bt)

)s . (49)

We can check the definitions of Equations (48) and (49) from the equality of the two escort
probabilities with the original conditional probability, for s = 1

s = 1 ⇒ p̂j1 ...jt(a1, . . . , at−1|at) = pj1 ...jt(a1, . . . , at−1|at )̂ = pj1 ...jt(a1, . . . , at−1|at) . (50)

We should note that the denominators of the right-hand sides of Equations (48) and (49), or,

Z ≡ ∑
a1,...,at

p̂jt(at)
[
pj1 ...jt(a1, . . . , at−1|at)

]s
=

α
(s)
j1 ...jt

α
(s)
jt

, (51)

and
X(at) ≡ ∑

a1,...,at−1

(
pj1 ...jt(a1, . . . , at−1|at)

)s (52)

will be equal if all amino acids in the jt column are equal. If we have, for instance, the jt
column given by:

jt ↔ (A,A,A,A, . . . ,A︸ ︷︷ ︸
m

) . (53)

The unit vectors of probabilities p̂jt and pjt will also be equal and given by

( p̂jt)
T = (pjt)

T = (1, 0, 0, 0, . . . , 0︸ ︷︷ ︸
20

) . (54)

This means that for this special case of an event of rare occurrence, we also have the equality
of the conditional of the escort probability and the escort probability of the conditional
probability, or the left-hand sides of Equations (48) and (49), respectively.

For a jt-column with a generic distribution of amino acids, the denominators Z and
X(at) on the right-hand sides of Equations (48) and (49) will no longer be equal. An
ordering of these denominators should be decided from the probabilities of amino acid
occurrence in a chosen protein domain family.

This study is undertaken with the help of the functions Z and X(at) of Equations (51)
and (52) and with the functions J and U, defined below:

J ≡ ∑
a1,...,at−1

[
∑
at

p̂jt(at)pj1 ...jt(a1, . . . , at−1|at)

]s

, (55)

U ≡ ∑
a1,...,at−1

(
pj1 ...jt−1(a1, . . . , at−1)

)s ≡ α
(s)
j1 ...jt−1

. (56)

Our method will then be the comparison of pairs of functions in order to proceed with
the search for the effect of fully synergetic distributions of amino acids.

There are six comparisons to study:

(I) X(at) ≷ Z

or

1(
pjt(at)

)s ∑
a1,...,at−1

(
pj1 ...jt(a1, . . . , at)

)s
≷

α
(s)
j1 ...jt

α
(s)
jt

; pjt(at) 6= 0 . (57)
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(II) X(at) ≷ J

or

1(
pjt(at)

)s ∑
a1,...,at−1

(
pj1 ...jt(a1, . . . , at)

)s
≷

1

α
(s)
jt

∑
a1,...,at−1

[
∑
at

(
pjt(at)

)s−1 pj1 ...jt(a1, . . . , at)

]s

;

pjt(at) 6= 0 .

(58)

(III) X(at) ≷ U

or
1(

pjt(at)
)s ∑

a1,...,at−1

(
pj1 ...jt(a1, . . . , at)

)s
≷ α

(s)
j1 ...jt−1

. (59)

(IV) U ≷ J

or

∑
a1,...,at−1

(
pj1 ...jt−1(a1, . . . , at−1)

)s ≡ α
(s)
j1 ...jt−1

≷
H(

α
(s)
jt

)s , (60)

where H is defined by,

H ≡ ∑
a1,...,at−1

[
∑
at

(
pjt(at)

)s−1 pj1 ...jt(a1, . . . , at)

]s

. (61)

(V) J ≷ Z

or

∑
a1,...,at−1

[
∑
at

p̂jt(at)pj1 ...jt(a1, . . . , at−1|at)

]s

≡ H(
α
(s)
jt

)s ≷
α
(s)
j1 ...jt

α
(s)
jt

. (62)

(VI) U ≷ Z

or

∑
a1,...,at−1

(
pj1 ...jt−1(a1, . . . , at−1)

)s ≡ α
(s)
j1 ...jt−1

≷
α
(s)
j1 ...jt

α
(s)
jt

. (63)

Equations (57)–(59) should be multiplied by
(

pjt(at)
)s and after that, each one has to

be summed over at. We then have, respectively,

α
(s)
j1 ...jt

≷ α
(s)
j1 ...jt

, (64)

(
α
(s)
jt

)s−1
α
(s)
j1 ...jt

≷ H , (65)

α
(s)
j1 ...jt

≷ α
(s)
jt
· α(s)j1 ...jt−1

. (66)

Equations (60), (62) and (63) can be written, respectively, as

(
α
(s)
jt

)s
· α(s)j1 ...jt−1

≷ H (67)

H ≷
(

α
(s)
jt

)s−1
· α(s)j1 ...jt

, (68)

α
(s)
jt
· α(s)j1 ...jt−1

≷ α
(s)
j1 ...jt

, (69)



Entropy 2022, 24, 993 13 of 16

The Hölder’s inequality as applied to probabilities of occurrence [3] is written as

1(
α
(s)
jt

)s

[
∑
at

(
pjt(at)

)s−1 pj1 ...jt(a1, . . . , at)

]s

≥
∑
at

[
pj1 ...jt(a1, . . . , at)

]s

α
(s)
jt

. (70)

After multiplying by
(
α
(s)
jt

)s and summing over a1, . . . , at−1, we get

H ≥
(

α
(s)
jt

)s−1
α
(s)
j1 ...jt

, s ≤ 1 . (71)

We also define

O ≡
(

α
(s)
jt

)s−1
α
(s)
j1 ...jt

, (72)

B ≡
(

α
(s)
jt

)s
α
(s)
j1 ...jt−1

. (73)

We then summarize the results obtained:

1. Equation (64) is only an identity: α
(s)
j1 ...jt

= α
(s)
j1 ...jt

.

2. Equations (65) and (68) can be ordered by Hölder’s inequality, Equations (70) and (71).
3. Equations (66) and (69) can be ordered by GKS inequalities, corresponding to fully

synergetic distributions of amino acids, α
(s<1)
j1 ...jt

≤ α
(s<1)
jt

· α(s<1)
j1 ...jt−1

.

4. Equation (67) cannot be ordered without additional experimental/phenomenological
information on the probabilities of occurrence to be obtained from updated versions
of protein domain family databases [13].

We now collect the formulae obtained from the analysis performed on this section.
Equations (65) and (68) are ordered by Hölder’s inequality. We write

H −O ≥ 0 , s < 1 . (74)

Equations (66) and (69) are ordered by GKS inequality. We write

B−O ≥ 0 , s < 1 . (75)

After using Equation (73), we can write Equation (67) as

B−H ≷ 0 . (76)

In Figure 6a,b we have depicted the curves corresponding to functions H −O and
B−O for seven 3-sets of contiguous columns and 80 rows, chosen from databases Pfam
27.0 and Pfam 35.0, respectively. There are also inset figures in order to show the curves for
s ≥ 1.

In Figure 7a,b, we do the same for the differences B−H . We emphasize that for the
3-sets such that B−H ≥ 0, 0 ≤ s ≤ 1, the GKS inequalities B−O ≥ 0 will result from the
validity of Hölder’s inequality. We have worked with the PF01926 protein domain family
to perform all the calculations.
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(a)

(b)

Figure 6. Hölder (H −O ≥ 0, 0 ≤ s ≤ 1) distributions (dashed curves) and Khinchin–Shannon
(B−O ≥ 0, 0 ≤ s ≤ 1) distributions (continuous curves) of the PF01926 protein domain family from
(a) protein domain family PF01926 obtained from Pfam 27.0 and (b) protein domain family PF01926
obtained from Pfam 35.0. The top-right inset shows details of the curves for s ≥ 1.
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(a)

(b)

Figure 7. B−H difference of the PF01926 protein domain family from (a) protein domain family
PF01926 obtained from Pfam 27.0 and (b) protein domain family PF01926 obtained from Pfam 35.0.
The top-right inset shows details of the curves for s ≥ 1. B−H ≥ 0, H −O ≥ 0 =⇒ B−O ≥ 0.

7. Concluding Remarks

The first comment we want to make to the present work is about the possibility of
working in a region of the parameter space that preserves the strict concavity and the
fully synergetic structure of the Sharma–Mittal class of entropy measure distributions to be
visited by solutions of a new successful statistical mechanics approach. The usual work
with Havrda–Charvat distributions describes the evolution along the boundary (r = s) of
the region (r ≥ s > 0) that was correctly considered to correspond to strict concavity, but it
is also known to be non-synergetic for s > 1. We now have the opportunity to develop this
statistical mechanics approach along an extended boundary, preserving the strict concavity
and providing the study of the evolution of fully synergetic entropy distributions. A first
sketch of these developments will be presented in a forthcoming publication.

With respect to Figures 6 and 7, we could hypothesize that if the ordering of B and H
could not be obtained, this would be due to the poor alignment of some protein domain
families we have been using, but we are not confident enough that we could do this,
because we would need much more information “in silico” to be obtained from many other
protein domain families. In other words, we expect that a good alignment of a protein
domain family will result in the ordering of B and H , but we need to verify this in a large



Entropy 2022, 24, 993 16 of 16

number of families from different Pfam versions before we proceed with a proposal of a
method to improve the Pfam database. This looks promising for good scientific work in the
line of research we have been aiming to introduce in Ref. [2] and in this contribution.
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