
����������
�������

Citation: Hu, Y.; Jiao, Y.; Shang, Y.; Li,

S.; Hu, Y. PONDER: Enabling

Balloon-Borne Based Solar

Unmanned Aerial Vehicle’s Take Off

Diagnosis under Little Data. Entropy

2022, 24, 997. https://doi.org/

10.3390/e24070997

Academic Editor: António M. Lopes

Received: 10 June 2022

Accepted: 12 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

PONDER: Enabling Balloon-Borne Based Solar Unmanned
Aerial Vehicle’s Take Off Diagnosis under Little Data

Yanfei Hu 1,†, Yingkui Jiao 2 , Yujie Shang 3, Shuailou Li 1,† and Yanpeng Hu 4,*

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100049, China;
huyanfei@iie.ac.cn (Y.H.); lishuailou@iie.ac.cn (S.L.)

2 State Key Laboratory of Precision Measuring Technology and Instruments,
Tianjin University, Tianjin 300072, China; jiaoyingkui@tju.edu.cn

3 School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455008, China;
asyj0606@163.com

4 School of Automation and Electrical Engineering, University of Science and Technology Beijing,
Beijing 100083, China

* Correspondence: huyanpeng@ustb.edu.cn
† Current address: School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China.

Abstract: Balloon-borne based solar unmanned aerial vehicle (short for BS-UAV) has been researched
prevalently due to the promising application area of near-space (i.e., 20–100 km above the ground)
and the advantages of taking off. However, BS-UAV encounters serious fault in its taking off phase.
The fault in taking off hinders the development of BS-UAV and causes great loss to human property.
Thus, timely diagnosing the running state of BS-UAV in taking off phase is of great importance.
Unfortunately, due to lack of fault data in the taking off phase, timely diagnosing the running state
becomes a key challenge. In this paper, we propose PONDER to diagnose the running state of BS-UAV
in the taking off phase. The key idea of PONDER is to take full advantage of existing data and
complement fault data first and then diagnose current states. First, we compress existing data into a
low-dimensional space. Then, we cluster the low-dimensional data into normal and outlier clusters.
Third, we generate fault data with different aggression at different clusters. Finally, we diagnose fault
state for each sampling at the taking off phase. With three datasets collected on real-world flying at
different times, we show that PONDER outperforms existing diagnosing methods. In addition, we
demonstrate PONDER’s effectiveness over time. We also show the comparable overhead.

Keywords: unmanned aerial vehicle; fault diagnosis; deep learning; generative adversarial network;
little data

1. Introduction

Near-space (i.e., 20–100 km above the ground) vehicles have been becoming the focus
of research and developing in the world due to the strategic significance (e.g., dealing with
various tasks such as high-resolution earth observation, communication relay, atmospheric
research, and so on) in numerous fields and great flight condition (e.g., low atmospheric
density and strong solar radiation) [1–3]. Low- speed near-space vehicles utilize conven-
tional taxiing and taking off mode, thus it has to consume more fuel and take a longer time
to climb to the desired height. This makes the research on near-space vehicles full of chal-
lenges, especially on power supply and structure design [4]. To overcome these challenges,
rather than directly focusing on the power supply or structure design, balloon-borne based
solar powered unmanned aerial vehicles have begun to be studied in the aviation field for
its special taking off [3].

Different from traditional takeoff from runway and landing, BS-UAV’s take-off that
is done with the help of a balloon’s rise up entails the cooperation of multiple phases
and components. The concrete process of a balloon’s launch and take-off of BS-UAV is
the following. The ball-borne based solar powered UAV is mounted by a high altitude

Entropy 2022, 24, 997. https://doi.org/10.3390/e24070997 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24070997
https://doi.org/10.3390/e24070997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7430-622X
https://doi.org/10.3390/e24070997
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24070997?type=check_update&version=1

Entropy 2022, 24, 997 2 of 13

balloon (the pitching angle of UAV is −90° at this moment), and when the balloon rises up
to the altitude of near space, then aerostation releases the solar powered UAV. The UAV
implements longitudinal pull-up control and enters the cruise flight stage, and is recovered
by sliding and landing. The state of each component in each phase is of importance for the
success of taking off for BS-UAV.

Even though the great advantages for taking off compared to traditional near-space
UAV, BS-UAV encounters more fault due to (multiple components’ involvement in) its
special takeoff mode and (light-level) structure design. The failure, especially before the
pull-up phase, may lead to the crash of BS-UAV and a large cost on human property.
Thus, timely diagnosing the overall state (e.g., normal or fault) by diving into the state of
each component involved in the taking off of BS-UAV is of great importance. However,
determining the overall state is challenging due to the characteristic of its taking off. First,
the components involved in taking off process are diverse; as a result, there are numerous
component faults or not an obvious fault for a component [5]. Second, the strong coupling
relationship among each component poses a huge challenge for the overall diagnosing for
BS-UAV’s taking off, and the multiple components further aggravate such coupling. This
makes it time-expensive for technicians to analyze the fault source accurately real-time;
especially, the failure on taking off may be caused by different components each time. Third,
the data information for each component is large-scale due to continuous monitoring [6].
These all hinder the fast fault identification.

To overcome the above challenge, many techniques exist. At a high level, these
techniques could be classified into three categories. The first is rule-based diagnosis. It
diagnoses a fault depending on a rule base among each component; however, such kinds
of methods become ineffective as the design or the architecture is more and more complex.
As a result, a machine learning-based fault diagnosis method that learns the pattern hidden
behind multiple data for diagnosing faults is proposed [7,8]. The learning process of a
machine learning-based diagnosis model requires feature selection from expertise [3]. As a
diagnosing model learns feature data’s distributions, different features that are utilized for
a model lead to different diagnosing models. Thus, the human interference in feature selec-
tion is easy to cripple machine learning-based fault identification models. The third type
is a deep learning-based diagnosis model [9–12]. Different from the human interference
in feature selection, deep learning-based models [11] automatically learn a hidden repre-
sentation on raw features based on predefined metrics and improve diagnosis accuracy.
Deep learning-based models have presented multiple advantages in a fault identification
domain.

Based on the above analysis, one feasible direction to accurately identify a fault in
BS-UAV might be deep learning-based diagnosis models. The key idea of such kind of
technique is to learn a model on the training data and use it to diagnose the fault in a
real-time system once inputting a testing sample. The learning process of an effective
diagnosis model requires plenty of data. However, actually, the data especially in a fault
state are seldom due to the failure of taking off and thus the stop running or crash of each
component. The lack of enough data in a fault state poses a critical challenge for applying
such technique to timely determining the success of taking off or not.

In this paper, we propose PONDER, a deep learning-based fault diagnosis model
combined with data complementation. More specially, PONDER complements fault data
with a special generative network. This addresses the problem of a small amount of data in
the fault state and allows us to diagnose the faults with a deep learning method in BS-UAV
automatically. Deep learning learns a diagnosis model based on hidden representations
that learns automatically from augmented training data, which allows us to diagnose fault
real-time. We evaluated PONDER on the flying dataset, the evaluation results show that
PONDER can identify the fault in BS-UAV’s taking off effectively. In addition, PONDER

can effectively diagnose a fault in UAV as time goes by compared with the state-of-the-art
diagnosing methods. Finally, we measure the overhead it introduces. To conclude, we
make the following contributions:

Entropy 2022, 24, 997 3 of 13

(1) We introduce a novel data augmentation method to solve the problem of data
unbalancing in fault diagnosing. This allows us to diagnose fault accurately in UAV with
little fault data.

(2) We design a diagnosing model that combines data generating and a deep learning
technique to diagnose faults in BS-UAV.

(3) We evaluate the effectiveness of PONDER on real-world flying experiment dataset.
We show that PONDER significantly improves the performance of an existing fault diagnos-
ing model.

The rest of the paper is organized as follows: Section 2 is the background. Section 3
analyzes our insight of data generation technique. Section 4 gives the overview and the
details of our proposed PONDER. Section 5 is the experimental set and evaluation. Section 6
describes the discussion. Related works and conclusions are given in Sections 7 and 8,
respectively.

2. Background

In this section, we mainly discuss the background of deep learning based diagnosing
method in mechanical field [13–20]. More details about BS-UAV (e.g., structure design or
taking off manner) are shown in these works [1–3].

Research on fault diagnosis based on deep learning mainly includes Deep Belief
Nets [9,21–23], Stacked Auto-Encoders [10], Recurrent Neural Networks [11], and Con-
volution Neural Networks [12]. DBN is a probabilistic generation model with a wide
range of applications. It consists of multiple Restricted Boltzmann Machines layers, and
there are connections between the layers but no connections within the layers. Training is
divided into unsupervised pre-training and supervised back propagation fine-tuning for
each layer. DBN is mainly used for feature extraction [24–28] and classification [29,30] in
fault diagnosis. SAE is a multi-layer perceptual neural network composed of multiple self-
encoding module units, which restores the original input to the maximum extent through
the encoding and decoding process, and the model learns useful features by minimizing the
differences between input and output, the model parameters are updated by the gradient
descent algorithm, and the main functions of SAE are noise reduction filtering and feature
extraction [3].

The processing units of RNN have both internal feedback and feed-forward connec-
tions, taking into account the correlation between samples, and can be used to process time
series data or related data. RNN is often used in fault diagnosis for real-time fault diagnosis
of complex industrial systems [9,11]. CNN is a feature extraction network composed of a
convolutional layer and pooling layer alternately stacked, and then output by classification
through the fully connection layer. It has the characteristics of sparse connection and
weight sharing. Multiple convolution kernels perform convolution operations on the input
to generate a convolution feature map. It is used for local feature extraction, combining
abstraction layer by layer, and image recognition. CNN is very suitable for processing
massive data [30,31], and fault diagnosis based on a CNN algorithm mainly uses CNN as
feature extraction and recognition [32] or a classifier [25,29]. Most of these works focus on
concrete design of a network structure but not the data challenges faced by them.

3. Insight of PONDER

Before demonstrating our method, we first introduce the insight of PONDER. As we
know, the key aspect in PONDER is fault data generating. Thus, we focus on the insight
of a generative adversary network. Indeed, the fault data are usually scattering around
those normal data. We observe that the fault data for each component in the BS-UAV have
activation bounds and cannot illustrate a meaningless value. Thus, we hold the view that
the generated fault data should be dense around existing faults and sparse around normal
data rather than arbitrarily scattering outside of the distribution of normal data. Based
on this insight, we aim at generating fault data well aware. The key idea is to separate
data of BS-UAV in the normal and fault state at first, and then generate more fault data
around fault clusters and less around normal clusters. Considering that the data produced

Entropy 2022, 24, 997 4 of 13

by each component are high-dimensional and such high-dimensional data make it difficult
for clustering, we aim to compress high-dimensional data into a low-dimensional space.

4. Methodology of PONDER

We design PONDER to assist fault diagnosis in BS-UAV under the condition of unbal-
anced data. PONDER is short for “data comPlementatiON with Deep lEaRning based fault
diagnosis model”. In the following, we first explain the overview of PONDER, followed by
the technical details of each component.

4.1. Overview of PONDER

We design the whole pipeline of PONDER, as shown in Figure 1. At a high level,
PONDER mainly consists of three steps. The first step is pre-processing. In this step, we
transform high-dimensional data into a compressed representation. The low-dimensional
data allow us to cluster data in normal state and fault state accurately. In step2, we cluster
on the compressed representation for separating different state’s data, which make it easy
for generating fault data well aware. In step3, we generate fault data utilizing a generative
network, which allows us to discriminate fault state accurately and timely.

33

Fault

Normal

Compressing

11

R 1

R 2

⸽

R j

R 1

R 2

⸽

R j

V 1

V 2

⸽

V j

V 1

V 2

⸽

V j

Sample generating

22

Clustering

Clusters

Outliers

Fault Normal

Fault Normal

Figure 1. The overview of PONDER. PONDER consists of three modules. The first two are compressing
network and clustering model, and the last is a model for fault data generating and fault diagnosing.
Rj and V j are the corresponding high dimensional raw data and low-dimensional representations.

Pre-processing. We transform high-dimensional data into low-dimensional representation.
The low dimensional data allows us to perform accurate clustering. Given high dimensional
data, we train an auto-encoder for compressing. Auto-encoder is a model with encoder and
decoder. Encoder compresses high-dimensional data into low-dimensional representation,
and decoder reconstructs high dimensional data based on the representation. More specifi-
cally, we train an auto-encoder with the goal that the high-dimensional data that decoder
reconstructs is close or similar to original data. In this way, low-dimensional representation
captures the corresponding high-dimensional features well and can be used for further
clustering.

Clustering. We cluster data in normal states and that in fault conditions. The separation
allows us to easily generate data around their distributions. Given the low-dimensional
representations, we use a density-based clustering model called DBSCAN, and cluster
existing representations into clusters. We use density-based clustering method with the
following considerations. Density-based clustering method clusters data into normal state
and fault state with the tolerance to abnormal data in dataset. These abnormal data form
an outlier dataset and can be used as the reference for fault data generating. We do not
utilize a K-means method since its clustering is sensitive to abnormal data. In addition, it is
a distance-based clustering method and does not conform to our insights. In this step, we
further cluster the outlier into a normal cluster and fault cluster.

Data Generating. We generate fault data depending on the clusters separated for further
deep learning based fault identification. Given each cluster and the outlier, we train a
modified generative adversarial network as our generating basis. Since we generate fault

Entropy 2022, 24, 997 5 of 13

data based on clusters and outliers rather than learning existing distributions, this makes
it different from the standard GAN. In this training, the generative adversarial network
should be trained with the following rules. First, in areas near the cluster of fault data, we
carefully expand the region of data and the expansion becomes less aggressive closer to
data in normal conditions. Second, in the area of outliers, we obey the same rule based on
an assumption that the outliers also obey each cluster’s distributions.

Therefore, the GAN we used has two generators due to the presence of outliers and
clusters. In addition, a discriminator in the GAN network is needed to discriminate the
generated data and that of original data. We will introduce the details of each component
in the following.

4.2. Technical Details

In this section, we present the technical details of each component in PONDER. We
start by key notations. Given an input dataset X, Y, where X denotes the set of normal
samples and fault samples, Y corresponds to their labels. Within the dataset, each sample x
∈ R1×p is a p-dimensional vector, and the sample’s label is represented by an integer value,
indicating the corresponding state, i.e., Y ∈ {0, 1}, where 0 indicates data in normal states
and 1 denotes data in fault conditions.

4.2.1. Auto-Encoder

Auto-encoder aims to transform high-dimensional data into low-dimensional repre-
sentations to better identify the underlying clusterings. Based on the data in normal states,
we want to learn an auto-encoder f to map any high-dimensional data x from X into h in a
hidden space. As introduced in the overview part, the hidden space should maintain an
accurate representation of raw data in high-dimension space. Thus, the loss for training
our auto-encoder should be the following. Formally,

Lauto =
K

∑
i=0

l f (yi, yi), i ∈ [0, K] (1)

where yi and yi are the high-dimension data output by auto-encoder and the original
high-dimensional data in the dataset, respectively. We utilize MSE as our loss function l f ,
and train our auto-encoder with the goal of minimizing the loss, Lauto.

Note that here we do not use fault data for the auto-encoder’s learning so that our
auto-encoder may make the low-dimensional representation of fault data more separated.
In the auto-encoder, the encoder’s network structure is a Multi-layer Perceptron (MLP)
with multiple hidden layers, and the decoder is a reverse of the encoder. With auto-encoder,
we transform the feature in original feature space into a compact representation h in a
hidden space H.

4.2.2. Dbscan

DBSCAN aims at clustering representations into normal and fault clusters for generat-
ing data based on them in the subsequent task. Concretely, first, it classifies representations
into three categories with two parameters, dr, tno. dr is a distance semidiameter, and tno
is the minimal number in the area of distance radius. The three categories of data point
are core point, bound point, and outlier point. Then, DBSCAN classifies core point into
different clusters. More concretely, it selects a core data point and assigns a cluster, and
searches all the density connected points of this selected core point. It loops the selecting
and assigning until the last point. Distance function is also a key point in determining the
type of the data point, since DBSCAN needs to calculate dr. We use L2 norm as a distance
function, i.e., Euclidean distance. We use a Silhoutte Coefficient as the clustering evaluation
metric. Formally,

s(i) = b(i)− a(i)/max{b(i), a(i)}, i ∈ [1, K] (2)

Entropy 2022, 24, 997 6 of 13

where a(i) is an average distance of sample i to the other samples in same cluster, and b(i)
is an average distance of this sample to other samples in other clusters. Obviously, if the
score of s(i) is close to 1, it illustrates that the sample i has been well classified, and 0 means
it might be a bound point between each cluster, −1 denotes it is a sample of other clusters.

Finally, we cluster data h including normal state hn and fault state h f into clusters
hc(hnc and h f c) and outliers ho(hno and h f o). Note that we choose the value of tno based on
the rule of thumb that the value of tno is similar with the order of the dimension. For our
case, we have data of 10 dimensions; thus, tno is 10.

4.2.3. Modified Generative Adversarial Network

The network aims to generate fault data based on each cluster output by DBSCAN.
Based on each cluster, we want to learn a modified generative adversarial network (MGAN)
for completing fault data generating. To this end, we should determine the network
structure first and then explore the loss for training such network.

For determining the network’s structure, as illustrated in the overview, after clustering,
the data have been classified into two clusters and two outliers. Thus, the fault data that
need to be generated have two types. The first type is a distribution that conforms to the
clustered distribution, and the second is a distribution that fits to the outlier area. Based
on this analysis, the concrete structure of the modified generative adversarial network is
shown in Figure 2.

G1G1
H_fc

DD

H_nc

H_no

H_fo
H_f G2G2

H_n

Syn_H

H

Figure 2. The details of MGAN. H_n and H_ f are representations of normal state and fault state in
hidden space. c and o denote clusters and outliers. G and D represent generator and discriminator.
Syn_H means the synthetic data of fault state.

Next, we explore the loss for the two generators. To make generative network learn the
real distribution of fault data, when we learn the distribution in the clusters and outliers, we
all expand the fault data region carefully around normal cluster or normal outlier regions.
Specifically,
Data Synthesis in the Cluster Region. For learning the real distribution drc conforming to
(approximating) the data in clusters [33], as shown in the upper part of Figure 2, we train G1
to simulate this distribution, where G1 generates data in high-density regions. Concretely, if
the probability of the data s̃ generated by G1 falling into the high-density regions of normal
states is bigger than a threshold pn(s̃) > λ, it will be generated with a lower probability;
otherwise, it will generate data with a distribution balancing clustered data of normal states
and fault states. We use α to control the generated sample to approximate normal or fault
clusters. We define the distribution required as the following:

dc =

αpn(s̃) + (1− α)p f (s̃) , pn(s̃) ≤ λ ∧ s̃ ∈ H

1
τpn(s̃)

, pn(s̃) > λ ∧ s̃ ∈ H
(3)

Entropy 2022, 24, 997 7 of 13

where τ is the normalization term, and λ is a threshold to indicate whether the generated
data are in high-density normal regions. H denotes the whole hidden space.

In order to learn this distribution dc, we minimize the KL divergence between de-
fined distribution that we will learn and real distribution of clusters drc. The function is
the following:

LKL(drc ||dc) = −H(drc) + E
s̃∼drc

log Pdc(s̃) (4)

KL divergence is the expectation value of the logarithmic difference of drc and dc on
drc distribution. After transformation, it can be divided into two parts. The first term
is the opposite value of drc entropy, and the second term is the expectation of log Pdc(s̃)
on the drc distribution. log Pdc(s̃) means the logarithmic of the probability of sample in
dc distribution.

In addition, we should make the generated data in a fault condition and the real fault
data indistinguishable. In other words, the generated data are located in a clustered region
as far as possible. Thus, Lclus is required as the following:

Lclus = || E
s̃∼drc

f (s̃)− E
s∼hc

f (s)||2 (5)

Here, f is the function of discriminator.
Overall, the loss for learning generator G1 is

LG1 = LKL(drc ||dc) + Lclus (6)

Data Synthesis at Outlier Region. As we have clustered the outliers into two clusters, the loss
for second generator is the same as that of LG1.
Discriminator. Different from the commonly used generative adversarial network that
aims at discriminating synthesized fault data from real fault data, the special designed
discriminator aims to discriminate normal data from fault data. Concretely, it discriminates
normal data from synthesized fault data, and from real fault data. The discriminator not
only participates in the training process but also acts as the diagnoser in diagnosing steps.
For learning this discriminator, we aim to optimize the following loss function:

Ldisc = E
s∼pn

[log D(s)] + E
s̃∼drc

[log(1− D(s̃))]+

E
s̃∼dro

[log(1− D(s̃))] + E
s∼pn

[D(s) log D(s)]+

E
s∼p f

[log(1− D(s))]

(7)

Here, the first three terms distinguish normal data from synthesized fault data. The
fourth conditional entropy term is to recognize normal data with high confidence, which
corresponds with our assumption. The last term encourages the discriminator to correctly
classify normal data from real fault data. With all the terms, the discriminator could be
learned to classify data in normal states from both real and synthesized fault data.

4.2.4. Hyper-Parameters

The batch size is 128, and the training epoch is 250. We use the Adam optimizer for
minimizing the loss of Lauto, LG1 LG2 and Ldisc. The technical details of this optimization
technique can refer to [34]. Here, the batch size and training epoch can be randomly
selected. The larger the batch size, the better parameter learning. Note that we should
control batch size value to avoid out of memory in training.

For auto-encoder, the encoder has two hidden layers. The input size has dimensions
of 60, and the output size is 10 dimensions. We set the dimension size of two hidden
layers as 30 and 20 dimensions, respectively. For MGAN, the discriminator and the
generators are feed-forward neural networks. Each network of generators and discriminator
contains hidden layers (with dimensions of 20 and 5, respectively). The dimension of

Entropy 2022, 24, 997 8 of 13

noise for each generator is 40, and the output dimension of generators is the same as
that of the auto-encoder, which is 10. The threshold λ is set as 0.95 of the probability of
normal data predicted by a pre-trained probability estimator. We set τ to a small value
0.1. The last two settings of hyper-parameters (i.e., λ and τ) have already been shown
their effectiveness in this work [33]. We use a pull-away term to minimize H(drc) [35] and
the technique proposed by [36] that uses a neural network to approximate pn. For the
hyper-parameters, we use these default parameters and do not consider the sensitivity of
them to model performance.

5. Evaluation

We evaluate the effectiveness of PONDER on fault diagnosis with the flying data of
BS-UAV. The evaluation are performed on a server with two Intel Xeon E5-2630 v3 2.4 GHz
CPUs (32 processors) and 128 GB memory. We focus on four key aspects: (a) design choice,
(b) effectiveness, (c) robustness, and (d) overhead.

5.1. Experimental Setup

Datasets. We prepare three different datasets for evaluating PONDER in our experiment.
Each dataset is made up of flying data of the same type of BS-UAV in normal conditions
and fault condition, with 354,000 normal items and 6000 fault items (little fault data). Each
sample is a matrix of 1 × 60. The time interval of three datasets is over half a year, which
enables us to evaluate the robustness of PONDER over time. More specifically, they are
collected at May 2019, February 2020, and October 2020. For convenience, we refer them as
D-May, D-Feb, and D-Oct, respectively.

For each dataset, D-May is mainly used for training and testing. D-Feb and D-Oct
are used for testing. More specifically, we randomly divide D-May into two parts, 70% of
D-May is training dataset (Training), and the other is testing dataset (Testing). In addition,
20% of the samples in the training dataset are held out for validation.

Baseline Models. We utilize three existing methods as our baseline models. More specifically,
for validating design choices, we assess the performance of PONDER with a deep learning
based diagnosing model with one generator; their difference only exists in the number
of generators. For evaluating PONDER’s performance, we compared PONDER with the
state-of-the-art data generation techniques, ODDS [33]. ODDS works under the same
situation as a few samples as ours. In addition, we also compare PONDER with machine
learning based models that use Random Forest (RF) as the diagnosing algorithm. RF is a
model with multiple groups of parameters or models and behaves best among machine
learning based models. These baseline models allow us to evaluate PONDER thoroughly.

Metrics. As the essential of the fault diagnosing is a classification problem, we choose
metrics widely used in a classification domain. These metrics include precision (the correct
diagnosis among all the diagnosis determined by diagnosis model), recall (the true parts
among the actual ones), and F1-score. F1-score indicates a comprehensive evaluation for the
performance, which balances precision and recall: F1 = 2× Precision× Recall/(Precision+
Recall). In addition, we also utilize false positive rate (FPR) that equals 1− recall as our
evaluation metrics. We choose them (e.g., precision, recall, F1-score and FPR) as the final
measurement for the performance of each diagnosing model if not otherwise stated.

Training and Testing. Generally, we use training dataset for learning each model’s parameters,
and use validation dataset for deciding their best hyper-parameters. We test each model on
a testing dataset and evaluate each model’s performance by calculating each metric based
on a testing dataset.

Specifically, for building PONDER, first, we use all normal data in dataset Training
and learn the parameters of auto-encoder, and perform dimension compressing on each
sample in dataset Training by using a learned auto-encoder. Then, we cluster on all low-
dimensional representations in dataset Training into four clusters. The four clusters include
two clusters of normal data and fault data, and two clusters of outliers of normal data and
fault data. Third, we train the generator based on normal clusters and outliers. For ODDS,

Entropy 2022, 24, 997 9 of 13

the building procedure is the same except the lack of clustering for outlier samples. For RF,
we directly train them on dataset Training.

For testing PONDER, in other words, diagnosing if there exists a fault using PONDER,
we import each sample of testing dataset into the above learned generator. The outputs of
generator are the diagnosed result. Fault diagnosis using ODDS and RF are the same steps
except for importing each sample into their models.

Implementation of PONDER. Following each subsection including hyper-parameters of
Section 4.2, the network details (e.g., neural network’s layer number and types) can be ob-
tained, and the network model (with network parameters) could be trained by minimizing
four losses (i.e., Lauto, LG1, LG2, and Ldis) with the Adam optimizer. We show the work-flow
of building PONDER and that of applying PONDER to fault diagnosing in Figure 3.

Normal data in
Training data

mDisc mG1 mG2

Yes

No

Training data

Compressed data

DBSCAN

Clustered data

DiscG1 G2

Yes

No

Testing data

Compressed data

mDisc

Fault or Normal

(b)Applying Ponder on fault diagnosing (a)Model training of Ponder

Figure 3. The work-flow of PONDER’s building and diagnosing.

Detailed Evaluation. Based on the above setup, we aim to further refine the evaluation
aspects into the following four questions:

Q1a: How is the performance of PONDER compared to that of DMO under the circum-
stance of little data?

Q2b: How is the performance of PONDER compared to existing diagnosing models?
Q3c: How does PONDER behave over time?
Q4d: How much overhead does the PONDER introduce to the diagnosing model?

Entropy 2022, 24, 997 10 of 13

5.2. Experimental Design and Results

In this section, we aim to answer each question in detail. For each question, we will
first describe the experiment design if necessary, then the results.

Q1a: How is the performance of PONDER compared to that of DMO under the circumstance
of little data?

To validate the design choice of two generators, we compare the performance of
PONDERwith that of only one generator. Their results are shown in Table 1. At a high level,
we can see that PONDER outperforms that of one generator on two datasets. Concretely, the
F1-score of PONDER on the test dataset arrives at 0.950, while models that generate fault
data with only one generator have the F1-score of 0.931 and 0.927. The performance on
D-Feb. has the same conclusion and is omitted for brevity. These results all indicate that
PONDER’s two generators are better than that with one generator for fault data generating.

Table 1. F1-score comparison of PONDER models with different numbers of generators.

Dataset G1 Generator G2 Generator Both Generators

Testing 0.931 0.927 0.950
D-Feb. 0.917 0.911 0.932

Q2b: How is the performance of PONDER compared to existing diagnosing models?

We compare the performance of PONDER, RF, and ODDS on dataset D-Feb to evaluate
the performance of PONDER. Their results are shown in Table 2. We can see that PONDER

outperforms all the baseline models. More specially, PONDER has an F1-score of 0.93,
while RF has an F1-score of 0.83. The reason for RF’s smaller results might be the lack of
future distribution of fault data. ODDS detects fault samples with the F1-score of 0.91. The
explanation for the lower F1-score of ODDS might be the assumption that the fault data in
outlier are scattered randomly.

Table 2. Performance comparison of PONDER models and baseline models on two datasets.

Dataset D-Feb D-Oct

Metric Precision Recall F1-
Score FPR Prec. Rec. F1. FPR Time

(ms)

RF 0.82 0.84 0.83 0.08 0.78 0.79 0.79 0.08 0.17
ODDS 0.90 0.92 0.91 0.06 0.88 0.87 0.87 0.06 0.11

PONDER 0.92 0.94 0.93 0.04 0.90 0.91 0.91 0.04 0.12

In addition, we also notice that PONDER diagnoses fault with the lowest false positive
rate. The lowest FPR means that there are less false diagnoses where normal state is
regarded as false state. These results all illustrate that PONDER takes the characteristic of
fault data and helps to improve the performance of existing fault diagnosing methods.

Q3c: How does PONDER behave over time?

To evaluate the PONDER’s robustness over time, we compare the performance of
PONDER on D-Feb and D-Oct. In addition, we also give the results of RF and ODDS as a
comparison. Their results are shown in Table 2. We can see that PONDER does not have
obvious degradation on D-Oct. However, RF and ODDS detect fault data with little decline.
More specifically, the F1-score of PONDERdeclines by 2%, and the baseline models of RF
and ODDS decline by 4%.

As we do not have more data to validate the degradation over time, we verify that, on
these three datasets, PONDER behaves better over time. This demonstrates that PONDER is
robust as time goes by.

Q4d: How much overhead does the PONDER introduce to the diagnosing model?

Entropy 2022, 24, 997 11 of 13

We record the average fault detection time that PONDER spends on data processing and
fault detection for each sample in D-Oct. We do not consider the time spent on training each
model, since these models are trained offline and the training time could be compensated
by a large amount of data. As a comparison, we also give the results of a baseline model.
The detecting time of each model is shown in the last column of Table 2. We can see that
the average detection time of PONDER models is comparable to that of baseline models; in
particular, it is more similar to that of the ODDS model.

6. Discussion

Static vs. Learning based Model. Static diagnosing has high precision but with expensive
manual cost. In cases without strong coupling, static techniques such as domain-expertise
or a rule based method is a better choice. For cases where strong coupling exists among
components, learning based methods have superiority. PONDER is a kind of learning based
diagnosing method for biased data.
Real-time Diagnosing. Even though PONDER is evaluated on the offline data, it can be used
for real-time diagnosing. It is possible to transform software codes into hardware language
and implemented it with hardware. We will leave the further hardware implementation to
future work.
Limitations. PONDER works under an assumption that data in normal data are stable.
However, actually normal data may change with time going, for example, a substituted
component that has the same function with original but with different data expressing.
Thus, PONDER needs to be updated for a certain of time. In addition, to determine when to
update the diagnosing model, authors in [37] have introduced methods.

7. Related Works

Anomaly Diagnosis. Anomaly diagnosis techniques diagnose fault state with only normal
data. They make an assumption that normal data are stable and unchanged for a period. In
our work, we make the same assumption, while the difference is that we take full advantage
of the little fault data. We do not use it as our baseline since it has been verified by these
works [33].
Data Augmentation. Data augmentation is a technique derived from computer domains
and usually used for complementing the needed data. It usually achieves its goal via a
generative adversarial network. Current data augmentation works mainly use it to generate
data based on existing data distribution or learn an unknown distribution with existing
data distribution. The most related work to ours is [33]. In Ref. [33], the authors design two
generators for assisting bot data generation based on two different assumptions. However,
we still use two generators but with a different manner. We assume that the fault data
that need to be generated conform to the same assumption (i.e., dense at fault clusters or
outliers and sparse at normal clusters or outliers). In addition, the application domain is
essentially different. We do not consider other related works in terms of auto-encoder and
clustering, as the two techniques are just an assist for our data generation and have no
difference from others.

8. Conclusions

This paper presents PONDER, a fault diagnosing model for BS-UAV’s taking off with
little data. By designing novel generators for learning fault data’s distribution, we generate
plenty of fault data and enable a deep learning based fault detection model to diagnose
BS-UAV’s take off timely.

Author Contributions: Y.H. (Yanpeng Hu) proposed the main the idea; Y.H. (Yanfei Hu) prepared
the manuscript initially; Y.J., Y.S. and S.L. performed the experiment. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Entropy 2022, 24, 997 12 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, Y.; Yang, Y.; Ma, X.; Li, S. Computational optimal launching control for balloon-borne solar-powered unmanned aerial vehicles

in near-space. Sci. Prog. 2020, 103, 0036850419877755. [CrossRef] [PubMed]
2. Hu, Y.; Guo, J.; Meng, W.; Liu, G.; Xue, W. Longitudinal Control for Balloon-Borne Launched Solar Powered UAVs in Near-Space.

J. Syst. Sci. Complex. 2022, 35, 802–819. [CrossRef]
3. Keizer, M.C.O.; Teunter, R.H. Clustering condition-based maintenance for a multi-unit system with aperiodic inspections. In

Safety and Reliability of Complex Engineered Systems: Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015,
Zürich, Switzerland, 7–10 September 2015; CRC Press: Boca Raton, FL, USA, 2015; pp. 983–991.

4. Froger, A.; Gendreau, M.; Mendoza, J.E.; Pinson, E.; Rousseau, L.-M. Maintenance scheduling in the electricity industry: A
literature review. Eur. J. Oper. Res. 2016, 251, 695–706. [CrossRef]

5. Li, W. Advance of intelligent fault diagnosis for complex system and its present situation. Comput. Simulation 2004, 21, 4–7.
6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
7. Han, L.; Deyun, X. Survey on data driven fault diagnosis methods. Control. Decis. 2011, 26, 1–9.
8. Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An intelligent fault diagnosis method using unsupervised feature learning towards

mechanical big data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]
9. Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal

Process. 2018, 108, 33–47. [CrossRef]
10. Mao, W.; Feng, W.; Liang, X. A novel deep output kernel learning method for bearing fault structural diagnosis. Mech. Syst. Signal

Process. 2019, 117, 293–318. [CrossRef]
11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp.
580–587. [CrossRef]

12. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A.; Bottou, L. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

13. Gan, M.; Wang, C.; Zhu, C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault
pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016,72, 92–104. [CrossRef]

14. Jia, F.; Lei, Y.; Guo, L.; Lin, J.; Xing, S. A neural network constructed by deep learning technique and its application to intelligent
fault diagnosis of machines. Neurocomputing 2018, 272, 619–628. [CrossRef]

15. Li, K.; Wang, Q. Study on signal recognition and diagnosis for spacecraft based on deep learning method. In Proceedings of the
Prognostics and System Health Management Conference (PHM), Beijing, China, 21–23 October 2015; pp. 1–5.

16. Li, X.; Zhang, W.; Ding, Q. A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric
learning. Neurocomputing 2018, 310, 77–95. [CrossRef]

17. Miao, Z.H.; Zhou, G.X.; Liu, H.N. Tests and feature extraction algorithm of vibration signals based on sparse coding. J. Vib.
Shock. 2014, 33, 76–81.

18. Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep
auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [CrossRef]

19. Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis.
Mech. Syst. Signal Process. 2017, 95, 187–204. [CrossRef]

20. Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction
motor faults classification. Measurement 2016, 89, 171–178. [CrossRef]

21. Hinton, G.; Osindero, E.S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
22. Shao, H.; Jiang, H.; Zhang, X.; Niu, M. Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci.

Technol. 2015, 26, 115002. [CrossRef]
23. Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013,

115, 124–135. [CrossRef]
24. Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis.

Measurement 2016, 93, 490–502. [CrossRef]
25. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional

Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]
26. Jeong, H.; Park, S.; Woo, S.; Lee, S. Rotating machinery diagnostics using deep learning on orbit plot images. Procedia Manuf. 2016,

5, 1107–1118. [CrossRef]
27. Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent

diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72–73, 303–315. [CrossRef]

http://doi.org/10.1177/0036850419877755
http://www.ncbi.nlm.nih.gov/pubmed/31829873
http://dx.doi.org/10.1007/s11424-022-1302-6
http://dx.doi.org/10.1016/j.ejor.2015.08.045
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TIE.2016.2519325
http://dx.doi.org/10.1016/j.ymssp.2018.02.016
http://dx.doi.org/10.1016/j.ymssp.2018.07.034
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1016/j.ymssp.2015.11.014
http://dx.doi.org/10.1016/j.neucom.2017.07.032
http://dx.doi.org/10.1016/j.neucom.2018.05.021
http://dx.doi.org/10.1016/j.ymssp.2017.09.026
http://dx.doi.org/10.1016/j.ymssp.2017.03.034
http://dx.doi.org/10.1016/j.measurement.2016.04.007
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1088/0957-0233/26/11/115002
http://dx.doi.org/10.1016/j.ress.2013.02.022
http://dx.doi.org/10.1016/j.measurement.2016.07.054
http://dx.doi.org/10.1016/j.jsv.2016.05.027
http://dx.doi.org/10.1016/j.promfg.2016.08.083
http://dx.doi.org/10.1016/j.ymssp.2015.10.025

Entropy 2022, 24, 997 13 of 13

28. Wang, K.; Zhao, Y.; Xiong, Q.; Fan, M.; Sun, G.; Ma, L.; Liu, T. Research on healthy anomaly detection model based on deep
learning from multiple time-series physiological signals. Sci. Program. 2016, 2016, 5642856. [CrossRef]

29. Guo, S.; Yang, T.; Gao, W.; Zhang, C. A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural
Network. Sensors 2018, 18, 1429. [CrossRef]

30. Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and
its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [CrossRef]

31. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault
diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

33. Jan S.T.; Hao, Q.; Hu, T.; Pu, J.; Oswal, S.; Wang, G.; Viswanath, B. Throwing darts in the dark? detecting bots with limited data
using neural data augmentation. In Proceedings of the 2020 IEEE symposium on security and privacy (SP), San Francisco, CA,
USA, 18–21 May 2020; pp. 1190–1206.

34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Dai, Z.; Yang, Z.; Yang, F.; Cohen, W.W.; Salakhutdinov, R.R. Good semi-supervised learning that requires a bad gan. Adv. Neural Inf.

Process. Syst. 2017, 30. Available online: https://www.xueshufan.com/publication/2963170156 (accessed on 1 December 2021).
36. Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International

Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 625–632.
37. Yang, L.; Guo, W.; Hao, Q.; Ciptadi, A.; Ahmadzadeh, A.; Xing, X.; Wang, G. {CADE}: Detecting and explaining concept

drift samples for security applications. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual,
11–13 August 2021; pp. 2327–2344.

http://dx.doi.org/10.1155/2016/5642856
http://dx.doi.org/10.3390/s18051429
http://dx.doi.org/10.1016/j.ymssp.2018.03.025
http://dx.doi.org/10.1016/j.ymssp.2017.06.022
https://www.xueshufan.com/publication/2963170156

	Introduction
	Background
	Insight of Ponder
	Methodology of Ponder
	Overview of Ponder
	Technical Details
	Auto-Encoder
	Dbscan
	Modified Generative Adversarial Network
	Hyper-Parameters

	Evaluation
	Experimental Setup
	Experimental Design and Results

	Discussion
	Related Works
	Conclusions
	References

