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Abstract: Predicting the values of a financial time series is mainly a function of its price history,
which depends on several factors, internal and external. With this history, it is possible to build an
∈-machine for predicting the financial time series. This work proposes considering the influence of
a financial series through the transfer of entropy when the values of the other financial series are
known. A method is proposed that considers the transfer of entropy for breaking the ties that occur
when calculating the prediction with the ∈-machine. This analysis is carried out using data from
six financial series: two American, the S&P 500 and the Nasdaq; two Asian, the Hang Seng and the
Nikkei 225; and two European, the CAC 40 and the DAX. This work shows that it is possible to
influence the prediction of the closing value of a series if the value of the influencing series is known.
This work showed that the series that transfer the most information through entropy transfer are the
American S&P 500 and Nasdaq, followed by the European DAX and CAC 40, and finally the Asian
Nikkei 225 and Hang Seng.

Keywords: financial series; Shannon entropy; transfer entropy

MSC: 62H10; 62M02; 62M10; 62P05

1. Introduction

Forecasting financial series, mainly the closing price of stocks, is a research area in
different knowledge fields, from the financial field [1] to approximate solution methods
such as neural networks [2] to forecasting using methods and algorithms based on Shannon
entropy [3–11]. These models consider the historical data of the series to be calculated
without considering explicitly the influence of other series or other stock markets for
performing the forecast. To this end, it is assumed that the historical price already includes
the influence of other series or financial markets.

The influence among financial markets is important because of the interaction of the
behavior of the markets and the corresponding financial series. Therefore, it is important to
have a knowledge of the financial series that influences another and whether the first one
has a significant influence so as to modify the closing price of some stock. The analysis of
the influence among financial markets is carried out through the interchange of information
among financial series, where this is calculated using transfer entropy [12–15]. Transfer
entropy may determine the relations among financial series, for example, the series that
transmits the most information or which markets are the most dominant. With these
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analyses, financial crises have been detected and explained, from the originating market up
to the effects on other financial markets.

Transfer entropy and its modifications are based on Shannon’s entropy calculation [16]
by adding new terms of joint probability for considering the two financial time series [12].
The calculations of transfer entropy between the series are carried out by pairs, i.e., from
a series x to a series y or vice versa [1,2], and the direction of the transfer entropy is
important. Consequently, determining the series that best transfers entropy to another
is a combinatorial problem because it implies calculating a number transfers given by
the number of permutations Pr(n, 2), which is a factorial number of a complexity that is
bounded by O(nn) [17], which makes the problem non-computable. For this reason, the
analyses presented in [12,14] consider a reduced number of series; however, only in the
work mentioned in [13] were 38 financial series considered. Therefore, a large amount of
computational work is needed to approximate a work network and calculate the dynamics
of the relation of the financial series [12–15].

Transfer entropy allows us to know what happened in previous periods and whether
it was determined that there exists an interaction among the series and financial markets.
Therefore, the following question arises: how can this interaction be used for improving or
influencing explicitly the future behavior of a financial series? For answering this question,
it is necessary to consider three issues. First, devise a method or modify one that considers
transfer entropy. Second, determine the financial series that has the best influence on
another series. Third, consider the transfer entropy taking into account the asynchrony of
the opening and closing times of the financial markets due to the difference of time zones
in the respective countries.

This research focuses on solving the first issue: devising a method that considers the
transfer entropy and the historical values of the series for predicting future values. The
prediction is for the short term, a 100-day period [1]. The initial model is an ∈-machine [11],
which we used in a previous work. For showing the influence of one series on another, it
is considered that the influencing series is known. The prediction is performed using the
series of the closing values of six different markets: two from the American stock market,
the S&P 500 and the Nasdaq; two from the European market, the CAC 40 and the DAX;
and two from the Asian market, the Hang Seng and the Nikkei 225 [18]. In this first phase,
all the permutations necessary for the six series are calculated.

The ∈-machine [19] is represented in different ways according to the knowledge field
where it is applied. In the computer science field, it is known as a stochastic finite state
machine. For this objective, the first thing to do is to construct a probabilistic finite state
machine (PFSM) with output [11], which is transformed into the ∈-machine when the
conditional probabilities from one state to another are known, as shown in Figure 1.
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For predicting closing prices with the ∈-machine, a procedure was designed for using
the transfer entropy in case of ties for moving from one state to another. The transfer entropy
is not added or subtracted from that calculated using the historical data for avoiding the
introduction of an error because its origin is different.

For considering the influence of a series on another, it is necessary that the two
financial series have the same length. Consequently, the same number of historical values
is considered for all the series, which is 2000, although for some series, it is not the optimal
value for obtaining the best estimation [8,11]. The historical values considered are from
1 July 2013 to 9 June 2021 and the prediction from 10 June 2021 to 29 October 2021 [18].
The predicted values with this method are measured with the real values of the series. For
determining the series that has the best influence, an evaluation is performed with the
following statistical metrics: mean absolute error (MAE), root-mean-squared Error (RMSE),
mean absolute percentage error [MAPE], Theil’s inequality coefficient (Theil-U) and correct
directional change (CDC) [1].

For the period of time analyzed, it was found that all the series can be influenced by
two series, and the series that has the most transfer of information is the American S&P
500, with the second best being the Nasdaq, followed by the third best, where there was a
tie between the European CAC 40 and the DAX, with the fifth best being the Asian Nikkei
225 and the last one the Hang Seng series. It important to make clear that this situation
may be different if the analysis is carried out with other series or for another period of time.
Determining the series that best influences another one can be posed as a combinatorial
optimization problem, where a larger number of financial series can be considered.

Section 2 of this article describes the ∈-machine and the improvements applied to it for
considering pairs of financial series, transfer entropy and the description of the process for
estimating the integer number of the series. Section 3 shows the prediction of the closing
values of the S&P 500 series and the determination of the most influencing series. The
same section presents the results of the American, European and Asian financial series.
The end of the section includes a discussion of the results, the conclusions of this work
and future work. This article includes four appendices with complementary information.
Appendix A includes the plots of the financial series considered. Appendix B presents the
returns of each series. Appendix C shows the series of integers, and Appendix D contains
the predictions for all the series.

2. Materials and Methods

The ∈-machine used is seen from the point of view of computer science, i.e., as a
stochastic finite state machine that reads a sequence of characters, calculates the probability
of their occurrence and predicts the chain of subsequent characters [19]. For predicting
the subsequent states, the fundamentals established by Shannon are considered [19] as
well as the criteria for selecting the following state. That is, selecting the state with the
lowest entropy closest to the entropy of the previous state of the sequence. With these
assumptions, a procedure was implemented based on the ∈-machine for predicting the
closing price of stocks and was compared versus a financial prediction method [11]. The
method based on the ∈-machine obtained better precision in all the cases.

In this section, a modification of our first model is proposed for considering two
time series and calculating the transfer entropy from one series to the other. Measuring
the precision of the results is performed directly with the real values, and the statistical
measures previously defined are used. By using this approach, a comparison versus another
method is not necessary.

Section 2 is divided into four parts. The first describes the construction of the
∈-machine from a probabilistic finite state machine (PFSM) with output [11], up to its
diagram of transitions from one state to another, from where the values of the input and
output functions are obtained. The second part describes the procedure for calculating
the closing price of a stock using the ∈-machine, and specifically, some of the steps of
this process have to be modified for introducing the changes. The third part describes the
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transfer entropy and the formulas that are used. The fourth and last part describes the new
procedure for forecasting the time series, where the assumptions for obtaining the model
are established.

An algorithm was implemented using the process described in this section. The
algorithm was programmed in ANSI C and was executed on a computer with the following
characteristics: 2 processors Intel Core 2 Duo E8200 at 2.66 Ghz, 4GB of RAM, a 500 GB
hard disk, and a 64-bit Linux Fedora operating system.

2.1. ∈-Machine

The ∈-machine [19] can be obtained from a probabilistic finite state machine (PFSM)
with output [11]. A finite probabilistic automaton with output is defined by the 7-tuple (Σ,
Q, M, P(0), F, f, g), where: Σ is the input alphabet; Q is the set of states, finite and not empty;
M is the matrix of probability of transition between states; P(0) is the vector of the initial
state, and it contains the probability of the initial state, with each state of Q associated with
a probability of being the initial state; F ⊆ Q is the set of final states or acceptance (not
empty); f is the input function that reads the elements of the alphabet; and g is the output
function, which is a counter of the transition between the states. With this function, the
probability matrix is constructed from the frequency of the element read by the function f.

Matrix M has the conditional probabilities of the series, which were constructed by
reading the elements that constitute the series with the input function f and were counted
with the output function g. For introducing the dynamics of the system, it is considered
that the transition matrix has captured the relevant information for predicting the future,
the history of vector x at time t. This can be represented by x:t = . . . , xt−3, xt−2, xt−1 and the
future by the values xt+1, xt+2, xt+3, . . . by vector x:t’. These are related by the equivalence
relation given by Equation (1) [19].

x:t ∼ x:t′ ⇔ Pr(xi|x:t) = Pr(xi|x:t′) (1)

The equivalence relation ~ establishes that the causal states of Q, the space of each state
and the transitions from state to state are the dynamics τ of the processes of the ε-machine.
An outline of the ε-machine of the example is shown in Figure 1 [11].

Since the ∈-machine has discrete conditional probabilities, the entropy is directly cal-
culated from transition matrix for obtaining the next state and, consequently, the number of
the time series. The ∈-machine has important properties that can be found in reference [19].

2.2. Procedure for Determining Future Values with the ∈-Machine

The procedure used for predicting the series of values is described next [11]. To
determine the series of values of the vector x:t′ , it is required to select the next state sj from
the si state, given that a si state can go to different sj states, as shown in Figure 1. Recent
analyses of financial series have shown that they go through cycles, where entropy values
can grow or decrease [15]. Changes in entropy are considered for the selection of the next
state, sj, according to the following rules:

1. If the entropies of the destination states j are less than or equal to that of the source
state i, the minor entropy closest to or equal to the entropy of the source i is considered,
as established by Shannon [16].

2. If the entropies of the destination states j are greater than that of the source state i, the
nearest major entropy is considered.

3. In case several different states have the same entropy, and in cases 1 or 2, the sj
that is most likely to occur is selected. At this point is where the transfer entropy is
introduced for selecting the next state, sj.

4. The count of each of the transitions is updated and its new conditional probability
is calculated.
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2.3. Transfer Entropy

For the transfer entropy [12], let X = {xtn, . . . , xt−k+1} be a stationary Markov process of
order k, then this dominates the probability for observation X at time t+1; additionally, x is
conditional of the k previous observations, such that p(xt+1|xtn, . . . , xt−k+1) = p(xt+1|xt, . . . ,
xt−k). If the previous values are known, the average number of bits necessary to encode the
observation of the series is given by the following formula, where log represents log2:

hx(k) = −∑
x

p
(

xt+1, x(k)t

)
logp

(
xt+1

∣∣∣x(k)t

)
(2)

where x(k)t = (xt, . . . , xt−k+1).
The model can be scaled up for the bivariate case [12]:

hXY(k, l) = −∑
x

p
(

xt+1, x(k)t , y(l)t

)
log
(

xt+1

∣∣∣x(k)t , y(l)t

)
(3)

where xt and yt represent the discrete states at time t of X and Y, respectively. Additionally,
x(k)t and y(l)t denote the bidimensional vectors of the two processes X and Y, respectively.

The transfer entropy is quantified by the flow of information from Y to X. The transfer
entropy can be calculated by subtracting the information obtained from the last observation
of X only to the last observation of the joint probability of X and Y, which is defined by [12]:

TEY→X(k, l) = hX(k)− hXY(k, l) (4)

For facilitating the calculation of the transfer entropy, the following assignment is
made: k = l = 1 [13]. Another representation of the transfer entropy is the so-called normal
formula for the transfer entropy from Y to X, which is given by the following expression:

NTEY→X = ∑
in+1, in ,jn

p(pn+1, in, jn)log
p(in+1, in, jn)p(in)

p(in+1, in)p(in, jn)
(5)

where in is the n-th element of the series of variable X and jn is the n-th element of the series
of variable Y.

As can be observed, the two expressions can be used for calculating the transfer
entropy from one series to another. However, since the data are obtained by reading the
series, in this work the transfer entropy is calculated using Equation (4).

2.4. Procedure for Calculating the Influence of Entropy for Determining the New State in
the ∈-Machine

The modifications in the calculation process are the following:

(a) Consider two ∈-machines, one for calculating series x and the other for series y. For
series y, the same assumption used for series x is made, i.e.,

y:t ∼ y:t′ ⇔ Pr(yi|y:t) = Pr(yi|yt′) (6)

where for the history, y:t = . . . , yt−3, yt−2, yt−1, and the future by the values yt+1, yt+2,
yt+3, . . . through vector y:t′ .

(b) It is assumed that the elements of the series are for the same day from day 1 to 2000.
(c) When reading the elements of the time series x:t and y:t, the joint probability matrix is

constructed, xy.
(d) For measuring the influence of series y on series x, it is assumed that the vector of

future values y:t’ is known. Each value of the vector is used for the corresponding
iteration, from the first to the 100th.
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(e) Read and transform the financial series into a series of integer numbers. The elements
of the series of integers are read until the last state si of series x:t is reached as well as
the last state of series y:t.

(f) Using the state si of series x, the next state sj is determined considering the possible
candidate states, which have a similar entropy among them. The candidate states are
selected according to the original process.

(g) The transfer entropy is calculated for each candidate state according to the corre-
sponding element of the iteration of vector y:t.

(h) From the candidate states that have the same entropy in series x, the one with the
highest transfer entropy is selected. In case of a tie in entropy and in transfer entropy,
the method proposed in the referred process is used.

Since the transfer entropy could be considered as noise in the signal, this is not added
to the calculated entropy for going from a state, si, to a state, sj. In the procedure described,
both factors are considered separately.

3. Results

The closing prices of stocks and the returns that are calculated from the first ones are
real numbers. Consequently, building a PFSM using the returns would be a non-computable
problem due to the number of states that the state machine would need. For generating the
characters that read and process the PFSM, a procedure described in the first part of this
section is followed. For explaining the procedure, the series for the closing price of the S&P
500 is used.

The algorithm implemented was designed for executing a pair of closing price series
at one time. The execution time of the algorithm is smaller than one second for each pair of
series. The program was executed one time for each permutation of the series.

The comparison of results focuses on determining the influence of different stock
market series on the closing price of a particular series. For each series, the influence of the
other five series is determined. Additionally, the forecast of a series is calculated without
considering the influence of any series. The results obtained are compared to the real values
of the series. Therefore, it is not necessary to compare them using another method because
statistical metrics give the precision of the results with respect to the real values and the
objective is to know the influence of transfer entropy on the forecast of the financial series.

3.1. Prediction for the S&P 500 Series

The following sections show the elements for constructing the ∈-machine.

3.1.1. Construction of the Elements of the PFSM

For constructing the ∈-machine, it is necessary to construct the probabilistic finite state
machine (PFSM) with output [11], defined by the 7-tuple (Σ, Q, M, P(0), F, f, g). Therefore,
the process starts with the definition of the input alphabet, Σ.

The alphabet is obtained from the return of the closing values variation. The series of
the closing value for the S&P 500 is shown in Figure 2. These data are public [18].

In some research, the return of financial series is calculated using the difference of the
price logarithms. In this work the return is calculated with the following formula [1,2]:

Rt =
(Pt − Pt−1)

Pt−1
(7)

where Pt is the stock price at time t, and Pt−1 is the price at time t−1.
Using the prices of the series in Figure 2, the returns of the financial series S&P 500 are

obtained, as shown in Figure 3.
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Figure 3. Return of the financial series S&P 500 from 1 July 2013 to 9 June 2021.

Considering the returns of Figure 3 for the PFSM would make the problem non-
computable because they are real numbers. Therefore, for constructing the alphabet of
the PFSM from the returns of the financial series, the central limit theorem has to be
considered [20]. If the returns of each of the series are grouped, they approximate a normal
distribution. The area under the curve of the normal distribution is divided into two-
percentile intervals, and each interval is represented by an integer. The set selected consists
of 50 intervals [11], which defines the alphabet, Σ = {1, 2, 3, . . . , 50}.

Unlike the procedure of reference [11], where odd numbers were assigned to negative
returns and even numbers to positive ones, here a change is made: negative returns are
assigned a number from 1 to 25, while positive ones are assigned a number from 26 to 50,
as shown in Figure 4.
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Figure 4. Plot of the normal distribution divided into two-percentile intervals.

This change is made because, in the previous assignment, if a number changed from
4 to 5, it indicated that a positive return changes to a negative one, instead of indicating
that the change was negligible. For this reason, the way of numbering the percentiles
was changed.

When applying the process described, the sequence of integer numbers for the series
S&P 500 is obtained, which is shown in Figure 5.
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Figure 5. Sequence of integers representative of the returns of the S&P 500 series from 1 July 2013 to
9 June 2021.

The sequence of integer numbers follows the sequence of the returns, where the axis
of the location of zero, in this case, lies between numbers 25 and 26.

The remaining terms of the 7-tuple of the PFSM are defined. When the integers are
defined, the number of states Q is also defined because, in the sequence of numbers, from
any state another available state can be reached. Therefore, the set of states is defined
Q = {s1, s2, . . . s50}. This number of elements generates a 50 × 50 probability matrix,
M, which gathers the main characteristics of the 2000 history elements used. Function f
reads the path defined by the 50 states of Figure 5. The output function g calculates the
probabilities Pr(s1, s1), Pr(s1, s2), . . . , Pr(s50, s50). All the states have the same probability of
being the initial state because the series can start from any state P(0) = {s1(1/50), s2(1/50),
. . . , s50(1/50)}. All the states can be final states because any element of the alphabet can be
the final state, F = {s1, s2, . . . , s50}. With this definition, the PFSM is constructed, which is
then transformed into the ∈-machine [11].

3.1.2. Data and Predictions of the S&P 500 Series

The data available for the series S&P 500, Nasdaq, CAC 40, DAX, Han Seng and
Nikkei 225 are 2000 data points and are from 1 July 2013 to 9 June 2021 and are public [18].
The prediction is for 100 days, considered short-term [1], and it is from 10 June 2021 to
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29 October 2021. By applying the process described in Section 2.4 for the S&P 500 series,
the results described next are obtained.

Figure 6 shows that, if the index of any of the aforementioned series is known, the
prediction is improved if it is compared to the prediction performed without considering
the transfer entropy. Each of the series transfers information to the series in question to
influence the selection of the subsequent states in the ∈-machine. For determining the
series that best influences series x, the metrics of Table 1 are used [1].
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Figure 6. Forecast for the S&P 500 series considering the transfer entropy from 10 June 2021 to
29 October 2021.

Table 1. Statistical performance measurement metrics.

Metric Description

Mean absolute error MAE = 1
T

T
∑

t=1
|ỹt − yt| (8)

Mean absolute percentage error MAPE = 100
T

T
∑

t=1

∣∣∣ ỹt−yt
yt

∣∣∣ (9)

Root-mean-squared error RMSE =

√
1
T

T
∑

t=1
(ỹt − yt)

2 (10)

Theil’s inequality coefficient Theil−U =

√
1
T ∑T

t=1(ỹt−yt)
2√

1
T ∑T

t=1(ỹt)
2+
√

1
T ∑T

t=1(yt)
2

(11)

Correct directional change CDC = 100
N

N
∑

t=1
Dt

Where Dt = 1, if ỹtyt > 0, else Dt = 0
(12)

where : yt is the real change at time t.
ỹt is the forecast of change at time t.
t = 1 to t = T for the forecast period.

To make the comparisons of the results obtained, the following statistical metrics are
used: MAE, RMSE, MAPE, Theil-U and CDC. The statistics MAE and RMSE are measures
dependent on the scale and allow a comparison between the real and predicted values;
since these are closer to zero, the accuracy of the forecast will be better. When it is more
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important to evaluate forecast errors independently of the scale of the variables, MAPE and
Theil-U are used, since they are constructed to have a value within the range of [0, 1], and
zero indicates a perfect fit. CDC indicates sign change, and when the forecast equals the
real value, CDC equals 1; otherwise, it equals 0. Their equations are shown in Table 1 [1].

These metrics are applied to the predictions considering the influence of other
financial series.

Table 2 shows that the MAE and RMSE indicators are close to zero, and their lowest
values occur when the transfer of information of the CAC 40 series is considered. Con-
cerning the MAPE and Theil-U indicators, for Theil-U the best value was obtained for the
same CAC 40 series, and for MAPE the best value was attained when no transfer entropy
was considered (the first row). The other European series, the DAX, influences the S&P
500 series for accurately forecasting the sign change a bit above 50 (the third row).

Table 2. Metrics for the prediction of the S&P 500 series.

MAE MAPE RMSE Theil-U CDC

W/O trans 0.007046 331.679688 0.009233 0.680105 48.484848
CAC40 0.006208 378.035461 0.007989 0.674232 46.464645
DAX 0.006298 488.436951 0.008612 0.729542 50.505051

Hang Seng 0.006900 529.977722 0.009972 0.728371 46.464645
Nasdaq 0.007297 373.871674 0.010945 0.703083 48.484848
Nikkei 0.006494 449.047852 0.008233 0.686128 49.494949

Table 2 shows in bold face the best (smallest) values obtained. It shows that the best
results are obtained when the closing values of the CAC 40 series are known; of the five
metrics, three yield the best approximations. Another of the best approximations occurs
when a forecast does not consider the transfer entropy, and the other is the sign change,
which is obtained when the value of the DAX series is known. The best approximation
is when the European series are known. The influence of the other American series, the
Nasdaq, is not as significant as that of the European series; however, the results did improve
when compared to the one without transfer entropy. Considering the preceding results,
Figure 7 shows the best approximation.
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10 June 2021 to 29 October 2021.
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Like the S&P 500 series, the calculations were performed for the financial series.
Appendix A includes the plots of the financial series considered. Appendix B presents the
returns of each series. Appendix C shows the series of integers, and Appendix D contains
the predictions for all the series.

Next, the best predictions for the financial series are shown.

3.2. Prediction for the Nasdaq Series

The data for this series are in the corresponding Appendices. Table 3 shows the
forecasts using the other series.

Table 3. Metrics for the prediction of the Nasdaq series.

MAE MAPE RMSE Theil-U CDC

W/O series 0.008851 458.042206 0.013113 0.736870 53.535355
S&P 500 0.008377 817.115417 0.012844 0.726994 48.484848
CAC 40 0.009395 585.322693 0.013516 0.721487 51.515152

DAX 0.008759 871.118896 0.012935 0.714895 52.525253
Hang Seng 0.011798 562.663330 0.016994 0.746129 50.505051

Nikkei 0.010775 776.217163 0.016060 0.791978 40.404041

Considering the real values of the series, the series that influences most significantly is
the S&P 500 with two metrics and without considering any series with two metrics and,
finally, the DAX series with one metric. Figure 8 shows these results graphically. In this
series, knowing the closing price of the other American series, the S&P 500 series, and the
European DAX series does have a significant influence.
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Figure 8. Forecast for the Nasdaq series when the values of the S&P 500 and DAX series are known.

3.3. Prediction for the DAX Series

The data for this series can be found in the corresponding appendices. Table 4 shows
the forecasts using the other series.
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Table 4. Metrics for the prediction of the DAX series.

MAE MAPE RMSE Theil-U CDC

W/O series 0.009036 618.376221 0.011943 0.650501 52.525253
S&P 500 0.007796 844.586304 0.010715 0.676640 50.505051
CAC 40 0.008825 892.767029 0.013338 0.717789 57.575756

Hang Seng 0.013858 662.613037 0.018884 0.695072 56.565655
Nasdaq 0.009343 751.972229 0.014088 0.726485 51.515152
Nikkei 0.009064 1206.864868 0.013062 0.668989 48.484848

Table 4 shows that two are the best approximations to the real value. The first does
not consider the influence of any series, and the second considers the influence of the
S&P 500 series. It is important to mention that, when the influence of the other European
series is considered, the best prediction of sign change is obtained. Figure 9 shows these
results graphically.
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Figure 9. Forecast for the DAX series with the values of S&P 500 and CAC 40, and without the
influence of another series from 10 June 2021 to 29 October 2021.

As shown in Figure 9, the CAC 40 series influences the sign change of the DAX series,
both European series. However, the one that may have the most information flow is the
American S&P 500.

3.4. Prediction for the CAC 40 Series

The data for the tests are in the corresponding appendices, and Table 5 shows the
values that were obtained for the statistical metrics.

Table 5. Metrics for the prediction of the CAC 40 series.

MAE MAPE RMSE Theil-U CDC

W/O series 0.008694 6552.129395 0.011883 0.699467 54.545456
S&P 500 0.009227 9994.777344 0.012657 0.734951 43.434345

DAX 0.008055 6439.956055 0.010542 0.689794 47.474747
Hang Seng 0.009337 5906.416992 0.012740 0.690702 48.484848

Nasdaq 0.008656 6040.721191 0.012272 0.680308 46.464645
Nikkei 0.009105 2575.624023 0.012615 0.681498 59.595959
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The results show that the DAX and Nikkei 225 are the ones that have the largest
influence on the CAC 40 series. It is important to mention that the DAX is in the European
market and the Nikkei 225 is in the Asian one. The other series, the Nasdaq, also has
influence, but, unlike the ones previously mentioned, it is not significant. Figure 10 shows
the series with the best results.
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Figure 10. Forecast for the CAC 40 series with the values of DAX and Nikkei 225 from 10 June 2021
to 29 October 2021.

3.5. Prediction for the Hang Seng Series

The corresponding appendices present the data used for the closing values of the
Hang Seng index, and Table 6 shows the statistical metrics for measuring the influence of
the other series considered in this work.

Table 6. Metrics for the prediction of the Hang Seng series.

MAE MAPE RMSE Theil-U CDC

W/O series 0.014074 561.181519 0.018278 0.766479 40.404041
S&P 500 0.010924 1146.378662 0.014252 0.737163 54.545456
CAC 40 0.012453 1585.553955 0.016222 0.680928 54.545456

DAX 0.016491 963.591003 0.020860 0.716018 43.434345
Nasdaq 0.011971 525.337402 0.016503 0.664015 51.515152
Nikkei 0.014792 663.99981 0.019339 0.686714 49.494949

Table 6 shows that the series that transmit more information are the American series,
the S&P 500 and the Nasdaq, with the first one with three indicators and the second with
two. A European series that influences the sign change (indicated by CDC) is the European
series CAC 40. In this series, for all cases, the influence of knowing the value of any series
improves the forecast obtained without considering transfer entropy. Figure 11 shows the
series with the best results.
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Figure 11. Forecast for the Hang Seng series with the values of S&S 500, Nasdaq and CAC 40 from
10 June 2021 to 29 October 2021.

The other Asian series, the Nikkei 225, does not show a significant influence on the
selection of the next state in the Hang Seng series. The American series, the S&P 500 and
the Nasdaq, are the ones that have the most transfer of information for selecting the next
state in the forecast.

3.6. Prediction for the Nikkei 225 Series

The corresponding appendices contain the data used for the Nikkei 225 closing values,
and Table 7 shows the statistical metrics for measuring the influence of the other series
considered in this work.

Table 7. Metrics for the prediction of the Nikkei 225 series.

MAE MAPE RMSE Theil-U CDC

W/O series 0.011474 377.160492 0.015506 0.656048 55.555557
S&P 500 0.009853 1154.495117 0.013700 0.640071 50.505051
CAC 40 0.010712 996.726318 0.015071 0.680227 52.525253

DAX 0.013742 603.969604 0.019325 0.708990 47.474747
Hang Seng 0.015252 1165.947144 0.021328 0.744763 53.535355

Nasdaq 0.011941 546.979126 0.017283 0.643839 56.565655

Table 7 shows that the series that transmits more information is the American series
S&P 500, and with the influence of the other American series, the Nasdaq, the highest sign
change is obtained (indicated by CDC). For this series, one of the indicators obtains the best
value when no influence of any other series is considered. Figure 12 shows the series with
the best results.

For this series, the transfer of information from the Americas series, the S&P 500
and the Nasdaq, is higher than that from the European series; the Asian series have no
significant influence.
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Figure 12. Forecast for the Nikkei 225 series with the values of S&P 500 and Nasdaq and without
transfer entropy, from 10 June 2021 to 29 October 2021.

4. Discussion

The results show that it is possible to modify the procedure for predicting future values
of the closing value of stocks using the ∈-machine by considering the transfer of information
calculated as the transfer entropy of another financial series to the closing value.

The knowledge of a financial series beforehand influences the stock prices. All the
series considered have influences of different magnitudes. In some cases, the influence is
more significant for the selection of the subsequent state of the ∈-machine.

The results show that the American financial market is the one that transmits more
information, which coincides with other researchers [15] who have found that the American
market is the one that transmits the most information, and the Asian market is the one
that transmits the least information. Table 8 shows the number of times that the transfer
entropy of certain series obtained the best approximation for another series when using the
∈-machine.

Table 8. Number of times of largest transmission of information from one series to another.

Influencing Series

Influenced Series S&P 500 Nasdaq CAC 40 DAX Hang Seng Nikkei 225

S&P 500 1 0 3 1 0 0

Nasdaq 2 2 0 1 0 0

CAC 40 0 1 0 2 0 2

DAX 2 0 1 2 0 0

Hang Seng 3 2 1 0 0 0

Nikkei 225 3 1 0 0 0 1

Total 11 6 5 6 0 3

The results in Table 8 show that the American series, the S&P 500, is the one that
transmits the most information among the series. The second best are the American
Nasdaq and the European DAX. The European series CAC 40 occupies the third place,
the Asian series Nikkei 225 is in fourth place, and the last place is for the Asian series
Hang Seng.
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In Table 8, it is observed that the European series CAC 40 transmits the most infor-
mation to the American series S&P 500. In turn, this European series is influenced by the
Asian Nikkei 225 and the American Nasdaq, which shows that, in some sense, series from
different markets are interconnected. This means that the necessary analysis includes not
only the first series that best transmits information since it is possible to find in a subsequent
stage some result that influences the first observation.

The results obtained are a simulation of a future forecast, and considering the price
history of the series considered, similar results to those obtained by other researchers were
obtained [15]: the dynamics of the financial series determined in the recent past is the same
as in the present and perhaps in the future.

5. Conclusions

It is concluded that the objective proposed for this research was successfully achieved
because of the following reasons: (1) a procedure was designed that is based on the
∈-machine, the rules established by Shannon and the rules proposed in this work for
calculating transfer entropy; and (2) the calculation of entropy uses the historical values of
the series to be calculated.

From the assumptions considered (first, knowing the future values of the series of
values yt’, and second, the calculation of the transfer entropy independently from the
calculation process of the ∈-machine), it is concluded that it is possible to influence the
selection of the next state sj and, consequently, the stock market index x.

The calculation of the transfer entropy using the ∈-machine implies the calculation
of all the permutations for determining which one or which ones of the financial series
influence the obtaining of a better forecast. Additionally, if it is necessary to introduce in
the calculation a larger number of financial series, it is necessary to formulate the problem
as a combinatorial optimization problem whenever the dynamics of the financial series is a
combinatorial optimization problem.

For obtaining the results of this work, it was assumed that vector yt’ of the influencing
series was known, and the next step was to determine the series prices without knowing this
vector, but, following the closing hours of the financial markets, to calculate the influence
on the stock markets that are still open. To formulate this problem, it is necessary to know
which is the initial market and then the series that will be calculated.
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Figure A1. Closing price of the Nasdaq series from 1 July 2013 to 9 June 2021.
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Figure A2. Closing price of the DAX series from 1 July 2013 to 9 June 2021.
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Figure A3. Closing price of the CAC 40 series from 1 July 2013 to 9 June 2021.
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Figure A4. Closing price of the Hang Seng series from 1 July 2013 to 9 June 2021.
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Figure A5. Closing price of the Nikkei series from 1 July 2013 to 9 June 2021.

Appendix B. Returns of the Series

Entropy 2022, 24, 1049 19 of 25 
 

 

 
Figure A4. Closing price of the Hang Seng series from 1 July 2013 to 9 June 2021. 

 
Figure A5. Closing price of the Nikkei series from 1 July 2013 to 9 June 2021. 

Appendix B. Returns of the Series 

 
Figure A6. Returns of the Nasdaq series from 1 July 2013 to 9 June 2021. 

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000

1 97 19
3

28
9

38
5

48
1

57
7

67
3

76
9

86
5

96
1

10
57

11
53

12
49

13
45

14
41

15
37

16
33

17
29

18
25

19
21

In
de

x

Days quoted

Hang Seng

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000

1 97 19
3

28
9

38
5

48
1

57
7

67
3

76
9

86
5

96
1

10
57

11
53

12
49

13
45

14
41

15
37

16
33

17
29

18
25

19
21

In
de

x

Days quoted

Nikkei 225

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 92 18
3

27
4

36
5

45
6

54
7

63
8

72
9

82
0

91
1

10
02

10
93

11
84

12
75

13
66

14
57

15
48

16
39

17
30

18
21

19
12

Pe
rf

or
m

an
ce

Days quoted

Nasdaq

Figure A6. Returns of the Nasdaq series from 1 July 2013 to 9 June 2021.
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Figure A7. Returns of the DAX series from 1 July 2013 to 9 June 2021.
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Figure A8. Returns of the CAC 40 series from 1 July 2013 to 9 June 2021.
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Figure A9. Returns of the Hang Seng series from 1 July 2013 to 9 June 2021.
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Figure A12. Series of integers of the DAX financial series from 1 July 2013 to 9 June 2021.
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Figure A13. Series of integers of the CAC 40 financial series from 1 July 2013 to 9 June 2021.
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Figure A15. Series of integers of the Nikkei financial series from 1 July 2013 to 9 June 2021.
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Figure A17. Forecasts for the closing price of the DAX series from 10 June 2021 to 29 October 2021.
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Figure A18. Forecasts for the closing price of the CAC 40 series from 10 June 2021 to 29 October 2021.
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Figure A19. Forecasts for the closing price of the Hang Seng series from 10 June 2021 to
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