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Abstract: The index coding problem consists of a system with a server and multiple receivers with
different side information and demand sets, connected by a noiseless broadcast channel. The server
knows the side information available to the receivers. The objective is to design an encoding scheme
that enables all receivers to decode their demanded messages with a minimum number of transmis-
sions, referred to as an index code length. The problem of finding the minimum length index code that
enables all receivers to correct a specific number of errors has also been studied. This work establishes
a connection between index coding and error-correcting codes with multiple interpretations from the
tree construction of nested cyclic codes. The notion of multiple interpretations using nested codes
is as follows: different data packets are independently encoded, and then combined by addition
and transmitted as a single codeword, minimizing the number of channel uses and offering error
protection. The resulting packet can be decoded and interpreted in different ways, increasing the
error correction capability, depending on the amount of side information available at each receiver.
Motivating applications are network downlink transmissions, information retrieval from datacenters,
cache management, and sensor networks.

Keywords: index coding; pliable index coding; error correcting index coding

1. Introduction

In this work, we consider a source code variant, introduced by Birk and Kol [1],
originally called informed source coding-on-demand (ISCOD), and further developed by
Bar-Yossef et al. [2]. Motivating applications include satellite transmission of large files,
audio and video on demand (such as streaming networks), database data retrieval, cache
management for network applications and sensor networks. The model considered in [1]
involves a source that possesses n messages and m receivers. Each receiver knows a proper
subset of messages, which is referred to as the side information and demands a specific
message unknown to it. The source, aware of the messages possessed by each receiver, uses
this knowledge to develop a transmission scheme that satisfies the demands of all receivers
using as few transmissions as possible, referred to as the index code length.

Index coding can be viewed as special case of rate distortion with multiple receivers,
each with some side information about the source [3]. Index coding has received consider-
able attention recently, motivated by applications in multi-user broadcast scenarios, such as
audio and video on demand, streaming networks, satellite communications and by its con-
nection to network coding. In [4,5], the equivalence between network encoding and index
encoding has been established. This research topic has been extended in other directions,
such as pliable index coding [6], a variation of index coding in which we still consider a
server and m clients with side information, but where the receivers are flexible and satisfied
to receive any message that is not in their side information set; such flexibility can reduce
the amount of communication, sometimes significantly. This has applications in music
streaming services or internet searching, such as content distribution networks (CDNs) [7]; a
CDN manages servers in multiple geographically distributed locations, stores copies of the
web content (including documents, images, audio and others) in its servers and attempts
to direct each user request to a CDN location that will provide the best user experience.
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In this application, each receiver may be interested in receiving any message that it does
not already possess as side information. Suppose that we are searching for the latest news
and we already have some information. We are happy if we obtain any additional news
that we do not have, with minimum delay. Here, we do not specify the news. On a music
streaming service, users do not know which song will play next; they are usually only
guaranteed that it will be one of a certain group and that it will not be repeated. In online
advertising systems, customers do not require a specific advertisement to view; it is the
distributor who chooses which one will be placed on customers’ screens. The distributor
may wish to avoid repeating the same advertisement for the same customer, as this can
decrease customer satisfaction.

How much we can gain in terms of bandwidth and user satisfaction, if recommenda-
tion systems become bandwidth-aware and take into account not only the user preferences?
Song and Fragouli [8] formulated this as a new problem in the context of index coding,
where they relaxed the index coding requirements and considered the case where the
customer is satisfied to receive any message that they do not already have, with satisfaction
proportional to their preference for that message.

A promising research area that has recently emerged is in how to use index coding to
improve the communication efficiency in distributed computing systems, especially for
data shuffling in iterative computations [9,10]. Index coding has been proposed to increase
the efficiency of data shuffling, which can form a major communication bottleneck for big
data applications. In particular, pliable index coding can offer a more efficient framework
for data shuffling, as it can better leverage the many possible shuffling choices to reduce
the number of transmissions.

The index coding problem subject to transmission errors was initially considered by

Dau et al. [11]. In this work, we establish a connection between index coding and error-
correcting codes with multiple interpretations from the tree construction of nested cyclic
codes proposed in [12]. The notion of multiple interpretation using nested codes [13] is as
follows: multiple information packets are separately encoded via linear channel codes, and
then combined by addition and transmitted as a single codeword, minimizing the number
of channel uses and offering error protection. The resulting packet can be decoded and
interpreted in different ways, yielding an increase in error correction capability, depending
on the amount of side information available at each receiver.
Part of the content of this paper was presented in [14]. In the current version, evidence to
verify our claims has been added, as well as some examples. The results in this paper are
an extension of the results in [12,14].

The main contributions of this paper are as follows.

e We verify that, for cyclic codes, there will not always be an increase in error correction
capability between different levels of the code tree. For this reason, we initially restrict
the study to Reed-Solomon codes since they are maximum separable distance (MDS)
codes, and provide an increase in Hamming distance at each level. This means that,
under certain conditions, knowledge of side information can be interpreted as an
increase in error correction capability.

*  We propose a new variant for the index coding problem, which we call “index coding
with multiple interpretations”. We assume that receivers demand all the messages
from the source and that the sender is unaware of the subset of messages already
known by the receivers. The sender performs encoding such that any side information
may be used by the decoder in order to increase its error correction capability. More-
over, if a receiver has no side information, the decoder considers the received word to
belong to the highest rate code, associated with the root node of the tree.

*  We also propose a solution to relax some constraints on how side information should
occur at the receivers, using graph coloring associated with the pliable index
coding problem.
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2. Preliminaries
2.1. Notation and Definitions

For any positive integer 1, we let [n] := {1,...,n}. We write F; to denote the finite

field of size g, where g is a prime power, and use ]Fq”Xt to denote the vector space of all
n x t matrices over [F,.

2.2. Review of Linear and Cyclic Codes

We now introduce the notation and briefly review some of the relevant properties
of linear and cyclic codes based on [15,16]. The purpose of a code is to add extra check
symbols to the data symbols so that errors may be found and corrected at the receiver. That
is, a sequence of data symbols is represented by some longer sequence of symbols with
enough redundancy to protect the data. In general, to design coding schemes for receivers
with side information, we will consider collections of linear codes that are of length n
over [F,.

Structure of Linear Block Codes

Recall that under componentwise vector addition and componentwise scalar multipli-
cation, the set of n-tuples of elements from I is the vector space called Fj. For the vectors
u=(uy,..., uy) € ]F;’ andv = (vq,...,04) € F’[;, the Hamming distance between u and v is
defined to be the number of coordinates u and v that differ, i.e.,

d(u,0) = [{i € [n] : u; # v;}|.

Definition 1. A k-dimensional subspace C of F g is called a linear (n,k,d), code over ¥ if the
minimum distance of C,
d(C)= min d(u,0)
u,v € C, u#v
is equal to d. Sometimes, we only use (n, k), to refer to the code C, where n is the length of the

. . . . .k
codewords and k is the dimension of the code. The code’s rate is the ratio e

That is, a (1, k), linear code C can be completely described by any set of k linearly
independent codewords vy, v, ..., vk; thus, any codeword is one of the qk linear combina-
tions 2?1 a;v;, &; € Fy. If we arrange the codewords into a k x n matrix G, we say that G is
a generator matrix for C.

A special case of major importance is 5, which is the vector space of all binary code-
words of length n with two such vectors added by modulo-2 addition in each component.
A binary code of size M = 2 for an integer k is referred to as an (1, k) binary code.

We consider cyclic codes of length n over F; with gcd(n,q) = 1. Label the coor-
dinates of ¢ € F g with the elements of Z, = {0,1...,n — 1} and associate the vector
¢ = (co,.-.,cy_1) with the polynomial c(x) = co + c1x + - - - + ¢,_1x" 1. With this corre-
spondence, a cyclic code C is an ideal of the ring R, = F,[x]/(x" —1). We use g(x) to
denote the generator polynomial of C and write C = (g(x)) = {C(x) € F;[x]; g(x)|C(x)}
to describe a t-error correcting cyclic code.

2.3. Index Coding with Side Information

The system shown in Figure 1 illustrates the index coding problem. Receiver R; is
requesting the message x;, i € {1,2,3} and knows other messages as side information; R;
knows x3, Ry knows x1 and x3 and the receiver R3 knows x1 and x;.

The goal of index coding is to perform the joint encoding of the messages, in order
to simultaneously meet the demands of all receivers, while transmitting the resulting
messages at the highest possible rate.
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Figure 1. Index coding problem with three receivers.

Assuming a noiseless broadcast channel, the server would communicate all messages
by sending one at a time, in three transmissions.

Alternatively, when transmitting the two coded messages x1 and x, ® x3, the receiver
Rq decodes x1, from (x, @ x3) @ x3 = xp and (x2 @ x3) @ xo = x3, Ry and Rj recover
their demands.

The index coding problem is formulated as follows. Suppose that a server S wants
to send a vector x = (x1,Xy,...,%,), where x; € F; Vi € [n], to [n] receivers Ry, Ry, ..., Ry.
Each receiver R; has x5, = {x;; j € §; C [n] \ {i}} as side information and is interested
in receiving the message x;. The codeword €(x) € Ff; is sent and allows each receiver R;
to retrieve x;. € is an index code scalar over F; of length £. The purpose of S is to find
an index code that has the minimum length. The index code is called linear if €(x) is a
linear function.

Index Coding via Fitting Matrices

A directed graph G = (V, £) with n vertices specifies an instance of the index coding
problem. Each vertex of G corresponds to a receiver (and its demand) and there is a directed
edge i — j if and only if the receiver R; knows x; as side information. Then, we write:

Si={j: (ij) is a edge of G }

Definition 2. Let G = (V, &) be a directed graph on n vertices without self-loops.
1. A0-1matrix M = (m;;), whose rows and columns are labeled by the elements of V = [n], fits
G if, forall i and j,
i) my;=1
(i) Fori # j,
o A¥E {0,1}; if (i,§) is an edge of G;
o ; else.
Thus, M — 1 is the adjacency matrix of an edge-induced subgraph of G, where I denotes the

n X n identity matrix.
2. The minrank of G over the field ¥, is defined as follows:

minrky(G) £ min{ ranko (M) : M fits G }
Remark 1. The term ranky (M) denotes the rank of such matrix M over F, after “ " has been

assigned a value of 0 or 1. As an example for the index coding problem instance described in Figure 1,
the matrix M would be given as follows:

1 0
M= |x 1
ko ok

= % %

Example 1. Consider the side information graph G and a matrix M that fits G, as shown in
Figure 2. As minranky(M) = 2, we can select two linearly independent rows in a matrix M,
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namely M', and design an linear index code with the shortest possible length. The codeword sent
will be M'x.

Figure 2. Graph and matrix related to the problem described in Figure 1.

Theorem 1 ([2]). For any side information graph G, there exists a linear index code for G whose
length equals minrky (G ). This bound is optimal for all linear index codes G.

In [17], the index encoding problem was generalized. Suppose that a sender wants
to transmit n messages (Xj, ..., X,), where X; € th Vi € [n], to m receivers Ry, ..., Ry,
through a noiseless channel. The receiver R; is interested in recovering a single block X¢(;),
where f : [m] — [n], and knows Xs = {Xi; i€ S;C[n]\ f(j)} The goalis to satisfy
the demands of all receivers, exploiting their side information in a minimum number of
transmissions.

Whenm = n, f(j) =j, Vj € [m] and t = 1, we have a scalar index code [2]. Otherwise,
we have a vector index code.

LetZ = {S;; j € [m]} be the set of side information of all receivers. An instance of an
index coding problem given by (m,n,Z, f) can be described by a directed hypergraph.

Definition 3. The side information hypergraph H(V, Ey) = H(m,n,Z, f) is defined by the set
of vertices V = [n| and the (directed) hyperedges 4, where

Ey ={ej=(f(j),S); j€[m]}
A hyperedge e; = (f(j), Sj) represents the demand and side information of the receiver R;.

Example 2. Consider an instance of an index coding problem in Figure 3. The hypergraph in
Figure 3b describes the problem, where n = 4 (messages) and m = 5 (receivers) requiring f(1) =1,
f(2) =3, f(38) =4, f(4) = 4and f(5) = 2, and with the following side information sets
S1 ={3,4}, S, = {2,4}, S35 = {1}, Sy = {2} and S5 = {1, 3}, respectively.

©

NS

N S
® — @
® @ ®
(a) (b)

Figure 3. A single sender with multiple receivers having side information: (a) An instance of an index

coding problem with m = 5 (receivers) and n = 4 (messages). (b) The hypergraph that describes this
instance will have four vertices and five hyperedges: ey = (1,{3,4}), e2 = (3,{2,4}), e3 = (4, {1}),
eg = (4,{2}) and es = (2,{1,3}).

Definition 4. Given an instance of an index encoding problem described by H(m,n,Z, f),

€:]Fqn><t ]Fqﬁxt’
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is a g~ index code with length {, for the instance described by H, if, for each receiver R;, j € [m],
there exists a decoding function

. It tS;| t
”D].Fq x Fg'oit — Ty,

satisfying Qj(Qi(X),XS],) = X¢(j), VX € F,"

)
. . . 14 . .
The transmission rate of the code is defined as 7 If t = 1, then the index code is known

as a scalar index code; otherwise, it is known as a vector index code. A linear coding function
¢ is also called a linear index code. The goal of index coding is to find optimal index codes,
i.e., those with the minimum possible transmission rate. For scalar linear index codes,
we refer to the quantity r as the length of the code, and thus rate optimality translates to
minimal length codes.

Definition 5. ¢ is a Fy-linear index code, €(X) = GX, V X € Féxn, where G € stn. G is the
matrix that generates the linear index code €.

The following definition generalizes the minrank definition over Fq of the side infor-
mation graph G, which was defined in [2], to a hypergraph #H(m,n,Z, f).

Definition 6. Let Supp(v) = {i € [n]:v; # 0}, the support of a vector v € Fy. The Hamming
weight of v will be denoted by w(v) = |Supp(v)|, the number of nonzero coordinates of v.

Definition 7 ([11]). Suppose that H(m,n,Z, f) corresponds to an instance of index coding with
side information (ICSI). Then, the minrank of H over ¥ is defined as

minrkg (1) = min{ ranky({v; + er(i) tielm)) © vi € Fq Supp(v;) C S;}
This may be rewritten as follows.

Definition 8. Let a side information hypergraph H correspond to an instance of the ICSI problem.
A matrix M = (my;) € F™" fits H if

Lo =10
T ifjes

The minrank of H over the field F; is defined as follows:
minrky (1) £ min{ rankg(M) : M fits H }

Theorem 2 ([2]). Given an instance of an index encoding problem described by the hypergraph
H(m,n, T, f), the optimal length of an index code on the field F; is minrks(H).

In [2], it was proven that, in several cases, linear index codes were optimal. They
conjectured that for any side information graph G, the shortest-length index code would
always be linear and have length minrk; (G). The conjecture was refuted by Lubetzky and
Stav in [18]. In any case, as shown by Peeters [19], calculating the minrank of an arbitrary
graph is a difficult task. More specifically, Peeters showed that deciding whether a graph
has minrank three is an NP-complete problem.
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Example 3. Consider the instance of the index encoding problem given in Example 2. Then, we
find that the matrix M that fits the hypergraph H has the form:

1 0 x =x
0 *x 1 =«
M= 1|[x 0 0 1
0 % 0
*x 1 % 0

The lines are associated with the receivers Ry, . .., Rs and the columns to the message indexes 1,2, 3
and 4. The symbol “ x” can be replaced by an arbitrary element in the field .

For an example, consider the field ;. A matrix that fits the hypergraph #H has rank at
least 3. Thus, we select

<

I
coocor
_ o orROo
_oorROo
= -0 O

o

which achieves the minimum rank 3. Now, we consider three linearly independent lines of
M, and suppose that

100 0 1000§1 X

G=10110 :>Gx:0110x2:x269x3

0001 0001x3 X4
4

The decoding process goes as follows. Since R; and Rs already know {x3, x4} and {xy, x3},
respectively, they obtain x3 and x;, respectively, from the first packet. Receiver R; obtains
x1 and both R3 and R4 obtain x4.

Remark 2. We have made available at [20] an algorithm (m-files) in Matlab, which is designed
to solve small examples in this work, since, as we mentioned above, there is no polynomial-time
algorithm for an arbitrary graph.

2.4. Pliable Index Coding

The pliable index coding problem (PICOD), introduced by Brahma and Fragouli in [6],
is a variant of the index coding problem. In PICOD, users do not have predetermined
messages to decode, as in the case of classic index coding; instead, each user is satisfied to
decode any message that is not present in its side information set. Figure 4 illustrates this
system model.

g Messages
CIVEL | (s, e X i en)}

R, Ry C e R,
Has Has
{.il?, 11 E 81} {xi (1€ Sm}
Request any o« x x xx x ko x x Request any
diel, = [’I”L} \Sl dy €I, = [n} \Sm

Figure 4. Pliable index coding scheme.
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The problem is formalized as follows: a transmitter with n messages {x; : i € [n]},
x; € X is connected to m receivers Ry, ..., Ry, through a noiseless channel. Each receiver
R;j knows xg, = {x;: i € §j} as side information. We denote by I; 2 [n]~ S; the index set
of the unavailable messages in xs,. Then, x;; = {x;: i€ I;} denotes the set of requests of
R;. Each receiver R; is satisfied if it can successfully recover any message that is not present
in its side information set, i.e., any message x; € xr..

We can represent an instance of a pliable index coding problem using an undirected
bipartite graph, one side representing the message indexes and the other side representing
the receivers. We connect R; to the indices belonging to [;, as in Figure 5.

Remark 3. By having this freedom to choose the desired message for each user, PICOD can satisfy
all users with a significant reduction in the number of transmissions compared to the index encoding
problem with the same set of messages and the same sets of user side information.

Example 4. We will consider the case described in Example 2 as a pliable index coding problem.
Now, we have the bipartite graph in Figure 5 describing the problem. Note, for example, that
client 1 demands any of the messages indexed in Iy = {1,2} and knows the indexed messages
in 81 = {3,4}; client 3 will be satisfied to receive any of the messages x, X3 or x4, since it only
knows x.

Figure 5. Bipartite graph for PICOD.

Pliable Index Coding via Colorings of Hypergraphs

In [21], a graph coloring approach was presented for pliable index coding. The authors
have shown the existence of a coding scheme that has length O(log? T'), where I refers to a
hypergraph parameter that captures the maximum number of intersections between edges
of the PICOD hypergraph.

An instance of the pliable index encoding problem is described by (m,n,7)—PICOD,
ondeZ = {I;; j € [m]}, and can be conveniently represented by a hypergraph.

Definition 9. The hypergraph H(V, E4;), with V = [n] vertices and &y = {e; = (I;) ; j € [m]}
hyperedges, completely describes the (m,n, Z)—PICOD. The hyperedge e; = (I;) represents the set
of requests for R; (i.e., Ey = I).

The problem illustrated in Example 5 can be represented by a hypergraph, as can be
seen in Figure 6.

Figure 6. Hypergraph.
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Let H = (V,&x) be a hypergraph and C : V — [L] be a coloring of V, where L is a
positive integer. We say that C is a conflict-free coloring for the hyperdges, if each &£, of
‘H has at least one vertex with unique color. The smallest number of colors required for
such a coloring is called the conflict-free chromatic number of #, denoted by xcp(#). This
parameter was first introduced by Even et al. [22].

Remark 4. In [21], pliable index coding was given a graph coloring approach. The authors have
shown the existence of a coding scheme that has length O(log® T), where T refers to a hypergraph
parameter that captures the maximum number of “incidences” of other hyperedges in any given
hyperedge. This result improves the best known achievable results, in some parameter regimes.

Definition 10. A pliable index code (PIC) consists of a collection of an encoding function on the
server that encodes the n messages to an £—length codeword,

¢ A" — X,

and decoding functions ; : x4 s XIS — x, satisfying Pi(p(x), xs,) = x4, for some d € ;.
The quantity {— is called the length of the pliable index code. We are interested in designing
pliable index codes that have small {—.

We will assume that X = F¥ for some finite field F and integer k > 1. If k > 1, we refer
to this code as a k—vector PIC, while the k = 1 case is also called a scalar PIC. We will concen-
trate on the linear PICs. In this case, the coding function ¢ is represented by a matrix ¢ x mk
(denoted by G) such that ¢(x; : i € [n]) = GxT, where x = (X101, e e s Xt e e s Xy -+ X)) -
The smallest ¢ for which there is a linear k—vector PIC for an instance of the pliable index
coding problem given by the hypergraph H will be denoted by £;(H ).

Definition 11. Let C : V — [L] be a conflict-free coloring of the hypergraph H that represents a
PICOD. The indicator matrix associated with this coloring G¢, L X n, is given by

Gelei) = 1, if the vertex i received the color c;
o 0, otherwise.

Teorema 1 ([21]). The indicator matrix G, generates the pliable index code for the problem described
by the hypergraph H.

Example 5. Consider the same PICOD represented in Figure 6. The coloring shown in Figure 7 is

a conflict-free coloring with two colors. Then, the matrix G, = [(1) (1) (1) (1)] .
® T
@ N 1 0 0 1] |x| [|x1Dxs
01 1 0||x3| |x2®x3
o © .

Figure 7. Conflict-free coloring with two colors.

From the messages x1 ® x4 and x; @ x3, all receivers can successfully recover at least
one message from their request set.

Using the same parameters as in Example 2, we see that the length of the index code
for this instance is £ = 3, while, for the PICOD case, £} (H) = 2.
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2.5. Index Coding via MDS Codes

The index coding model defined in Section 2.3, via graph theory, is only one of
many approaches used to describe and solve an index encoding problem. One of the
most interesting index coding schemes using codes has the maximum distance separable
(MDS) property, which consists of transmitting x(G) = n — mindeg(G), the parity symbols
of a systematic MDS code with parameters (1 + «, 1), where mindeg(G) represents the
minimum amount of side information available at each receiver, i.e., for a general index
encoding problem with side information graph G,

mindeg(G) £ minyci,|{ ji (i, ) € £(G)}] = minicy|Si.

Then, every receiver has n code symbols (including its side information) and, by the MDS
property, it can successfully recover its desired message.

Proposition 1 ([1]). Consider an index coding problem with n messages and n receivers represented
by the side information graph G. Let S;, the side information set of the receiver R;,i € [n], and then

minrk, (G) < x(G) = n — mindeg(G) = n — min;c[,|S;-

Corollary 1. If G is a complete graph, then mindeg(G) = n — 1 and the transmission of the parity
symbol x1 + - - - 4 xy, of an (n 41, n) MDS code over I, achieves minrk,(G) = 1.

3. Results

The tree construction method proposed in [12] can be interpreted as a network coding
problem with multiple sources and multiple users. In the proposed model, both encoding
and decoding are performed by polynomial operations, without the need for side informa-
tion; however, if they exist, they may allow multiple interpretations at the receivers, based
on the side information available at each receiver. Figure 8 illustrates this system model.

& 3
@D

0/ ‘\
Cl]

z) @ Ca(z) ® C3(z) ® Cy(z
Figure 8. Coding model with nested cyclic codes.

Given the connection between network and index coding problems, established in [4],
we can also interpret the coding with nested cyclic codes, at the stage where the packets are
XOR-ed together, as a case of MDS index coding according to Corollary 1, in the particular
case where each receiver is unaware of the message it is requesting, which may be a rare
occurrence. However, it is possible to take advantage of the method’s distinguishing
feature—the possibility of multiple interpretations at the receivers—and, by imposing
some extra conditions, design an index code model that has greater flexibility over the side
information sets.

In the next subsections, we present some results and algorithm implementations, and in
Section 4, we present in detail the proposed index encoding with multiple interpretations.
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3.1. Index Coding from Reed—-Solomon Codes

We establish a connection between index coding and error-correcting codes based
on the tree construction method of nested cyclic codes proposed in [12]. We implement
a few algorithms to perform tree construction using the Matlab language, which allows
us to work over finite bodies in a practical and efficient way and helps to solve some
implementation problems encountered later in [12]. We prove that for cyclic codes, there
will not always be an increase in error correction capability between the levels of the tree,
as suggested in [12]. This is why we have initially limited this study to Reed-Solomon
codes, because they are MDS codes, which guarantees an increase in Hamming distance at
each level, meaning that, under certain conditions, the knowledge of side information will
be interpreted as an increase in the decoder’s ability to correct errors.

A Tree Construction with Nested Cyclic Codes
A nested code is characterized by a global code where each element is given by a sum
of codewords, each belonging to a different subcode. That is,
c=11G1 PGy ® -  BiNGN,

where @ represents an XOR operation. For an information vector iy, 1 < ¢ < N, the
codeword i;G; belongs to a subcode C; of code C and ¢ € C.

Nested cyclic codes, whose subcodes are generated by generator polynomials, were
originally proposed by Heegard [23], and were originally called partitioned linear block
codes. They can be defined as follows:

Definition 12. Let C = {C(x) € Fy[x]; g(x)|C(x)} be a t-error-correcting cyclic code having
g(x) as the generator polynomial. Note that C = (g(x)) is an ideal of the ring R, = Fy[x]/(x" —
1), but is also a vector subspace of F?, such that

C(x) = p1(x)g1(x) + p2(x)g2(x) + - - + pn(x)gn (%),

where Cy(x) = py(x)ge(x), 1 < ¢ < N is an encoded packet belonging to the tj-error-correcting
subcode

Cr = {Cu(x) € Fyx]; ge(x)|Co(x) ],
generated by gy(x) and satisfying the following conditions:

1. gu(x)|gey1(x);
2. deg[Cy(x)] < deg[gy1(x)].

The tree-based algebraic construction of nested cyclic codes, proposed in [12], aims to

1.  Encode, independently, different data packets, providing protection against channel

er7orS;

2. Encode different data packets producing codewords that are added, resulting in the
packet Co;

3. Correct the errors on Cy and, finally, recover the data in the receiver by polynomial
operations.

Consider a tree in which the root node is associated with the vector subspace of
an encompassing error correcting code. Thus, the root node is defined as the code Cj,
such that

Cio = (8io(x)) = {Cio(x) € Fylx]; &io(x)|Cio(x)}.
This subspace corresponds to a tp-error-correcting cyclic code Cy(#, kjy), generated by the
polynomial g;o(x).

Definition 13. A tree of nested cyclic codes is a finite tree such that

1. Each inner node (including the root node) can be subdivided into another inner node and a
terminal node;
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2. The jth th inner node is associated with a linear subspace Cij C Fjl of dimension kij, and can

be subdivided into the subspaces

ijs

Cij = Cijr1) + Ci(jrry com Cijy1y N Cyjyny = {0} e kij = ky(j1) + kyjia)

3. The subspace Cjj, associated with the jth inner node, must be a cyclic linear block code generated
by gij(x);

4. IfCij = (gij(x)) e Ci(jy1) = (i(j+1) (%)), then gij(x)|8i(j11) (x); furthermore, g;;(x)[|x" — 1
for any gij(x);

5. To conclude, the last inner node will have no ramifications.

Remark 5. Figure 9 illustrates the model described above.

Cio(T,kin = 1) Coo(T—1kip=3-1)
gin(x)

Ci(7, ki =3) Ci(7—3,kip=5—13)
gin(x)

Cio(7, kia = 5)

gio()

Figure 9. Tree construction. The sum of the dimensions associated with the last node and the terminal
nodes is equal to the dimension of the root node.

Let pj(x) be the data packet associated with the terminal node, for 1 < j < T. The
encoding is given by
Cj(x) = pj(x)8i(j-1)(x)-
Then, the encoded packets are summed up and the resulting codeword is sent out by the

transmitter
Co(x) = Ci(x) + Co(x) + - - - + Cr(x).

After the error correction phase, the jth packet p;(x) is decoded by the operations:
(1) = { (Co(x)  mod gij(x)]/gi(j1)(x) if1<j<T, "
! Co(x)/i(r—1)(%) ifj=T.

The information will be contained in the remainder of the division of Co(x) by g;;(x),
since the modulo operation eliminates the influence of all messages related to polynomials
of degree equal to or greater than the degree of g;;. Thus, the quotient of the final division
operation provides the desired information, since all other messages have degree less than
the degree of the divisor polynomial. Therefore, in the case of the last package, only the
division operation is required. We suggest consulting [12] for more details on the encoding
process using the tree construction method.

3.2. Tree Construction: Algorithm and Considerations

We describe a few algorithms in Matlab and considerations for fitting to the model
of tree construction, which can be found at [20], allowing us to perform the calculations
on finite fields by making the appropriate transformations from integer representation to
powers of a. Below, we exemplify the main idea of the algorithm.

Example 6. For T = 3 let Cig(7,5) be a Reed—Solomon code in GF(8) and kyy = kip = 2 the
dimensions of subspaces Cyy, Cyp, respectively. They are associated with the terminal nodes of the
tree; the last node of the tree, which is an inner node without ramification, is associated with Cj of
dimension kp, = 1.
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The packets p1(x) = x + a2, pa(x) = a’x + &, both associated with the the terminal
nodes, have length 2; p3(x) = &> has length equal to 1 and is associated with the last node.
Let a be the primitive element of GF(8), and the generator polynomials are

2 .
1 deg(gn(x) =n—ko=2= gio(x) = [(x—a)) = 2 +a*x + a3
j=1
4 .
2. deg(gn(x))=n—ky=4= ga(x)=]J(x—«) = 3w 4+ 2% 4 ax + a3
j=1
6 .
3. deg(gn(x))=n—-kp=6= gn(x)=]Jx—-a) =20+ +2*+x3+ 2 +x+1.
=1

Then, the encoded packets are

Ci(x) = pi1(x)gio(x)
x3 + ax? + atx +ab;

Co(x) = pa(x )gﬂ(x)
= a3x0 4+ a®x* + abx® 4+ a?x% + x +at;
Cs(x) = p3(x)gia(x)

= oc5x + a®x° + adx* + a%x% 4 a®x? + adx + ad.
The transmitted codeword Cy(x) is given by

Co(x) = Ci(x)+Co(x)+Ca(x)
= a5x® 4+ a2x% + 0x* + aBx3 + 122 + 0x + a*.

Remark 6. Each terminal node is a shortened version of the code associated with the inner node
from which the terminal node emanates. It is implicit that the codewords of shortened codes are
prefixed with zeros to achieve length n and, therefore, that these codes are not cyclic.

3.2.1. Decoding—Error Correction

Considering tree construction based on Reed-Solomon codes and assuming that the
receiver has side information available, when will there be an increase in error correction

capability?

Proposition 2. Due to the nesting structure, the variable error correctability characteristic can
only be observed if there is a sequential removal of the packets associated with the nodes from the
root to the top of the tree.

Proof. Supposing that Cy(x), 1 < ¢ < T is the first coded packet known at the receiver,
then

Co(x) = p1(x)gio(x) + -+ - + prr—1)(¥)&i(r—2) (X) + Prrg1) (X)Gie(x) + - - - + pr(x)gi(7-1) (%)
=[p1(x) + -+ pe—1)(0)g-1) (%) + P(e1) () (e31) (x) + - - - + pr(x)q7(x)]8i0 (%),
therefore, Co(x) € Cio(n, kj,), whose error correction capability is to. Note that even though

the receiver knows about other packages C;(x), ¢ < j < T, the result does not change. On
the other hand, if all packages C ]-(x); 1 < j < £ are known to the receiver, we can write

Co(x) = pe41)(X)gie(x) + - - + pr(x)gi(r—1)(%)
= [Py ()G (g41) () + -+ + pr(x)q7(x)]gie (%),

thus, Co(x) € Ciy(n, k;y), whose error correction capability is ¢, > ty, and equality occurs
only when

dmin(cé) - dmin(CO) <2
O]
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Example 7. Consider the same tree as in Example 6.
e Ifall packages are unknown = the decoding is performed by C;jo(7,5) . to = 1;
e IfCy(x) is known = the decoding is performed by Ci1(7,3) .t = 2;
e IfCy(x) is known Cyi(x) = the decoding is performed by Cip(7,1) .. tp = 3.
However, if Ca(x) is known but Cy(x) is not, then the resulting codeword still belongs to
Co(x) € Cio(7,5), and there is no improvement in error correction capability, since

Co(x) = p1(x)gio(x) + p3(x)gio(x)q(x)
= [p1(x) + p3(x)q(x)]gi0 (x)-

Another advantage of Reed-Solomon codes is that they are easily decoded using an
algebraic method known as syndrome decoding.

Syndrome Decoding

Syndrome decoding is an algebraic method based on the Berlekamp-Massey algorithm,
which became a prototype for the decoding of many other linear codes.

If the coded package Ci(x) is known and an error e(x) occurs, then the message
received will be

r(x) = Co(x) + C1(x) +e(x)
Suppose that the error is given by e(x) = 0x° + 0x° + a?x* + #°x3 + 0x? + 0x + 0, and then
r(x) = 2®x + a2x° + a®x* + aOx% 4+ a3x% + atx 4 1.

Remark 7. Notice that we need to find the error locations and their values, which is the main
difference with binary codes, since, for binary codes, it is enough to determine the error locations.

The decoding process can be divided into three stages.
1.  Syndrome calculation

The syndrome calculation stage consists of checking the roots of the generating poly-
nomial as inputs of r(x). If the result is null, the sequence belongs to the set of codewords
and, therefore, there are no errors. Any nonzero value indicates the presence of an error.

If the encoded packet C;(x) is known, then the error correction algorithm is executed
by C;1, which is a RS(7,3) code, generated by g;1(x) = (x —a)(x — a?)(x — a3)(x — a?).
Then,

r(x) = m(x)gin (x) +e(x),

Therefore, evaluating the roots of g(x) at r(x), the result will only be null when there are
no errors in the transmission.

S; =r(x) =e(a'), V i=1,...,n—k=2L
x=a!
S =r(a) = o S3=r(a®) =0;
Sy = r(a?) = ab; Sy = r(at) = a®.

2. Error Localization

Let u be the number of errors 0 < p < t, which occur at locations ¢y, - - - , £;, and the
error polynomial can be written as

e(x) = 6419(61 +- 4 egyxzf‘.
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To correct r(x), we must find the values and locations of the errors, which are denoted,
respectively, by €ryrenerCp, and x€1, . ..,xf;t, Substituting o/,1 < j < 2t, into the error
polynomial e(x), we obtain

S9 = ela) = efll’égl + 6[20([2 4+t eZ‘u“‘é}l
So = e(a®) = e (a)+ep(a'2)? 4 4o (alr)?
Su = e(@®) = ey (@) +ep(a2)? 4+ e, ()2t

Obtain X; = ali and Y; = e, for 1 <i < p, where X; and Y; will represent, respectively, the
locations and values of the errors. Note that we will have 2t equations and 2t unknowns, ¢
being error values and t being locations.

59 = "Xy —|—Y2X2+"'+YVX]4
S, YiX? + Yo Xo® + - + Y, X3

S = NXPH VXM 4+ Y XY

It can be shown that this nonlinear system has a unique solution if 0 < p < ¢ [15]. The
techniques that solve this system of equations include defining the error locator polynomial
(ELP) o(z) [24].

Definition 14. Define the error locator polynomial sigma(z), as

o(z) = (1-Xz)(1—Xoz)---(1—-X,z2)
= aﬂz"+~~+0222+012+1.

The inverse of the square root of 0(z), 1/ Xy, ..., 1/ X, indicates the locations of errors.

To find error locations X;, 1 <i < p, note that 1,0, ...,0, and calculate the zeros of
0(z); to find them, we use a syndrome matrix, as we see below:

Sp Sz o+ Spw1 | |ou—1 —Sut2
Sy Suv1 0 Syl L oow —Sop

Returning to Code RS(7,3), where the error correction capability is t = 2, we must find &y

e 0p.
S1 S| |o2| _ [S3
Sy S3||on]  |[Sa
o’ af) [ 0 6
L{ O]Lfl]—[aé}?@—lem—zx
3_ 4

Thus, 0(z) = z% + a®z + 1 with roots &> and a*, so there is an error at the locations 2 =3 = a
and a—% = &3. Then,

a1

e(x) = e3x® + egxt.

3.  Determining the error values



Entropy 2022, 24, 1149

16 of 22

Calculating e(x) = e3x> + e4x* at the points a and a?, we can use the syndromes
already obtained, S; and Sy, to determine the values of the errors, solving the following
system:

{Sl = e(a) = e3adtent
8

Sy = e(a?) = end+eym

Therefore, the error polynomial is given by e(x) = a®x3 + a?x*. Now, correcting the received
word r(x), we have

Co(x) = r(x) +c1(x) +e(x)
= 02x% 4+ 0?20 + 0x* + a3x® 4+ 122 + 0x + o,

3.2.2. Decoding—Data Recovery

Example 8. For the cases in the previous examples, where T = 3, the original data can be recovered
as follows:

Co(x) mod gi(x) _ pigio mod gin _ p1(x)gio(x)

© = gio(x) gio(x) gio(x)

. ~ Co(x) mod gp(x)  pigio mod gpp + pagin mod g
pax) = gi(x) B gi(x) ’

. _ Go(x) _ pr(x)gin(x) | pa(x)gin(x) | pa(x)gia(x)
palx) = go(x)  gin(x) - gin(x) * gin(x) '

In summary, the module operation removes the branches above the node of interest
and the division operation removes the branches below. Therefore, no side information is
needed at the receiver in order to recover the data packets.

Will There Always Be an Increase in Error Correction Capability?

We analyze two cases of tree construction of nested cyclic codes, with the same
parameters at each level. In one of them, we observe no increase in the error correction
capability from the second to last internal node of the tree. This is due to the variety of
possibilities of generating polynomials for a cyclic code of parameters (1, k). As a result,
we demonstrate in Proposition 3 that, for Reed—Solomon codes, this feature of increasing
capacity will be guaranteed provided that: k;; — k;(j11) >22,Vj=0,..., T -1

Example 9. Let C;y(15,10) be a cyclic code in GF(2) and ky1 = 4, kiy = 2 be the dimensions of
the subspaces Cy1,Cyp, respectively. The last node is associated with Cj, with dimension ki = 4.
The construction is depicted in Figure 10.

C(15, kiz = 4) Cio(15— 4,k = 6 — 4)
gio()

Ci1(15,kn = 6) Ci1(15 — 6, kjp = 10 — 6)
gin()
Cio(15, kip = 10)

grll(r)

Figure 10. Tree construction.

We consider the factorization:

1= 141+ 2+ )+ x+ 2+ 3+ (1 +x+ 22 (1 +x+ )
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Case 1.
Gio(x) = (1+x)(1+ 2%+ %) = t=1
gt (%) = gio(x) (1 + x4+ 22 + 2% +x*) = hH=2
gin(x) = gin (x) (1 +x + x?) = tHh=3
Case 2.
gio(x) = (1 +x)(1+x +x%) = ty=1;
gin(x) = gio(x) (1 + x> + x%) = H=2
gin(x) = gin (x) (1 + x + x?) = h=2

Remark 8. We have provided an m-file algorithm at [20], which can be run through Matlab and
performs the operations described in Examples 8 and 9.

Proposition 3. Given a (n,k) Reed—Solomon code, which has minimum distanced = n —k + 1,
one can guarantee an increase in error correction capability at each level of the tree provided that
kij_ki(j+1) 2 Z,V_] == O,,T—l

Proof. We must prove that tigir1) >t +1, vV j=0,...,T — 1. For simplicity but without
loss of generality, set j = 0. If kjp — kj; > 2, then we can write:

(—di0+n+1)+di1—n—122
dp—1>dpg—14+2

2] [

th > tio+ 1.

This completes the proof. [

The verification that, for cyclic codes, there will not always be an increase in the error
correction capacity between the levels of the tree, as considered in [12], leads us to search
for answers on how to properly choose the generating polynomials for a code of parameters
(n,k) and its subcodes, in order to guarantee subcodes with larger Hamming distance, with
the purpose of observing an increase in the error correction capacity between the levels of
the tree. An approach to constructing chains of some linear block codes while keeping the
minimum distances (of the generated subcodes) as large as possible is presented in [25]
and may be the solution to this problem.

3.3. An Example with a BCH Code

According to Luo and Vinck [25], to construct a chain of BCH subcodes with the
characteristic of maintaining the minimum distance as large as possible, the task becomes
more difficult because their subcodes may not be BCH and cyclic codes, and therefore the
minimum distance of these subcodes might not be found easily. However, for primitive
BCH codes, the minimum distance coincides with the weight of the generator polynomial,
which makes it feasible to use it for the construction of the nested subcode chain that we
seek. For non-primitive BCH codes, this statement is not always valid. For an extensive
description of the minimum distance for BCH codes, we recommend consulting [26].

In Table 1, we present the parameters for binary primitive BCH codes of length
n = 2" —1; it will guide the tree construction.
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Table 1. Parameters for values of m < 6.

m=3 m=4 m=1>5 m==6
n 7 15 31 63
k 4 1 7 5 26 21 16 11 6 57 51 45 39 36 30 24 18 16 10 7
t 1 1 2 3 1 2 3 5 7 1 2 3 4 5 6 7 10 11 13 15

Note that there will always be an increase in error correction capability for a fixed n and varying k.

Example 10. Consider the root node associated with the BCH code Ciy(15,11). Suppose that we
want to encode the packets p1(x) = x° + x% + x, po(x) = x and p3(x) = x* + x> + 1 associated
with nodes whose dimensions are kyy = 4, kyp = 2 and kjp = 5, respectively. The polynomials
gio(x) =t +x+1,g1(x) =8+ 27 +x0+xt + 1) and gp(x) = x10 + 8 + x5+ x* + 2% +
x + 1 generate the codes associated with the internal nodes, Cjy(15,11), C;1(15,7) e Cjp(15,5),
respectively, as shown in Figure 11.

Cia(15, kip = 5) Cio(15 — 5, kio =7—15)
gia()

(37,1(15: ki = 7) Ctl<15 — T kg =11 — 7)
g,1<1')
Cio(15, kig = 11)

grll(x)

Figure 11. Tree construction of a BCH code tree.

Encoding the packets, we have:

Ci(x) = p1(x)gio(x)

= x40+t tx
G(x) = pa(x)ga(x)

= P+ 47+ 0+
Gi(x) = pa(x)gia(x)

= 2%x0 4+ a%x® + &Pt + a®x3 + aPx% + aPx +ad.

The transmitted codeword Cy(x) is given by:

Ci(x) + Cao(x) + Ca(x)
= M8+ a0+ 3+ x+1

Co(x)

Alternatively, it is possible to represent the codeword in vector form:
Co(x) =(1,0,0,0,0,0,1,1,1,0,0,1,0,1,1)

After the error correction process, which will be performed on the sum of the coded
packets, taking into account the side information available at each receiver, data recovery
will occur as follows:

(x) (x14+x8—|—x7+x6+x3+x+1) mod(x8+x7+x6+x4+1)
° = ;
s (X +x+1)

(48427 +x0+ 23 +x+1) mod (x10+28+x°+xt+x24x4+1)

* pa(x) = (28 + 27+ x0 + x4 + 1) '

. (x)_(x14+x8+x7+x6+x3+x+1)
ps (x10+x8 + x5+ x4 +x2+x+1)

Remark 9. We have made available at [20] an m-file Matlab algorithm that performs the tree
construction operations and the data recovery for the BCH code.
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4. Index Coding with Multiple Interpretations

In the problem of index coding with multiple interpretations, we assume that receivers
demand all the messages from the source and that the sender is unaware of the subset
of messages already known in the receivers—performing an encoding so that any side
information may be used by the decoder, in order to increase its error correction capability.
Otherwise, if a receiver has no side information, the decoder considers the received word
to belong to the highest rate code associated with the root node of the tree.

The proposed encoding process is shown in Figure 12 and can be performed in four
main steps:

1.  Encoding of the different data packets with nested cyclic codes, which consists of
subdividing the vector space of a linear block code into vector subspaces, using each
of them for encoding a different user;

2.  Implementation of index coding at the relay node; the basic idea is that the differ-
ent data packets, encoded by polynomial multiplications with linearly independent
generators, are added and then forwarded to the receivers;

3. Multiple interpretations at the receivers that occur at the error correction stage, where
each receiver can decode the received message at different rates depending on the
known side information;

4. The data recovery stage, i.e., the process of decoding Cy(x), ..., Cr(x) through poly-
nomial operations (1), as described in Section 3.1.

[Encoded data packets|| Where index coding Error-correcting Data recovery
before being sent will be performed stage stage
¥ v v 5 v P

pi(x) Ci(@) C Co(=) [ichtamod guen| P~ -Pr) >

> gio (x) 0(s1) )
pi() Cj(x) | Encoder | Co(z) Co(2) [[y(@)mod gy ()] (ﬁlﬁT')O
= i1 () (Relay) CO(sj> gm,n(z; &
pr(T) Cr(x) 6O(I) [Co(z)mod gy ()] (P1s -, Dr)
— ¥ gi(Tfl)(x) CU(ST) 9iG—1) (@) it

Figure 12. Scheme for index coding with multiple interpretations.

The notion of multiple interpretations was introduced in [13], indicating that the error
correction capability in decoding gradually improves as the amount of side information
available at the receiver increases. However, as we prove in Proposition 2, because of the
nested structure of the tree, this characteristic of variable error correction capability can
only be observed if there is a sequential removal of packets associated with the nodes, i.e.,
the side information should occur sequentially from the root to the top of the tree. However,
in practice, this is not always the case. Thus, if we want to ensure that any information
can be used efficiently in the decoder, it will be necessary to assume knowledge of the side
information by the relay node or even the demand set, if we have a PICOD problem.

The following is a proposal for pliable index coding with multiple interpretations.

Pliable Index Coding with Multiple Interpretations

As in the pliable index coding problem [6], we will assume that the transmitter knows
the demand set of each receiver and that all receivers are satisfied by receiving any message
contained in their demand set. For example, if we are searching on the internet for a red
flower image and we already have some previously downloaded pictures on our computer,
if we find any other image that we do not have yet, we will be satisfied.

The goal of the server is to find an encoding scheme that satisfies all receivers, using as
few transmissions as possible and ensuring that all side information associated with nodes
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located below the node where the packet to be recovered is located may be interpreted as a
gain in error correction capability, even when they do not appear in such a sequence.

The idea behind this proposal is to apply conflict-free coloring to the hypergraph
that represents the demands of all receivers, and instead of sending the encoded word
Co(x) = C1(x) + Ca(x) + - - - + Cr(x), we select the packets in a way that maximizes the
possibility of a gain in error correction capability, since, as mentioned above, packages will
only be removed if they occur sequentially.

Example 11. Consider an instance of an pliable index coding with multiple interpretations in
Figure 13a, where the encoded packets C1(x) = gjo(x)p1(x),Ca(x) = gin(x)pa(x), C3(x) =
Qin(x)p3(x) and Cy(x) = gi3(x)pa(x) will be sent to receivers Ry, Ry and Rz, which have demand
sets [} = {1,2}, I, = {3}, [; = {2,4}, respectively, as we see in Figure 13b.

@

() (b)

Figure 13. Pliable index coding with multiple interpretations: (a) The construction representation of

an instance of a pliable index coding problem with m = 3 (receivers) and n = 4 (messages). (b) Shows
the hypergraph that describes this instance.

10

Figure 14 shows conflict-free coloring with two colors and G, = {0 1

1 1 .
0 O},whlch

represents the pliable index code.

® .
@ @ :>[1 01 1} Cy :[Cl@C?,@Cﬂ

‘ Cy =

Figure 14. Conflict-free coloring with two colors.

Note that if we send only the message Co = C; @ C3 @ Cy, all receivers recover one
and only one message from their request set, as we can see in Table 2.

Table 2. Receivers with their side information sets.

Receivers Side Information Sets Decodes from Transmission
Ry S1 = {3,4} COCGRCOCGaC =0
Ry 52:{1,2,4} CLPC3PCiPpC1pCy=C3
R3 S3 = {1,3} CeCGaCeCiaC =0

Each receiver R; is satisfied if it can successfully recover any new message that is not present in its side information
. A
set, i.e., any message x4 € xJ;, where [; = [n] ~ Sj.

Depending on the problem, this would be an ideal solution, since the transmitter may
want each receiver to decode only one message, in which case we would have a PICOD(1);
no client can receive more than one message from its request set. The case of PICOD(1) is
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dealt with in detail in [27], and the following example, which aptly illustrates its use, is
provided.

Consider a media service provider whom we pay for movies. The provider has a set
of movies and customers pay for a certain number of movies, e.g., one movie. Suppose that
the service is being sold in such a way that customers will be happy to receive any movie
that they have not watched yet. There is a restriction on the service provider’s side, since
customers who have paid for only one movie should not receive more than one. Therefore,
it can only supply one film for each client.

5. Conclusions

The verification that, for cyclic codes, there will not always be an increase in the error
correction capacity between the levels of the tree leads us to search for ways to correctly
choose the generating polynomials for a code and its subcodes, in order to guarantee
subcodes with larger Hamming distance and an increase in error correction capability
in consecutive levels of the tree. A method for the construction of chains of some linear
block codes that maintains the minimum distances (of the generated subcodes) as large as
possible is presented in Vinck and may be useful in addressing this issue.

Our work deals with the construction of index coding. We treat index coding as
a network coding problem and we show how it is possible to construct pliable index
codes with multiple interpretations by exploiting the conflict-free coloring of a hypergraph.
Studying conflict-free coloring of a hypergraph in the context of the general index coding
problem seems to be an interesting direction for future studies.
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