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Abstract: The kicked rotor and the kicked top are two paradigms of quantum chaos. The notions
of quantum resonance and the pseudoclassical limit, developed in the study of the kicked rotor,
have revealed an intriguing and unconventional aspect of classical–quantum correspondence. Here,
we show that, by extending these notions to the kicked top, its rich dynamical behavior can be
appreciated more thoroughly; of special interest is the entanglement entropy. In particular, the
periodic synchronization between systems subject to different kicking strength can be conveniently
understood and elaborated from the pseudoclassical perspective. The applicability of the suggested
general pseudoclassical theory to the kicked rotor is also discussed.
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1. Introduction

The study of quantum chaos, or quantum chaology [1], focuses on whether, how, and
to what extent classical chaos may manifest itself in the quantum realm. In essence, it
boils down to the general classical–quantum correspondence issue, as insightfully pointed
out by Einstein at the very early development stage of quantum theory [2]. The quantum
kicked rotor, presumably the best known paradigm of quantum chaos, was first introduced
by Casati et al. in their seminal study that opened this field [3]. After four decades of
investigation, the richness of this paradigmatic model appears to be surprising. Far beyond
quantum chaos, it has also been realized that this model may play a unique role in other
fundamental problems, such as Anderson localization (transition) [4–7] and the quantum
Hall effect [8–10]. Centering around the kicked rotor, an expanded overlapping field
encompassing all these relevant problems is emerging [11].

In contrast to its richness, another advantage of the kicked rotor lies in its simplic-
ity, featuring only a single point particle on a circle subject to the stroboscopic external
interaction, which makes the study of this model much more convenient than most oth-
ers. An exception is the kicked top model [12], which has a finite Hilbert space, so that
it is even more favorable for research. Interestingly and importantly, these two models
usually demonstrate different aspects of quantum chaos in a complementary way. With
all these advantages, they are often the first ideal candidates for probing new notions.
In recent years, interesting notions having been intensively investigated range widely,
from the out-of-time-order correlations [13–15], to the dynamical entanglement [15–20], the
non-Hermitian properties [21,22], and so on.

The dynamical entanglement is devised to capture the decoherence process of a
quantum system when being coupled to the environment. It has distinct characteristics if
the system’s classical counterpart is chaotic. The kicked top has the spin algebra symmetry
and, as such, it can be regarded as a composite of identical qubits. An additional advantage
due to such a multiqubit interpretation is that, for studying the dynamical entanglement,
there is no need to introduce the environment. It has been shown both theoretically and
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experimentally that, indeed, the dynamical entanglement may serve as a diagnosis of
quantum chaos in the kicked top model [20,23].

However, as far as we know, in most previous studies of the kicked top, only a
narrower range of comparatively weak kicking strength has been investigated, leaving
its properties unexplored yet in a wider range of stronger kicking strength. The reason
might be that, for the classical kicked top, the transition from regular to globally chaotic
motion occurs at a rather weak kicking strength. When the system is already globally
chaotic, further increasing the kicking strength would not result in any qualitatively new
properties. Accordingly, due to quantum–classical correspondence, it is reasonable to
conjecture that this would also be the case in the quantum kicked top in the semi-classical
limit. Nevertheless, as illustrated in a recent study where measures of quantum correlations
were studied [18], the quantum kicked tops at certain different kicking strengths may
synchronize, in clear contrast to their classical counterparts.

In fact, it is worth noting that in the kicked rotor, the similar classical–quantum non-
correspondence phenomenon, termed quantum resonance [24], has been recognized and
studied ever since the beginning of the quantum chaos field. Later, it has also been real-
ized that the properties of the system when being detuned from the quantum resonance
condition can even be understood in a classical way through the so-called pseudoclas-
sical limit [25,26], rather than the conventional semi-classical limit. This reminds us to
consider whether the synchronization observed in the quantum kicked top may have any
underlying connections to quantum resonance and the pseudoclassical limit. In this work,
we will provide a positive answer to this question. In particular, we will suggest a more
general scheme of the pseudoclassical limit that involves more information of the quantum
dynamics, which allows us to successfully apply it not only to the kicked top, but also
to the kicked rotor. When being applied to the kicked rotor, the previously developed
pseudoclassical scheme is found to be a special case of the suggested one.

In the following, we will briefly describe the kicked top model in Section 2 first. Next,
in Section 3, we will discuss the quantum resonance condition for the quantum kicked
top and develop the pseudoclassical theory. The properties of the system adjacent to the
quantum resonance condition will be discussed in detail with two illustrating cases in
Section 4. In particular, the numerical studies and the comparison with the pseudoclassical
theory will be presented. In Section 5, the properties of dynamical entanglement will be
investigated from the perspective of the pseudoclassical limit. Finally, we will summarize
our work and discuss its extension to the kicked rotor in Section 6.

2. The Kicked Top Model

The Hamiltonian of the kicked top model is [12]

H = αJx +
β

2j
J2
z

∞

∑
n=−∞

δ(t− n),

where Jx, Jy, and Jz are the angular momentum operators respecting the commutations[
Jλ, Jµ

]
= iελµν Jν (the Planck constant h̄ is set to be unity throughout) and j is an integer

or half-integer related to the dimension of the Hilbert space N as N = 2j + 1. The first
term in H describes the procession around the x axis with angular frequency α, while the
second term accounts for a periodic sequence of kicks with an overall kicking strength
β (the period of kicking is set to be the unit of time). In the following, we will restrict
ourselves to the case of integer j, but the discussions can be extended straightforwardly to
that of half-integer j. Since the Hamiltonian is time-periodic, the evolution of the system
for a unit time, or one step of evolution, can be fulfilled by applying the Floquet operator

U = exp
(
−i

β

2j
J2
z

)
exp(−iαJx) (1)
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to the present state. Obviously, U does not change under the transformation β→ β + 4jπ,
implying that the properties of the quantum kicked top have a periodic dependence on the
kicking strength β of period 4jπ. Thus, a better understanding of the quantum kicked top
calls for investigations covering such a period.

In the semi-classical limit j → ∞, following the Heisenberg equations, the one-step
evolution of the system reduces to the following map [27]:

X′ =X cos[β(Y sin α + Z cos α)]− (Y cos α

− Z sin α) · sin[β(Y sin α + Z cos α)],

Y′ =X sin[β(Y sin α + Z cos α)] + (Y cos α

− Z sin α) · cos[β(Y sin α + Z cos α)],

Z′ =Y sin α + Z cos α,

(2)

with the normalized variables X = Jx/j, Y = Jy/j, and Z = Jz/j. This map defines the
classical kicked top. Physically, this map describes the process of rotating the top along the
x axis for an angle of α first to reach the intermediate state (X̃, Ỹ, Z̃), followed by further
rotating it around Z̃ by βZ̃, which is the same as the quantum Floquet operator.

Note that the state (X, Y, Z) can be viewed as a point on the surface of a unit sphere.
Therefore, it can be represented equivalently by two angles, denoted as Θ and Φ, via
the coordinate transformation (X, Y, Z) = (sin Θ cos Φ, sin Θ sin Φ, cos Θ). For the sake of
convenience, we denote map (2) in terms of Θ and Φ as

(Θ′, Φ′) = F (Θ, Φ; α, β), (3)

where (Θ′, Φ′) is the state equivalent to (X′, Y′, Z′).
In order to make a close comparison between the quantum and the classical dynamics,

we invoke the spin coherent state in the former, which has the minimum uncertainty in a
spin system. A spin coherent state centered at (Θ, Φ), denoted as |Θ, Φ〉, can be generated
from the angular momentum eigenstate |j, j〉 as

|Θ, Φ〉 = exp
(
iΘ[Jx sin Φ− Jy cos Φ]

)
|j, j〉.

Here, |j, j〉 satisfies that (J2
x + J2

y + J2
z )|j, j〉 = j(j + 1)|j, j〉 and Jz|j, j〉 = j|j, j〉. The

classical counterpart of |Θ, Φ〉 is the point (Θ, Φ) on the unit sphere.

3. The Pseudoclassical Theory
3.1. Quantum Resonance in the Kicked Top

The concept of quantum resonance was first introduced in the kicked rotor model.
The Floquet operator for the kicked rotor is

UR = exp
(
−i

p2

2
T
)

exp(−iK cos θ),

where T and K are two parameters, θ is the angular displacement of the rotor, and p is the
corresponding conjugate angular momentum. If T = 4πr/s with r and s as two coprime
integers, except for the cases of an odd r and s = 2, the asymptotic growth in energy is
quadratic in time, corresponding to a linear spreading of the wavepacket in the angular
momentum space. This phenomenon is referred to as “quantum resonance” [24], since
it is caused by the pure quantum effect, with no connections to the classical dynamics.
Otherwise, the energy would undergo a linear growth stage, corresponding to the diffusive
spread of the wavepacket in the angular momentum space, before it saturates due to
quantum interference, which is known as the so-called dynamical localization [28]. For the
special case of an odd r and s = 2, it follows that U2

R = 1. Namely, the quantum dynamics
is periodic of period two, which is referred to as “quantum antiresonance”.
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There is an implicit connection between the kicked rotor and the kicked top. By
assuming the scaling

T = β/j and K = αj,

it has been shown that the kicked rotor emerges as a limit case of the kicked top [27]. Given
this, the notion of quantum resonance can be extended to the kicked top by assigning the
quantum resonance condition that

β = 4jπ
r
s

with coprime r and s. Indeed, under this condition, the kicked top has similar properties
to the kicked rotor in quantum resonance. For example, for β = 4jπ, the Floquet operator
reduces to U = exp(−iαJx), implying that the top keeps rotating at a constant rate; however,
when r is odd and s = 2, we have U2 = 1, suggesting that the motion is periodic of period
two as well.

3.2. The Pseudoclassical Limit of the Kicked Top

For the kicked rotor, a pseudoclassical theory has been developed to address the
quantum dynamics via a classical map, the so-called pseudoclassical limit, when the sys-
tem parameter is close to the resonance condition that T is an integer multiple of 2π
(i.e., s = 2) [25,26]. In the following, we attempt to extend this theory to the kicked top and
study its behavior for β = 4jπr/s + δ, where δ (incommensurate to π) is a weak perturba-
tion to the resonance condition that is unnecessarily limited to the case of s = 2. Suppose
that the current state is |Θ, Φ〉 and its classical counterpart is (Θ, Φ); our task is to figure
out the one-step evolution result for the latter by analogy based on the quantum evolution.

For β = 4jπr/s + δ, the Floquet operator (1) can be rewritten as

U = exp
(
−i

4jπ r
s + δ

2j
J2
z

)
exp(−iαJx)

= exp
(
−i2π

r
s

J2
z

)
exp

(
−i

δ

2j
J2
z

)
exp(−iαJx).

(4)

Remarkably, the last two terms are exactly the Floquet operator of the kicked top but
with the kicking strength δ instead. As shown in previous studies, when δ is small, the
quantum dynamics that the last two operators represent can be well mapped to the classical
kicked top (with the kicking strength δ) in the semi-classical limit. As a consequence, the
classical counterpart of the last two operators is to map (Θ, Φ) into the intermediate state

(Θ̃δ, Φ̃δ) = F (Θ, Φ; α, δ), (5)

where the subscript δ at the l.h.s. indicates the kicking strength for the sake of clearness.
Vice versa, for the corresponding quantum evolution, due to the solid quantum–

classical correspondence in the semi–classical limit, we assume that these two operators
map the coherent state |Θ, Φ〉 into that of |Θ̃δ, Φ̃δ〉. Then, the remaining problem is to find
out the classical counterpart of the result when the first operator at the r.h.s. of Equation (4)
applies to this intermediate state |Θ̃δ, Φ̃δ〉. The result is (see the derivation in Appendix A)

exp
(
−i2π

r
s

J2
z

)
|Θ̃δ, Φ̃δ〉 =

s−1

∑
l=0

Gl

∣∣∣∣Θ̃δ, Φ̃δ +
2πr

s
l
〉

, (6)

where Gl is the Gaussian sum

Gl =
1
s

s−1

∑
k=0

exp
(
−i

2πr
s

k(k− l)
)

.
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The physical meaning of Equation (6) is clear: the intermediate coherent state |Θ̃δ, Φ̃δ〉
is mapped into s coherent states located along the line of Θ = Θ̃δ, each of which has an
amplitude given by a Gaussian sum. Note that these s coherent states are not necessarily
independent; some of them may correspond to the same coherent state, if their l values
lead to the same angle of ∆ = 2πrl/s mod 2π. Suppose that there are N different such
angles in total and denote them as ∆k, k = 1, · · · ,N ; then, Equation (6) can be rewritten as

exp
(
−i2π

r
s

J2
z

)
|Θ̃δ, Φ̃δ〉 =

N
∑
k=1

Ak
∣∣Θ̃δ, Φ̃δ + ∆k

〉
. (7)

Here, for the kth component coherent state, its amplitude Ak is the sum of all Gl whose
subscript l satisfying ∆k = 2πrl/s mod 2π.

In the semi-classical limit j → ∞, a coherent state reduces to a point in the phase
space. Given this, we can give Equation (7) a classical interpretation as the following: the
point (Θ, Φ) is mapped into a set of N points and meanwhile each point is associated
with a complex “amplitude”. These two features make the situation here distinct from
the previous pseudoclassical theory for the kicked rotor, where a point is mapped only to
another point and no complex amplitude is involved. Thus, formally, the pseudoclassical
map that we seek can be expressed as

M : (Θ, Φ)→ {[(Θ̃δ, Φ̃δ + ∆k); Ak], k = 1, · · · ,N}. (8)

This is the key result of the present work. As illustrated in the next section, it does allow
us to predict the quantum dynamics in such a pseudoclassical way. Here, we emphasize
that the amplitudes {Ak} are crucial to this end. Specifically, |Ak|2 has to be taken as the
weight of the kth point to evaluate the expected value of a given observable. Moreover,
the phases encoded in these amplitudes have to be considered simultaneously to correctly
trace the quantum evolution.

4. Applications of the Pseudoclassical Theory

In this section, we check the effectiveness of the pseudoclassical map by comparing its
predictions with that obtained directly with the quantum Floquet operator. In general, if a
point is mapped into N > 1 points at each step, then the number of points that we have to
deal with would increase exponentially. Therefore, in practice, it would be prohibitively
difficult to apply it for any arbitrarily given parameters. However, fortunately, for some
quantum resonance parameters, N could be small, and, under certain conditions, e.g., if
α is an integer multiple of π/2, coherent cancellation may suppress the increase in the
number of points (see the second subsection below). In such cases, the application of the
pseudoclassical theory can be greatly simplified. Here, we consider two such cases as
illustrating examples, i.e., β = 2jπ + δ and β = jπ + δ, respectively.

4.1. Case I: β = 2jπ + δ

For this case, we can show (see Appendix B) that N = 1, i.e., the pseudoclassical
dynamics evolves the point (Θ, Φ) into another single point as

M : (Θ, Φ)→ (Θ̃δ, Φ̃δ + π), (9)

with the corresponding amplitude A1 = 1.
With Equation (9) in hand, we are ready to predict the quantum properties. The most

relevant quantities could be the expected values of angular momentums. In Figure 1, their
dependence on time is shown for a randomly chosen initial condition. The corresponding
quantum results for three different values of j are plotted together for comparison. It can
be seen that the pseudoclassical results agree very well with the quantum ones, and, as
expected, as j increases, the agreement improves progressively. It shows that, indeed, the
pseudoclassical limit captures the quantum motion successfully.
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Figure 1. The time dependence of the expected value of angular momentum Jx (a), Jy (b), and Jz (c),
respectively, for α = 1 and β = 2jπ + 2. The black crosses are for the results by the pseudoclassical
map (Equation (9)). The green triangles, the red circles, and the blue squares are for the quantum
results with j = 100, 200, and 400, respectively. For the initial state (Θ, Φ) and |Θ, Φ〉, Θ = 0.8π and
Φ = 0.3π.

The agreement illustrated in Figure 1 does not depend on α. However, if α is an
integer multiple of π/2, the system would have an additional interesting property. Namely,
its quantum entanglement entropy would remain synchronized with that of the system
that has a kicking strength of β = δ instead [18]. Since, for such an α value, the good
agreement between the pseudoclassical and the quantum evolution remains equally, we
can probe this interesting phenomenon from the pseudoclassical perspective. In fact, by
following Equation (9) and taking into account the extra symmetry introduced by such
an α value, we can show that this synchronization in the entanglement entropy roots in
the synchronization of their dynamics (see the following and the next section). The latter
has a period of four (two) when α is an odd (even) multiple of π/2. In Appendix B, the
pseudoclassical dynamics is detailed for the representative example where α = π/2. For
this case, in terms of the expected value of angular momentums, denoted as Jx, Jy, and Jz
as well, without confusion, the connection between these two systems at a given time n can
be made explicitly as follows:

Jx(n; β) =

{
Jx(n; δ), mod (n, 4) = 0 or 2;
−Jx(n; δ), mod (n, 4) = 1 or 3,

Jy(n; β) =

{
Jy(n; δ), mod (n, 4) = 0 or 3;
−Jy(n; δ), mod (n, 4) = 1 or 2,

(10)

Jz(n; β) =

{
Jz(n; δ), mod (n, 4) = 0 or 1;
−Jz(n; δ), mod (n, 4) = 2 or 3.

Note that the angular momentum values at the l.h.s. and the r.h.s. are for the system
with kicking strength β = 2jπ + δ and δ, respectively.

To check this prediction, we compare the numerical results of the quantum evolution
of the two systems. The results are presented in Figure 2, where not only the four-step syn-
chronization but also the details of the intermediate states can be recognized immediately.
We can also make a close comparison of these two systems by visualizing their quantum
evolution in the phase space with the Husimi distribution [29]. At a given point (Θ, Φ) in
the phase space, the Husimi distribution P(Θ, Φ) is defined as the expectation value of the
density matrix ρ with respect to the corresponding spin coherent state, i.e.,

P(Θ, Φ) =
2j + 1

4π
〈Θ, Φ|ρ|Θ, Φ〉.

The results for β = 2 and β = 2jπ + 2 at four different times are shown in Figures 3
and 4, respectively. It can be seen that, when n = 1, the centers of the two wavepackets
only differ by an angle of π in Φ, while, when n = 2, they become symmetric with respect



Entropy 2022, 24, 1092 7 of 16

to (Θ, Φ) = (π/2, π). When n = 4 and 8, the two wavepackets are indistinguishable, which
is a sign that the two systems are synchronized.

Obviously, all these numerical checks have well corroborated the effectiveness of our
pseudoclassical analysis.
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Figure 2. The time dependence of the expected value of angular momentum Jx (a), Jy (b), and Jz (c),
respectively. The same as Figure 1 but for the quantum kicked top with kicking strength β = 2jπ + 2
(red squares), β = jπ + 2 (blue circles), and β = 2 (black crosses), respectively. Here, α = π/2,
j = 400, and the initial state is |Θ, Φ〉 = |0.7π, 0.3π〉.
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Figure 3. The Husimi distribution for β = 2 at the time n = 1 (a), n = 2 (b), n = 4 (c), and n = 8 (d),
respectively. Here, α = π/2, j = 100, and the initial state is |Θ, Φ〉 = |π/2, π/3〉.

4.2. Case II: β = jπ + δ

Now, let us consider a more complex case, i.e., β = jπ + δ. For this case, N = 2 and
the pseudoclassical map is (see Appendix C)

M : (Θ, Φ)→
{
(Θ̃δ, Φ̃δ + π); A1,
(Θ̃δ, Φ̃δ); A2,

(11)

with A1 = (1 + i)/2 and A2 = (1− i)/2. It implies that, after each step, a point will
be mapped into two points at the same probability but with different phases. This map
looks simple, but as N = 2, if we use it to predict the quantum evolution, the points will
proliferate in time so that, in practice, we can trace the quantum motion for a few steps
only. Interestingly, this fact might explain why the quantum motion would be complicated
from a new perspective.
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Figure 4. The Husimi distribution for β = 2 at the time n = 1 (a), n = 2 (b), n = 4 (c), and n = 8 (d),
respectively. The same as Figure 3 but for β = 2jπ + 2 instead (other parameters remain unchanged).

Nevertheless, for some special values of α, due to the coherent effect, the newly
generated points after a step of iteration may overlap and cancel each other out, making
the number of points increase more slowly. An intriguing example is that discussed in the
previous subsection, i.e., where α is an integer multiple of π/2. Again, for such an α value,
the system is brought to synchronization with the system of kicking strength β = δ as well,
but with instead a period of eight (four) if α is an odd (even) multiple of π/2. To be explicit,
for α = π/2, the connections between the two systems are presented in Appendix C. In
terms of the expected value of angular momentums, we have

Jx(n; β) =

{
Jx(n; δ), mod (n, 8) = 0 or 4;
0, else,

Jy(n; β) =


Jy(n; δ), mod (n, 8) = 0 or 7;
−Jy(n; δ), mod (n, 8) = 3 or 4;
0, else,

(12)

Jz(n; β) =


Jz(n; δ), mod (n, 8) = 0 or 1;
−Jz(n; δ), mod (n, 8) = 4 or 5;
0, else.

The simulation results of the quantum angular momentums for β = jπ + δ are shown
in Figure 2 as well; they support this derivation convincingly.

Based on the pseudoclassical dynamics, we find that the initial point will be mapped into
two and then four points after the first and the second iteration, respectively. However, after
the third iteration, the points do not become eight as expected; rather, these eight points can be
divided into four pairs and the two points in each pair overlap with each other. Moreover, two
of these four points disappear in effect as the resultant total amplitude for each of them turns
out to be zero (see Appendix C). Thus, only two points remain, and after the fourth iteration,
these two points further merge into one. As a consequence, the number of points varies in time
with a period of four. The results for the Husimi distribution given in Figure 5 are in good
agreement with this analysis. Comparing this with the results for β = δ in Figure 3, we can see
that after the fourth iteration, there is only one wavepacket of the same shape in both cases, but
their positions are different. Only after the eighth iteration, the two wavepackets are identical,
which explains why the synchronization period should be eight.
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Figure 5. The Husimi distribution for β = 2 at the time n = 1 (a), n = 2 (b), n = 4 (c), and n = 8 (d),
respectively. The same as Figures 3 and 4 but for β = jπ + 2. All other parameters are the same as in
the former two figures.

5. The Dynamical Entanglement

The dynamical entanglement of the quantum kicked top has been studied carefully in
recent years. We discuss this issue in this section by taking advantage of the pseudoclassical
results obtained in the previous section.

For the quantum kicked top, its momentum can be represented by 2j qubits, or a
collection of 2j spin-1/2 identical particles. If the initial state of the system is symmetric
under permutations for identical qubits, this permutation symmetry will be preserved, as it
is respected by the action of the Floquet operator of the kicked top. As a consequence, the
expected spin value for any single qubit of these 2j identical qubits is sγ = Jγ/(2j), where
Jγ is the expected momentum value of the top and γ = x, y, and z [30].

On the other hand, though various bipartite entanglement measures have been sug-
gested, it has been shown that they are qualitatively equivalent. Thus, we adopt the
measure considered the most frequently, i.e., the bipartite entanglement between any qubit
and the subsystem made up of the remaining 2j − 1 qubits. This entanglement is usu-
ally quantified by computing the linear entropy S = 1− Tr(ρ2

1), where ρ1 denotes the
reduced density operator for a single qubit. As ρ1 is a 2× 2 operator, it can be expressed as
ρ1 = 1/2 + ∑γ sγσγ, given the expected spin value sγ. Here, σγ is the Pauli operator. By
substituting sγ = Jγ/(2j), we have ρ1 = 1/2 + ∑γ Jγσγ/(2j) in terms of Jγ instead [30]. It
follows that

S =
1
2

(
1−

[Jx]2 + [Jy]2 + [Jz]2

j2

)
, (13)

which has a well-defined classical counterpart and is easy to compute numerically. Here,
[Jγ]2 represents the square of the expected value of angular momentum Jγ.

For the two cases close to the quantum resonance condition discussed in the previous
section, we can see immediately how their linear entropy is related to that of the case β = δ
based on the pseudoclassical analysis. First, for β = 2jπ + δ, from Equation (10), we have
that [Jγ(n; β)]2 = [Jγ(n; δ)]2 at any time n; hence, S(n) must coincide with that for the
system of β = δ throughout. However, for β = jπ + δ, from Equation (12), we know that
∑γ[Jγ(n; β)]2 = ∑γ[Jγ(n; δ)]2 only when mod (n, 8) = 0 or 4. Therefore, we may expect a
synchronization of period four in the linear entropy. In addition, from Equation (12), we
also know that ∑γ[Jγ(n; β)]2 = 0 when mod (n, 8) = 2 or 6, suggesting that the linear
entropy should reach its maximal value repeatedly in a period of four as well. As for the
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case β = δ itself, because the quantum motion can be approximated by the semi-classical
limit if δ is small, the time dependence of the linear entropy can be predicted based on
the classical dynamics [15]. In a chaotic region of the phase space, S(n) should increase
linearly before saturation; otherwise, it proceeds in a logarithmic law that features the
regular motion. The numerical results of the linear entropy for these three cases and two
representative initial states are presented in Figure 6, which meet all these expectations.

0 1 0 2 0 3 0 4 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

1 1 0 1 0 0 1 0 0 0

S(n
)

n

( a )

n

( b )

Figure 6. The linear entropy as a function of time for the initial condition |Θ, Φ〉 = |0.7π, 0.3π〉
(a) and |0.7π, 0.6π〉 (b), respectively. The classical counterparts of these two states are in the chaotic
and regular region of the phase space, respectively, for the classical kicked top of β = 2. In both
panels, the red squares, the blue circles, and the black crosses are for, respectively, β = 2jπ + 2,
β = jπ + 2, and β = 2. For all the cases, α = π/2 and j = 400.

Another interesting and related quantity that has been intensively investigated is
the time-averaged entanglement entropy. If the semi-classical limit exists, it is used to
estimate the equilibrium value that the corresponding classical system tends to. For the
linear entropy, it is defined as

Sτ =
1
τ

τ

∑
n=1

S(n), (14)

where τ is a sufficiently long time. Interestingly, it was found that the contour plot of Sτ can
well capture the characteristics of the phase space portrait of the corresponding classical
system [19,20]. The reason is that, given the semi-classical limit, for all initial coherent states
centered on the same classical trajectory, by definition, Sτ should be the same in the long
average time limit. As such, Sτ can be used to distinguish the trajectories. As an illustration,
in Figure 7a, the contour plot of Sτ for the case β = 2, where the semi-classical limit holds
well, is shown. The corresponding phase space portrait of its classical counterpart is shown
in Figure 8. The similarity between them is easy to recognize.

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

Q
 /p

F /p

0 0.1 0.2 0.3 0.4 0.5

(a)

0.0 0.5 1.0 1.5 2.0
F /p

0 0.1 0.2 0.3 0.4 0.5

(b)

0.0 0.5 1.0 1.5 2.0
F /p

0.25 0.3 0.35 0.4 0.45 0.5

(c)

Figure 7. The contour plot of the time-averaged entanglement entropy, Sτ for kicking strength β = 2
(a), β = 2jπ + 2 (b), and β = jπ + 2 (c), respectively. Here, α = π/2, j = 400, τ = 300, and a grid of
201× 201 initial coherent states is simulated for each case.
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Figure 8. The phase space portrait of the classical kicked top with α = π/2 and β = 2.

For the two cases close to the quantum resonance condition, the semi-classical limit
breaks. However, as the pseudoclassical limit exists, it allows us to use Sτ to probe the
corresponding pseudoclassical systems. In Figure 7b, the contour plot for β = 2jπ + 2 is
shown. It is identical to that for β = 2, because the two cases share the same linear entropy
at every step. However, it is worth noting that, although, from Equation (9), we know
that any trajectory of the pseudoclassical system for β = 2jπ + δ is related to one of the
semi-classical system for β = δ, they are not located at the same positions in their respective
phase spaces (see Figures 3 and 4, for example). This suggests that Sτ is still equally helpful
for obtaining an overall sense of the pseudoclassical dynamics, but some details could be
missed inevitably by definition.

More interesting is the case for β = jπ + δ. For the pseudoclassical dynamics, the
concept of the conventional trajectory does not apply any longer, because, at a given time,
the number of points in the phase space can be multiple, and they have their respective
complex amplitudes. Regardless of this fact, as Figure 7c shows, Sτ works well again for
schematizing the pseudoclassical dynamics. For example, due to the periodic synchro-
nization with the case of β = δ, we may expect that the chaotic and regular regions of the
former are exactly those of the latter, respectively. This is indeed the case, which can be
seen by comparing Figure 7a,c. Alternatively, if we compute Sτ by taking the average of
S(n) once every four steps (the period of synchronization), the results should be the same
exactly for both cases.

6. Summary and Discussion

In summary, we have introduced the quantum resonance condition into the kicked
top model. In order to study the behavior of the quantum kicked top detuned from the
quantum resonance condition, we have established the corresponding pseudoclassical
theory. By analytical and numerical studies, we have shown that this theory is effective. In
particular, when being applied to discuss the dynamical entanglement, the properties of
the quantum kicked top are successfully predicted based on the pseudoclassical dynamics.
Our results also suggested that the time-averaged entanglement entropy is still a powerful
tool for grasping the pseudoclassical dynamics.

The suggested pseudoclassical scheme is distinct from the one originally introduced in
the kicked rotor that works only near the special quantum resonance condition that T is an
integer multiple of 2π. To make this explicit, let us extend our scheme to the kicked rotor
and compare it with the original pseudoclassical limit. The result is similar to Equation (8):

M : (p, θ)→ {[( p̃δ, θ̃δ + ∆k); Ak], k = 1, · · · ,N}, (15)
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but, here, (p, θ) is the classical counterpart and the center of the coherent state |p, θ〉 for the
kicked rotor, and ( p̃δ, θ̃δ) is that (p, θ) is mapped to by the classical kicked rotor dynamics
with the kicking strength δK. For T = 2kπ + δ (k is an integer), it gives exactly the original
pseudoclassical result. However, this scheme also applies when the system is close to other
quantum resonances, making it more general than the original one.

In practice, the main challenge for applying this scheme is the same as that encountered
in the kicked top, i.e., the rapid proliferation of phase space points. However, if we
introduce an additional symmetry into the system, i.e., the translation invariance for
θ → θ + 2π/w, where w = s/2 for an even s and w = s for an odd s, respectively, it is
found that the coherent cancellation mechanism works efficiently so that the proliferation
can be greatly suppressed. The translation invariance can be fulfilled by replacing the
potential cos θ in the Floquet operator UR with cos(wθ). Such a favorable property makes
the kicked rotor even more advantageous than the kicked top for demonstrating the
pseudoclassical dynamics. A detailed discussion will be published elsewhere [31].

With the pseudoclassical theory in hand, some interesting problems could be inves-
tigated further. For example, it may be applied to study the entanglement in the kicked
top with weak measurements of one or several qubits [32] to identify the measurement
effect from a different perspective. Moreover, the proliferation of the phase space points
is in clear contrast with the conventional classical dynamics. As it is inherited from the
quantum evolution, logN might be taken as a complexity measure of the quantum dy-
namics. For some previously studied problems in the double kicked rotor and top, such
as Hofstadter’s butterfly spectrum [33–35] and exponential and superballistic wavepacket
spreading [36,37], it may help us to gain a deeper understanding. For some frontier topics
mentioned in the Introduction, this theory may find applications as well.
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Appendix A. Derivation of Equation (6)

First, we expand the coherent state |Θ̃δ, Φ̃δ〉 over the eigenstates {|m〉} of Jz, i.e.,
|Θ̃δ, Φ̃δ〉 = ∑

j
m=−j cm|m〉. Applying the operator exp

(
−i 2πr

s J2
z
)

to both sides, it results in

exp
(
−i

2πr
s

J2
z

)
|Θ̃δ, Φ̃δ〉 =

s−1

∑
k=0

exp
(
−i

2πr
s

k2
)

∑
mod (m,s)=k

cm|m〉. (A1)

Note that by the translation operator exp(−i Jzφ), coherent state |Θ̃δ, Φ̃δ〉 is shifted into
|Θ̃δ, Φ̃δ + φ〉, and we thus have∣∣∣∣Θ̃δ, Φ̃δ +

2πr
s

l
〉

= exp
(
−i Jz

2πr
s

l
)
|Θ̃δ, Φ̃δ〉

=
s−1

∑
k=0

exp
(
−i

2πkr
s

l
)

∑
mod (m,s)=k

cm|m〉
(A2)
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by setting φ = 2πlr/s, where l is an integer. Next, multiplying both sides with exp(i2πλlr/s),
where λ is an integer, 0 ≤ λ ≤ s− 1, and taking summation over l from l = 0 to s− 1, we
can obtain that

s−1

∑
l=0

1
s

exp
(

i
2πr

s
λl
)∣∣∣∣Θ̃δ, Φ̃δ +

2πr
s

l
〉

= ∑
mod (m,s)=λ

cm|m〉. (A3)

Finally, by replacing λ in Equation (A3) with k and substituting this equation into Equa-
tion (A1), we have the result of Equation (6).

Appendix B. Pseudoclassical Dynamics for β = 2jπ + δ

For this case, r = 1 and s = 2; we have G0 = 0, G1 = 1, A1 = 1, and N = 1, so that
the pseudoclassical map Equation (8) reduces to

M : (Θ, Φ)→ (Θ̃δ, Φ̃δ + π). (A4)

Namely, a point is mapped into another with unity amplitude.
On the other hand, note that for the particular case that α = π

2 , the classical map given
by Equation (3) has the following properties:

(π −Θ′, π −Φ′) =F (Θ, Φ + π,
π

2
, β),

(Θ′, Φ′ + π) =F (π −Θ, π −Φ,
π

2
, β),

(π −Θ′, 2π −Φ′) =F (π −Θ, 2π −Φ,
π

2
, β).

(A5)

If we use (Θ(0), Φ(0)) to denote the initial state and (Θ̃δ(n), Φ̃δ(n)) the state after n
kicks following the classical map with kicking strength δ, i.e.,

(Θ̃δ(n), Φ̃δ(n)) = Fn(Θδ(0), Φδ(0),
π

2
, δ), (A6)

we can write the results of the pseudoclassical map step by step as follows:
n = 0 → n = 1 :

(Θ(0), Φ(0))→ (Θ̃δ(1), Φ̃δ(1) + π);

n = 1 → n = 2 :

(Θ̃δ(1), Φ̃δ(1) + π)→ (π − Θ̃δ(2), 2π − Φ̃δ(2));

n = 2 → n = 3 :

(π − Θ̃δ(2), 2π − Φ̃δ(2))→ (π − Θ̃δ(3), π − Φ̃δ(3));

n = 3 → n = 4 :
(π − Θ̃δ(3), π − Φ̃δ(3))→ (Θ̃δ(4), Φ̃δ(4)).

At each step, the amplitude is unity. It shows that, after every four steps, the pseudo-
classical dynamics coincides with the classical dynamics of kicking strength δ. Based on
these results, we can write the results given in Equation (10) straightforwardly.

Appendix C. Pseudoclassical Dynamics for β = jπ + δ

For this case, r = 1 and s = 4; we have G1 = 0, G2 =
√

2
2 exp(i π

4 ), G3 = 0, and G4 =√
2

2 exp(−i π
4 ). As a result, N = 2; A1 = G2 =

√
2

2 exp(i π
4 ) and A2 = G4 =

√
2

2 exp(−i π
4 ),

respectively.
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The pseudoclassical map Equation (8) can be written as

M : (Θ, Φ)→
{
(Θ̃δ, Φ̃δ + π);

√
2

2 exp(i π
4 ),

(Θ̃δ, Φ̃δ);
√

2
2 exp(−i π

4 ).
(A7)

For the particular case that α = π
2 , by taking into account the properties of (A5), we

can write the pseudoclassical map step by step as follows. Note that the notation is the
same as in Appendix B and the constant factor

√
2

2 of A1 and A2 is dropped for the sake of
clearness and convenience.
n = 0 → n = 1 :

(Θ(0), Φ(0))→
{
(Θ̃δ(1), Φ̃δ(1)); exp(−i π

4 ),
(Θ̃δ(1), Φ̃δ(1) + π); exp(i π

4 );

n = 1 → n = 2 :

(Θ̃δ(1), Φ̃δ(1)); exp(−i
π

4
)→

{
(Θ̃δ(2), Φ̃δ(2)); − i,
(Θ̃δ(2), Φ̃δ(2) + π); 1;

(Θ̃δ(1), Φ̃δ(1) + π); exp(i
π

4
)→

{
(π − Θ̃δ(2), π − Φ̃δ(2)); 1,
(π − Θ̃δ(2), 2π − Φ̃δ(2)); i;

n = 2 → n = 3 :

(Θ̃δ(2), Φ̃δ(2)); − i→
{
(Θ̃δ(3), Φ̃δ(3)); exp(−i 3π

4 ),
(Θ̃δ(3), Φ̃δ(3) + π); exp(−i π

4 );

(Θ̃δ(2), Φ̃δ(2) + π); 1→
{
(π − Θ̃δ(3), π − Φ̃δ(3)); exp(−i π

4 ),
(π − Θ̃δ(3), 2π − Φ̃δ(3)); exp(i π

4 );

(π − Θ̃δ(2), π − Φ̃δ(2)); 1→
{
(Θ̃δ(3), Φ̃δ(3)); exp(i π

4 ),
(Θ̃δ(3), Φ̃δ(3) + π); exp(−i π

4 );

(π − Θ̃δ(2), 2π − Φ̃δ(2)); i→
{
(π − Θ̃δ(3), π − Φ̃δ(3)); exp(i3 π

4 ),
(π − Θ̃δ(3), 2π − Φ̃δ(3)); exp(i π

4 );

Note that at n = 3, the total amplitude of the point (Θ̃δ(3), Φ̃δ(3)) vanishes and so
does that of (π − Θ̃δ(3), π − Φ̃δ(3)) as a consequence of coherence cancellation, while the
other two points (Θ̃δ(3), Φ̃δ(3) + π) and (π − Θ̃δ(3), 2π − Φ̃δ(3)) remain.
n = 3 → n = 4 :

(Θ(3), Φ(3) + π); exp(−i
π

4
)→

{
(π − Θ̃δ(4), 2π − Φ̃δ(4)); 1,
(π − Θ̃δ(4), π − Φ̃δ(4)); − i;

(π − Θ̃(3), 2π − Φ̃(3)); exp(i
π

4
)→

{
(π − Θ̃δ(4), π − Φ̃δ(4)); i,
(π − Θ̃δ(4), 2π − Φ̃δ(4)); 1;
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Note that at n = 4, the total amplitude of (π − Θ̃δ(4), π − Φ̃δ(4)) turns out to be zero,
but the other point (π − Θ̃δ(4), 2π − Φ̃δ(4)) survives.
n = 4 → n = 5 :

(π − Θ̃δ(4), 2π − Φ̃δ(4)); 1→
{
(π − Θ̃δ(5), π − Φ̃δ(5)); exp(i π

4 ),
(π − Θ̃δ(5), 2π − Φ̃δ(5)); exp(−i π

4 );

n = 5 → n = 6 :

(π − Θ̃δ(5), π − Φ̃δ(5)); exp(i
π

4
)→

{
(Θ̃δ(6), Φ̃δ(6)); i,
(Θ̃δ(6), Φ̃δ(6) + π); 1;

(π̃ −Θδ(5), 2π − Φ̃δ(5)); exp(−i
π

4
)→

{
(π − Θ̃δ(6), π − Φ̃δ(6)); 1
(π − Θ̃δ(6), 2π − Φ̃δ(6)); − i;

n = 6 → n = 7 :

(Θ̃δ(6), Φ̃δ(6)); i→
{
(Θ̃δ(7), Φ̃δ(7)); exp(i π

4 ),
(Θ̃δ(7), Φ̃δ(7) + π); exp(i3 π

4 );

(Θ̃δ(6), Φ̃δ(6) + π); 1→
{
(π − Θ̃δ(7), π − Φ̃δ(7)); exp(−i π

4 ),
(π − Θ̃δ(7), 2π − Φ̃δ(7)); exp(i π

4 );

(π − Θ̃δ(6), π − Φ̃δ(6)); 1→
{
(Θ̃δ(7), Φ̃δ(7)); exp(i π

4 ),
(Θ̃δ(7), Φ̃δ(7) + π); exp(−i π

4 );

(π − Θ̃δ(6), 2π − Φ̃δ(6)); − i→
{
(π − Θ̃δ(7), π − Φ̃δ(7)); exp(−i π

4 ),
(π − Θ̃δ(7), 2π − Φ̃δ(7)); exp(−i 3π

4 );

Similar to that at n = 3, at n = 7, the points eventually emerge are (Θ̃δ(7), Φ̃δ(7)) and
(π − Θ̃δ(7), π − Φ̃δ(7)). The other two vanish.
n = 7 → n = 8 :

(Θ(7), Φ(7)); exp(i
π

4
)→

{
(Θ̃δ(8), Φ̃δ(8)); 1,
(Θ̃δ(8), Φ̃δ(8) + π); i;

(π − Θ̃(7), π − Φ̃(7)); exp(−i
π

4
)→

{
(Θ̃δ(8), Φ̃δ(8) + π); 1,
(Θ̃δ(8), Φ̃δ(8) + π); − i.

Finally, after eight kicks, the pseudoclassical dynamics brings the initial condition to
(Θ̃δ(8), Φ̃δ(8)), the same as the classical map does. We thus have Equation (12) immediately.
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